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Abstract: Volume of interest segmentation is an essential step in computer-aided detection and
diagnosis (CAD) systems. Deep learning (DL)-based methods provide good performance for prostate
segmentation, but little is known about the reproducibility of these methods. In this work, an in-
house collected dataset from 244 patients was used to investigate the intra-patient reproducibility of
14 shape features for DL-based segmentation methods of the whole prostate gland (WP), peripheral
zone (PZ), and the remaining prostate zones (non-PZ) on T2-weighted (T2W) magnetic resonance
(MR) images compared to manual segmentations. The DL-based segmentation was performed
using three different convolutional neural networks (CNNs): V-Net, nnU-Net-2D, and nnU-Net-3D.
The two-way random, single score intra-class correlation coefficient (ICC) was used to measure
the inter-scan reproducibility of each feature for each CNN and the manual segmentation. We
found that the reproducibility of the investigated methods is comparable to manual for all CNNs
(14/14 features), except for V-Net in PZ (7/14 features). The ICC score for segmentation volume
was found to be 0.888, 0.607, 0.819, and 0.903 in PZ; 0.988, 0.967, 0.986, and 0.983 in non-PZ;
0.982, 0.975, 0.973, and 0.984 in WP for manual, V-Net, nnU-Net-2D, and nnU-Net-3D, respec-
tively. The results of this work show the feasibility of embedding DL-based segmentation in CAD
systems, based on multiple T2W MR scans of the prostate, which is an important step towards the
clinical implementation.

Keywords: prostate; segmentation; deep learning; MRI; computer-aided diagnosis

1. Introduction

Prostate cancer is the most detected cancer in men and the second most common cause
of cancer related death for men worldwide [1]. An early diagnosis of prostate cancer is
essential for a better disease management [2]. Following reasonable suspicion of prostate
cancer, based on elevated prostate-specific antigen (PSA) levels in blood and a digital rectal
examination (DRE), the patient, in many countries, is likely to be referred to a pre-biopsy
magnetic resonance imaging (MRI) to guide the collection of biopsies [3]. To improve
the diagnostic process, the use of multi-parametric MRI (mpMRI) has been established
through international guidelines [4–6]. Additionally, mpMRI has been employed in active
surveillance programs to follow up the patients with indolent lesions [7], prostate cancer
risk calculators [8], and treatment response monitoring [6,9]. Currently, the mpMR images
are interpreted qualitatively by a radiologist, which is a tedious, time-consuming [10],
and reader opinion-dependent [11,12] process. The resulting vulnerability to inter and
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intra-observer variability is problematic for clinical applications based on multiple scans in
time, such as with active surveillance and response monitoring, where reproducibility of
results is paramount. Automated computer-aided detection and diagnosis (CAD) systems
have the potential to overcome the limitations of the traditional radiological reading by
implementing quantitative models to automate, standardize, and support reproducible
interpretations of radiological images [10,13–15].

Segmentation is an essential step for prostate CAD systems [13,15]. It helps locate
the volume of interest (VOI), enabling subsequent extraction of quantitative features for
radiomics-based approaches. Accurate segmentation is paramount as the following steps
of a CAD system are dependent on it. Traditionally, the VOI segmentation is performed
manually by a radiologist on T2-weighted (T2W) MR images. However, deep learning (DL)-
based segmentation methods have shown promising performances [16–20]. Importantly,
the inter-observer variability between DL-based segmentation methods and expert radiolo-
gists has been shown to be approximately equal to that between expert radiologists [21].
However, little is known about the reproducibility of DL-based segmentation methods for
clinical MRI scans. To investigate the reproducibility of DL-based segmentation, radiomics
shape features can be used. Shape features, like prostate volume, are already part of today’s
clinical risk calculators for prostate cancer [8] and will likely play an important role in
future radiomics-based clinical applications.

Recently, the reproducibility of several radiomics features, using manually segmented
masks of the prostate on clinical MR images, has been investigated [22–25]. The study
by Schwier et al. [22] was the only one that used segmentations of the whole prostate
gland and zones. Their results showed high reproducibility of shape features, between
manual segmentations on mpMRI scans, during a short time interval. Despite the useful
information provided by these studies, they do not provide insight into the reproducibility
of automatically generated segmentations. Furthermore, these studies did not focus on
investigating the reproducibility of the segmentation masks themselves, as the manual
segmentations were considered the reference. To the best of our knowledge, the repro-
ducibility of DL-based segmentations of the prostate, on clinical MR images, has not been
previously investigated.

The contribution of this study is the assessment of the reproducibility of DL-based
segmentations of the whole prostate gland (WP), peripheral zone (PZ), and the remain-
ing prostate zones (non-PZ; central, transition, and anterior fibro-muscular zones, com-
bined) by comparing radiomics shape features from T2W MR images acquired with short
time intervals.

