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Six novel immunoglobulin genes 
as biomarkers for better prognosis 
in triple-negative breast cancer 
by gene co-expression network 
analysis
Huan-Ming Hsu1,2, Chi-Ming Chu3,4,5,6,7,8, Yu-Jia Chang9, Jyh-Cherng Yu10, Chien-Ting Chen3, 
Chen-En Jian3, Chia-Yi Lee3, Yueh-Tao Chiang11,12, Chi-Wen Chang11,12 & Yu-Tien Chang1,3

Gene co-expression network analysis (GCNA) can detect alterations in regulatory activities in case/
control comparisons. We propose a framework to detect novel genes and networks for predicting breast 
cancer recurrence. Thirty-four prognosis candidate genes were selected based on a literature review. 
Four Gene Expression Omnibus Series (GSE) microarray datasets (n = 920) were used to create gene co-
expression networks based on these candidates. We applied the framework to four comparison groups 
according to node (+/−) and recurrence (+/−). We identified a sub-network containing two candidate 
genes (LST1 and IGHM) and six novel genes (IGHA1, IGHD, IGHG1, IGHG3, IGLC2, and IGLJ3) related to 
B cell-specific immunoglobulin. These novel genes were correlated with recurrence under the control 
of node status and were found to function as tumor suppressors; higher mRNA expression indicated 
a lower risk of recurrence (hazard ratio, HR = 0.87, p = 0.001). We created an immune index score by 
performing principle component analysis and divided the genes into low and high groups. This discrete 
index significantly predicted relapse-free survival (RFS) (high: HR = 0.77, p = 0.019; low: control). Public 
tool KM Plotter and TCGA-BRCA gene expression data were used to validate. We confirmed these genes 
are correlated with RFS and distal metastasis-free survival (DMFS) in triple-negative breast cancer 
(TNBC) and general breast cancer.

Breast cancer (BC) is perhaps the most well-studied malignancy in the world. Approximately 1.7 million women 
were diagnosed with the disease in 2012, making it a global priority1. There is an urgent need to identify risk fac-
tors associated with recurrence to address this serious problem2.

Microarray analysis has contributed to our understanding of the heterogeneity and complexity of BC3, and it 
has enabled the identification of gene signatures for diagnosis, molecular characterization, prognosis prediction 
and treatment recommendation4–6. Networks of topological characteristics can potentially serve as predictive 
biomarkers through network-based classification7,8, and the topology of biological networks has increasingly 
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been used to complement studies of individual genes or gene sets9,10. Several gene network analysis tools based on 
various methodologies have been developed, including GeneMania11, BisoGenet12, Cytoscape13, and DAVID14.

Gene co-expression network analysis (GCNA) provides insight into novel biological mechanisms and is com-
plementary to standard differential expression (DE) analysis. This method has proven to be an attractive and 
effective tool for understanding BC10,15–17. However, gene co-expression networks (GCN) from single transcrip-
tomic studies are often less informative and generalizable due to cohort bias and a limited sample size, whereas 
the use of integrated analysis through the combination of multiple transcriptomic studies provides more accurate 
and comprehensive results18. Therefore, we applied GCNA and integrated microarray analysis, and we consid-
ered candidate genes related to BC prognosis to design an analysis procedure and to investigate novel genes and 
networks related to BC recurrence.

Results
We made comparisons between groups using GCNA with r > 0.9 and edge limit = 1. Comparison networks 
between cases of recurrence and no recurrence were generated, and UBE2C, MCM6 and IGHG1 were found to 
be highly differentially co-expressed genes. (Table 1 and Fig. 1) Common genes in the two networks were IGHA1, 
IGHD, IGHG3, IGLC2, and IGLJ3. Highly co-expressed genes in each of the four comparison groups classified by 
node (+/−) and recurrence (+/−) are shown in Table 2 and Fig. 1. Regardless of node status, highly co-expressed 
genes within the network of no recurrence were IGHA1, IGHD, IGHG1, IGHG3, IGLC2, and IGLJ3. Cox propor-
tional hazard ratio regression analysis found these genes to be significantly correlated with the recurrence of BC, 
regardless of node status (Table 3, Fig. 1). Logistic regression analysis revealed a significant correlation with node 
status, with an odds ratio (OR) range of 2.3–23 (p < 0.001). These six highly co-expressed genes for LST1 and 
IGHM belong to a cluster and are related to immune function (Fig. 1).