2. Materials and Methods
2.1. Dataset

In this study, we used an in-house collected mpMRI dataset from 244 patients (median
age = 65; range: 44–76 years) for retrospective analysis. This dataset came from a previous
prospective study conducted by our group. The patients were examined at St. Olavs
Hospital, Trondheim University Hospital, Trondheim, Norway between March 2015 and
December 2017, due to suspicion of prostate cancer, via the Norwegian standardized care
pathway, in which patients with elevated PSA and/or abnormal DRE results are referred
for an initial mpMRI scan to identify suspicious cancerous tissue [26]. If the radiologist
detected suspicious tissue in the aforementioned prospective study, patients were randomly
selected for either standard transrectal ultrasound-guided biopsy or in-bore targeted MR-
guided biopsy. The latter group (n = 62), therefore, had two mpMRI scans. The Regional
Committee for Medical and Health Research Ethics (REC Central Norway) approved the
use of the dataset (identifiers 2013/1869 and 2017/576). All the patients signed informed
consent prior to the initiation of the prospective study.

The dataset (T2W images) was split into a training set (n = 182), to train the DL-based
segmentation networks, and an investigation set (n = 62), to investigate the reproducibility
of shape features extracted from the segmented prostate masks. The investigation set was
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acquired at two different time points: first, at the initial visit for the detection of prostate
cancer (scan 1) and second, during an MR-guided biopsy procedure (scan 2). The interval
between scans ranged from 1–71 (median = 7) days. Patients in the collected dataset with
two scans were assigned to the investigation set. Those who had only one scan, acquired at
the initial visit for detection of prostate cancer, were assigned to the training set.

T2W MRI was performed on a Magnetom Skyra 3 T MRI system (Siemens Health-
ineers, Erlangen, Germany) with a turbo spin-echo sequence. The scanning parameters
details are given in Table 1.

Table 1. Summary of MRI scanning parameters.

Investigation Set
Training Set

Scan 1 Scan 2

Repetition time (ms) 4800–8921 5660–7740 4450–9520
Echo time (ms) 101–104 101–104 101–108

Flip angle (degree) 152–160 152–160 145–160
Number of averages 3 3–6 1–3

Matrix size 320 × 320–384 × 384 320 × 320–384 × 384 320 × 320–384 × 384
Slices 24–30 17–24 24–34

Slice thickness (mm) 3 3 3–3.5
In plane resolution

(mm2) 0.5 × 0.5–0.6 × 0.6 0.5 × 0.5–0.6 × 0.6 0.5 × 0.5–0.6 × 0.6

2.2. Prostate Segmentation

Manual segmentation of PZ and non-PZ for the in-house collected dataset was per-
formed using ITK-SNAP [27] (version 3.6.0) by a radiology resident (E.S.) at St. Olavs
Hospital, Trondheim University Hospital, Trondheim, Norway, under the supervision of a
radiologist (S.L.) with more than 10 years’ experience in prostate imaging. PZ and non-PZ
masks were used to generate the WP masks by merging. Lesion segmentation was beyond
the scope of this study and was, therefore, not considered.

The DL-based segmentation was performed using three different convolutional neural
networks (CNNs), which are all variants of the famous U-Net with an encoder-decoder
scheme, along with long skip connections [28], further referred to as V-Net [18], nnU-Net-
2D [16], and nnU-Net-3D [16]. These three networks were chosen for their popularity, good
performance, and public availability. Unlike U-Net, V-Net is a residual learning network
that replaces the maximum pooling operation with strided convolutions and the ReLU
activation functions with PReLU activation functions [18]. On the other hand, nnU-Net does
not introduce a new architecture, but it uses a 2D or 3D U-Net network with automatic self-
configuration of pre-processing, network architecture, training, and post-processing [16].
nnU-Net-2D performed the segmentation on a 2D slice-by-slice basis, whereas V-Net and
nnU-Net-3D performed the segmentation on a 3D volume basis. Prior to segmentation, all
images were pre-processed in accordance with the corresponding segmentation method.
The segmentation pre-processing, training, and testing were performed on a single NVIDIA
Tesla P100 PCIe 16 GB GPU in Ubuntu 18.04.4 LTS.