Recently, studies have found that robust levels of tumor-infiltrating lymphocytes (TILs) are associated with 
increased disease-free survival (DFS) and overall survival (OS) rates in triple-negative breast cancer (TNBC) 
patients with and without treatment. There have also been efforts to develop a standardized methodology for 
evaluating TILs19. Their presence at diagnosis is associated with a pathologic response to neoadjuvant therapy as 
well as increased DFS and OS following adjuvant chemotherapy in certain subtypes20,21.

We speculate that highly co-expressed immune-related genes can be used for the prognosis and treatment 
of general BC as well as TNBC, and we have established an immune response index to explore the relationships 
between specific genes and BC recurrence. Because these six genes were highly correlated, they were replaced 
with a component score by using principle component analysis (PCA). This score had a value range of −1.93~ 
1.83 (mean = 0, sd = 1). Cox proportional hazard ratio regression analysis (under the control of node status) 
was also performed to investigate the impact of the component score on recurrence. It was found that the risk of 
recurrence was reduced by approximately 13% (HR = 0.87, p = 0.014) for each additional unit of the component 
score (Table 4). In addition, to divide the samples into high and low immune index groups, we used the 40th per-
centile (value: −0.5) of the component score as the group’s cut-off point. Using the low group as the control, the 
immune index effectively distinguished recurrence status, with a hazard ratio (HR) of 0.774 (p = 0.019). (Table 4, 
Fig. 2).

Since TNBC is an aggressive subtype and difficult to treat, we wanted to know whether these immune-related 
genes are correlated by using KM Plotter online cancer survival analysis tool (http://kmplot.com/analysis/)22. The 
TNBC validation data sets consist of 255 RFS and 43 DMFS cases. All immunoglobulin-related genes were signif-
icantly associated with RFS and DMFS with the exception that IGHD was not related to RFS (Table 5).

In order to validate these genes in a larger BC data set, we used TCGA-BRCA gene expression data sets 
representing 1,215 tumors (Supplementary Fig. 1). DMFS (n = 68) and RFS (TNBC (+): n = 131; TNBC (−): 
n = 637) samples were selected and stratified by TNBC status (negative/positive) (Supplementary Table 1). All 
of these BC patients had received initial treatment. Because there are no corresponding gene symbols for our six 
immunoglobulin-related genes in TCGA-BRCA microarrays, we validated all related immunoglobulin genes: 
IGLL3, IGLL1, IGSF9B, IGDCC3, IGDCC4, IGBP1, IGSF5, IGSF11, IGSF22, IGSF21, IGHMBP2, IGSF10, IGSF8, 
IGSF9, IGSF6, IGSF1, IGSF3, IGFN1, and IGJ. Stage, TNM stage, PR status and node status were significantly 
associated with RFS and DMFS in the univariable Cox proportional-hazards regression models (Supplementary 
Table 2). The clinical variables were analyzed with the immunoglobulin-related genes by using multivariable 

Recurrence Non-recurrence

IGHA1* IGHA1*

IGHD* IGHD*

IGHG1*
IGHG3* IGHG3*

IGLC2* IGLC2*

IGLJ3* IGLJ3*

MCM6*

UBE2C

Table 1.  Highly co-expressed genes correlated with BC recurrence. P values were calculated using Cox 
proportional hazard ratio regression for breast cancer recurrence controlled by node (+/−) and *means p 
value < 0.05.
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Figure 1.  Gene co-expression networks. Co-expression networks of six subgroups, (a) Recurrence (+), (b) 
Recurrence (−), (c) Node (+) and Recurrence (+), (d) Node (+) and Recurrence (−), (e) Node (−) and 
Recurrence (+), (f) Node (−) and Recurrence (−). The width of the gene connection indicates the degree 
of correlation between genes. Colors of the gene icons and connecting lines denote similar gene expression 
patterns for genes in the same color, which were analyzed by hierarchical clustering. Connection lines in green 
denote neighboring genes that do not belong to the same cluster. Size of the gene icon reflects the absolute 
value of cv of gene expression. The 34 candidate genes are represented by diamonds; co-expressed genes are 
represented by circles, and significant recurrence associated co-expressed genes are represented by stars. The 
gene icon frame is shown in red if 0.01 ≤ p < 0.05, and it is shown in yellow if p < 0.01. Up-regulated genes are 
shown by a dashed line, whereas down-regulated genes are shown by a solid line.
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Cox proportional-hazards regression. Only node status was found to be significantly related to recurrence with 
biomarkers in the multivariable Cox proportional-hazards regression models (Table 6). The results showed that 
IGDCC3, IGJ and IGSF9B were significantly associated with RFS and DMFS; IGSF3 was significantly associated 
with RFS; and IGSF22, IGSF6 and IGSF9 were significantly associated with DMFS in BCs (Table 6).

Group Recurrence Non-recurrence

Node+ None

IGHA1*

IGHD*

IGHG1

IGHG3*

IGLC2*

IGLJ3*

Node−

AGTR2 IGHA1*

ATXN3 IGHD*

GLMN** IGHG1

PCDH11X IGHG3*

SLC9A3R2 IGLC2*

Table 2.  Highly co-expressed genes correlated with BC recurrence grouped by node status. P values were 
calculated using Cox proportional hazard ratio regression for breast cancer recurrence controlled by node 
(+/−). *Means p value < 0.05, **means p value < 0.01.

Gene B HR P

IGHA1* −0.17 0.85 0.02

IGHD* −0.13 0.87 0.03

IGHG1* −0.24 0.78 0.02

IGHG3* −0.17 0.84 0.02

IGLC2* −0.16 0.86 0.01

IGLJ3* −0.16 0.85 0.02

MCM6* 0.22 1.24 0.02

UBE2C 0.10 1.10 0.13

AGTR2 −0.04 0.96 0.50

ATXN3 −0.02 0.98 0.81

GLMN* 0.30 1.35 0.05

PCDH11X −0.03 0.97 0.65

SLC9A3R2 0.02 1.02 0.79

Table 3.  Univariable Cox proportional hazard ratio regression of novel co-expressed genes for breast cancer 
recurrence. P values (p) were calculated using Cox proportional hazard ratio regression for breast cancer 
recurrence controlled by node (+/−). *Means p < 0.05. HR: hazard ratio, B: the coefficient of predictors in the 
Cox proportional hazard ratio regression.

Model 1a B HR P

Node 0.53 1.70 0.001

Immune index −0.14 0.87 0.014

Model 2b

Node 0.461 1.586 0.004

Low immune index 
(n = 355) ref

High immune index 
(n = 552) −0.256 0.774 0.019

Table 4.  Cox proportional hazard ratio regression of the immune index for breast cancer recurrence. aImmune 
index used in this model is a continuous variable. bImmune index in this model was divided into high and low 
immune index groups by cutoff point −0.5. B: the coefficients of predictors, HR: hazard ratio and ref: reference 
group in the Cox proportional hazard ratio regression.
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Discussion
We showed that without prior information, comparison of co-expression networks between case and control 
groups can confirm and reveal novel disease mechanisms using a systems approach. In addition, we found that 
co-expression networks estimated from integrated publicly available genomic studies provide more accurate and 
robust results than those from a single study18.

We found 34 candidate genes related to BC recurrence from six studies23–28 that identified marker genes for BC 
prognosis. A GCN was established based on these 34 candidates, and eight sub-networks related to immune func-
tion were found using GCNA, which consisted of two candidate genes, LST1 and IGHM, and six co-expressed 
genes, IGHA1, IGHD, IGHG1, IGHG3, IGLC2, and IGLJ3. Studies have found the functional pathways of signifi-
cant recurrent genes in BC to be associated with the immune response and sensitivity to drugs2 indicating that the 
immune-related genes identified in this study may also be related to drug sensitivity. Gene function annotation 
was performed by using DAVID (https://david.ncifcrf.gov/home.jsp). Although a corresponding function for 
IGLJ3 was not identified, the Gene Ontology (GO) terms of the other five novel genes include “the immunoglobu-
lin complex” and “circulation”. These biological processes are positive regulators of B cell activation, phagocytosis 
recognition, engulfment, and B cell receptor signaling. B cells infiltrating a patient’s BC and B cells present in 
the tumor-draining lymph node are clonally and functionally related. Heavy and light chains selected for tumor 
binding from the BC and tumor-draining lymph node (TDLN) libraries indicate a physiologic relationship that 
may be important to the tumor-specific immune response29.

Studies have also found that B cell-specific immunoglobulin genes, including both heavy (IGHA1, IGHA2, 
IGHV1-5, and IGHM) and light (IGLJ3, IGLV6-57, IGKC, IGKV1-5, and IGK@) chain-encoding genes, are 
up-regulated during the immune response in formalin-fixed paraffin-embedded stroma-rich TNBC tumors30.

Inflammatory cells and their mediators are important constituents of the tumor microenvironment, and they 
can affect the prognosis of various cancers, including BC31,32. Gene expression of immunoglobulin normally asso-
ciates with lineage fidelity in B lymphocytes33. Growing evidence indicates that immunoglobulins are produced 
by mature B lymphocytes, plasma cells and BCs34.

The six immunoglobulin-related genes that we examined have not previously been identified as having roles 
in BC, but widespread evidence has shown that immunoglobulin-related genes are effective diagnostic and prog-
nostic biomarkers for BC31,34–39. Recently, many immunoglobulin superfamily (IgSF) genes were found to serve 
as effective prognostic biomarkers for BC36. In addition, immunoglobulin free light chains (FLCs) were identified 
as ligands in the pro-tumorigenic activation of mast cells. FLCs may be helpful in the diagnosis and prognosis of 
BC31.

The stromal immunoglobulin kappa chain (IGKC) has been validated as an immunological biomarker of 
prognosis and response to therapy in BC38,39. Immunoglobulin gamma heavy-chain marker and kappa light-chain 
marker allotypes are associated with humoral immunity to HER-2, a finding with potential implications for BC 
immunotherapy40. All of the evidence suggests that our six immunoglobulin-related genes have potential for use 
in prognosis prediction and targeted therapy.

TNBC is an aggressive disease without established targeted treatment options for patients. It represents a 
major challenge, and there is an urgent need for new therapeutic targets41,42. We sought to determine whether the 
immunoglobulin-related genes are associated with RFS and distal metastasis-free survival (DMFS) in TNBC sam-
ples. After validate in KM Plotter online cancer survival analysis tool22, we found that all immunoglobulin-related 

Figure 2.  Cox proportional hazard ratio regression prediction model of a relapse-free survival curve based on 
the immune index.
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RFS DMFS

(a) IGLC2

(b) IGHM

(c) IGHD

Continued
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(d) IGHA1

(e) IGLJ3

(f) LST1

(g) IGHG1

Continued
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genes were significantly associated with RFS and DMFS with the exception that IGHD was not related to RFS 
(Table 5). Further validation was conducted using TCGA-BRCA gene expression data sets (Supplementary 
Table 1). Though there are no corresponding gene symbols for our six immunoglobulin-related genes, we still 
found that related immunoglobulin genes are associated with the RFS and DMFS in BC or TNBC. In summary, 
the results indicate that immunoglobulin-related genes play significant roles in RFS and DMFS both in general 
BC and TNBC. This has implications for targeted therapy for TNBC.

TILs are reported to be positively associated with improved survival21, particularly in TNBC, but they can 
also aid in the prediction of responses to neoadjuvant and adjuvant chemotherapy treatments. There have 
been increasing efforts to target the immune system as part of BC therapy, primarily in patients with TNBC19. 
Accordingly, we established an immune index score system with six immune-related genes. This score is a protec-
tive indicator for the recurrence of BC: as the score increases, the risk of recurrence decreases. This index may be 
used as a TIL-related indicator and a TNBC treatment marker in the future.

To the best of our knowledge, this is the first study showing that the immunoglobulin-related genes IGHA1, 
IGHD, IGHG1, IGHG3, IGLC2, and IGLJ3 serve as suppressor genes in the recurrence of general BC and TNBC 
patients. The validation results from the public tool KM Plotter and TGCA-BRCA confirmed their significant 
roles in DMFS and RFS of general BC or TNBC. Our results also show that the analysis workflow of GCNA can 
effectively and efficiently detect novel prognostic biomarkers of BC. These six immunoglobulin genes are warrant 
further study of their roles in TNBC and we are working on verifying their function in cell lines.

RFS DMFS

(h) IGHG3

Table 5.  The validation of immune-related genes using TNBC samples from KM Plotter online cancer survival 
analysis tool (http://kmplot.com/analysis/).

https://doi.org/10.1038/s41598-019-40826-w
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Materials and Methods
Microarray datasets.  The microarray data in this study were collected from the BC datasets generated 
by Chou et al.23, including GSE 2034 (n = 286)24, GSE 2990 (n = 189)25, GSE 4922 (n = 249)26, and GSE 7390 
(n = 198)27 of the NCBI GEO database. These datasets comprise 922 cases and 13,452 genes. In total, 354 cases 
showed BC recurrence (38%) and 566 cases showed no recurrence (61%); there were two missing cases, 111 cases 
with node positivity (12%), and 796 negative cases (86%). All of the BC patients had received surgical therapy. The 
four datasets revealed no difference in determining the distribution of recurrence. The average follow-up time of 
the four datasets was 6–9 years, and the length of the tracking time differed according to the analysis of variance 
(ANOVA) results (Table 7). The Desmedt27 dataset was selected as the reference standard. The other three gene 
expression datasets24–26 were log-transformed so that they had similar distributions in terms of central tendency, 
dispersion tendency, skewness and kurtosis. The detailed conversion formulae and microarray correction method 
are described by Chou et al.23.

The four datasets in this study were generated by using an Affymetrix GeneChip Human Genome U133 Array 
(HG-U133A), which included 22,283 probes, of which 21,187 detected human functional genes (noted by the 
NCBI), and contained 13,452 genes (1–14 probes for each). For genes with multiple probes, the median value was 
used to represent the performance of the gene.

The 34 candidate genes.  We chose the significant gene signatures from the six studies23–28 that reported 
the microarray datasets. In our previous study, we selected the top 100 significant genes (Supplementary Table 3) 
related to BC recurrence23, but in this study, we screened out the identical genes, of which there were 34 in total. 
(Supplementary Table 4) These 34 candidate genes influence the recurrence of BC; thus, these candidates were 
used to plot the GCN.

Co-expression network analysis.  This study used R software version 3.2.2 (http://www.r-project.org)43. 
The co-expression network was developed using the visNetwork kit. The correlation coefficient, hierarchical clus-
tering, coefficient of variation, and Cox proportional hazard ratio regression were computed using the cor, hclust, 
co.var, and coxph functions.

Due to variations in genotype and recurrence, for the analysis, the data were divided into two datasets based 
on recurrence. The 34 candidate genes were set as the included genes, and Spearman correlation coefficient analy-
sis was performed on the other 13,418 genes with these 34 candidate genes. We identified highly correlated genes 
with a correlation coefficient over 0.9. The analysis flow chart is shown in Fig. 3.

Gene

Univariable Cox Proportional-
Hazards Regression

RFS DMFS

TNBC = 0 TNBC = 1 ALL TNBC = 0 TNBC = 1 ALL

B HR P value B HR P value B HR P value B HR P value B HR P value B HR
P 
value B HR P value

IGDCC3 −0.00108 0.998921 0.063262 −0.00657 0.993451 0.000488*** −0.0008 0.999199 0.040908* −0.00135 0.998651 0.017673*

IGJ −0.00056 0.999437 0.244451 −0.00168 0.998319 0.000325*** −0.00106 0.998939 0.003212** −0.00157 0.99843 0.026129*

IGSF22 −0.00119 0.998815 0.013396* −0.00162 0.99838 0.004776** −0.00151 0.998488 0.002168**

IGSF6 0.000771 1.000771 0.097379 0.001365 1.001366 0.022637*

IGSF9 −0.00052 0.999482 0.223937 −0.00124 0.998759 0.031277*

IGSF9B 0.000988 1.000988 0.047992* 0.000972 1.000972 0.036841* 0.001386 1.001387 0.017102*

IGSF3 −0.00037 0.999633 0.428202 0.0022 1.002203 0.005787**

Table 6.  Multivariable Cox Proportional-Hazards Regression Models of immunoglobulin-related genes 
and node status on RFS and DMFS using TGCA-BRCA data sets. Multivariable Cox Proportional-Hazards 
Regression analysis of relapse-free survival (RFS) and distal metastasis-free survival (DMFS) were under 
controlled by node status of negative/positive and N0-N3 respectively. P stands for p value. *Means p 
value < 0.05, **means p value < 0.01, ***means p < 0.001. HR: Hazard ratio.

Variables

Data sets, n(%)

Wang et al.24 
GSE2034

Sotiriou et al.25 
GSE2990

Ivshina et al.26 
GSE4922

Desmedt et al.27 
GSE7390

Recurrence at the end of follow-up#
0 179 62.6 120 64.2 160 64.3 107 54.0

1 107 37.4 67 35.8 89 35.7 91 46.0

Node
Negative 286 100.0 153 83.6 159 66.3 198 100.0

Positive 0 0 30 16.4 81 33.8 0 0

Follow-up* time, mean(sd) 6.46(3.52) 6.62(3.95) 7.14(4.30) 9.31(5.56)

Table 7.  Descriptive statistics of the four microarray datasets. #Chi-square: for analysis of the difference 
between recurrence status and data sets, p = 0.104. *ANOVA: for analysis of the difference in the follow-up time 
among the data sets, p < 0.001.

https://doi.org/10.1038/s41598-019-40826-w
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The co-expression networks were established as follows: (1) Width of the gene connection: indicates the degree 
of correlation between genes by the method of Spearman correlation; a thicker connection line indicates a greater 
degree of correlation, and the weight of the correlation between two genes is shown by clicking the connection 
line. (2) The number of gene connections: to simplify the co-expression networks, the number of edges for each 
gene was limited to one, and the selection started from the gene with the highest correlation coefficient. (3) Colors 
of the gene icons and connecting lines: These denote similar gene expression patterns for genes in the same color. 
The R function “hclust” was used with the method set to “spearman” and “complete”; the tangent point was set to 
be the same cluster when the kinship distance was 1/1.5 of all lengths, and the cluster results are illustrated using 
the same color connecting line as in the gene networks. Connection lines in green denote neighboring genes 
that do not belong to the same cluster. (4) Size of the gene icon: the coefficient of variation (cv) of each gene was 
calculated, and the absolute value of the cv was used to represent the size of the dot; as the cv increases in value, 
the variation in mRNA gene expression also increases. (5) Shape of the gene icons: the 34 candidate genes are 
represented by diamonds; co-expressed genes are represented by circles, and significant recurrence associated 
co-expressed genes are represented by stars (univariable Cox proportional hazard ratio regression test, p < 0.05). 
(6) Frame color of gene icons: correlation between the mRNA gene expression of each gene and recurrence was 
analyzed by univariable Cox proportional hazard ratio regression; if 0.01 ≤ p < 0.05, then the icon frame is shown 
in red, and if p < 0.01, then the icon frame is shown in yellow. (7) Style of the gene icon frame: up-regulated genes 
are shown with dashed lines, whereas down-regulated genes are shown by solid lines.

Conclusions
We identified and validated six genes related to immune function as potential biomarkers of recurrence for both 
general breast cancer and TNBC. Our results suggest that GCNA can effectively and efficiently detect novel prog-
nostic biomarkers of breast cancer.

Data Availability
All the GEO dataset are available in NCBI GEO data base (https://www.ncbi.nlm.nih.gov/geo/).
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