V-Net was implemented with PyTorch [29] (version 1.4.0) using Python (version 3.6.9;
Python Software Foundation, Wilmington, DE, USA) to generate two separate models
for WP and PZ, which were used to generate non-PZ masks by subtraction. Each of the
V-Net models was trained for 16,000 iterations with a batch size of 2. Adaptive moment
estimation with momentum of 0.99, a weight decay of 1 × 10−8, and an initial learning rate
of 1 × 10-4 were used for learning the network weights. The training time for each of the
models was 10 h with cuDNN acceleration.

nnU-Net-2D (version 2.1) and nnU-Net-3D (version 2.1) were implemented with
PyTorch (version 1.7.0) using Python (version 3.6.10) to generate one model for both PZ
and non-PZ, which were used to generate the WP masks by merging. The nnU-Net-2D
model was trained for 978 epochs with a batch size of 22. Stochastic gradient descent with
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Nesterov Momentum of 0.99, a weight decay of 3 × 10−5, and an initial learning rate of
1 × 10−2 were used for learning the network weights. The training time of the model
was 55 h with cuDNN acceleration. The nnU-Net-3D model was trained for 625 epochs
with a batch size of 2. Stochastic gradient descent with Nesterov Momentum of 0.99, a
weight decay of 3 × 10−5, and an initial learning rate of 1 × 10−2 were used for learning
the network weights. The training time of the model was 88 h with cuDNN acceleration.

The DL-based segmentations were post-processed to only keep the largest 3D con-
nected component, using a pixel connectivity of 26.

2.3. Feature Extraction

Shape features were extracted from the 3D segmentation masks (Manual or DL-
based) of PZ, non-PZ, and WP using Pyradiomics [30] (version 3.0; an open-source Python
package). The following 14 shape features were extracted: Elongation, Flatness, Least Axis
Length, Major Axis Length, Maximum 2D diameter (Column), Maximum 2D diameter
(Row), Maximum 2D diameter (Slice), Maximum 3D diameter, Mesh Volume, Minor Axis
Length, Sphericity, Surface Area, Surface Area to Volume ratio, and Voxel Volume. A
detailed description of the features can be found at [31].

2.4. Investigation of Reproducibility

Reproducibility is defined as the “variability in measurements made on the same
subject, but under changing conditions” [32]. The variability and reproducibility are
inversely related, i.e., the higher the variability, the lower the reproducibility. In this work,
scan 1 and scan 2 were performed on the same patients, but at different time points and
using different scanning procedures.

To investigate the reproducibility, all extracted features from the two scans of 62 patients’
scans, using the manual and post-processed DL-based segmentations, were included. The
reproducibility for each of the 14 shape features was investigated, separately, for each of the
CNNs and compared to that of the corresponding feature from the manual segmentations.
Furthermore, the DL-based segmentation performance and segmentation volume (Voxel
Volume feature) in scan 1 and scan 2 were compared to those of manual segmentations.

In addition, the reproducibility results were compared to the corresponding results
where (1) the post-processing step was excluded, and (2) patients with a poor segmentation
quality score were excluded. To enable the last comparison, our previously proposed
automated segmentation quality control system (SQCS) [33] was implemented, and the
patients with a quality score of less than 85 for scan 1 or/and scan 2 were excluded from
further analysis. As per [33], the SQCS was implemented using pre-processed T2W images
and WP segmentations.

2.5. Statistical Analysis

The dice similarity coefficient (DSC) [34], between manual and DL-based segmenta-
tions, was calculated as a metric of segmentation performance.

The two-way random, single score intra-class correlation coefficient (ICC) [35,36] was
used to measure the inter-scan reproducibility of each feature for each CNN and the manual
segmentations. Statistical significance between features, from manual segmentation and
each CNN, and between features, from including and excluding the post-processing step,
was based on overlapping 95% confidence intervals (CI) [37].

The paired Wilcoxon signed rank test [38], followed by Benjamini–Hochberg correction
for multiple testing [39], was used to assess the differences in DSC, the ICC values between
VOIs, and segmentation volume between networks and scans.

The Bland–Altman analysis [40] and Spearman’s rank test [38] were performed to
assess the correlation between the segmentation volumes for scan 1 and scan 2 and between
the segmentation volumes of each of the CNNs and the manual segmentations in scan 1
and scan 2.
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To assess the difference in feature reproducibility, before and after implementing the
SQCS, a permutation test [38] with 1000 runs was performed for each CNN. In each of
these 1000 runs, the ICC value was calculated after randomly excluding the same number
of cases as excluded by the SQCS. The improvement in ICC, after applying the SQCS, was
considered significant if less than 50/1000 randomly permuted values were higher or equal
to the ICC after the SQCS implementation.

MATLAB R2019b (MathWorks, Natick, MA, USA) was used for statistical analysis.

3. Results

An example case segmented with the three investigated CNNs is shown in Figure 1.

Figure 1. The middle slice for the whole prostate, apex, and base of a randomly selected case was segmented (peripheral
zone (PZ) and the remaining prostate zones (non-PZ)) by different approaches for scan 1 and 2. For each network, the dice
similarity coefficient (DSC) of the 3D segmented volume is reported for the whole prostate gland (WP), PZ, and non-PZ.

Figure 2 shows the performance of the investigated CNNs segmentations. The median
DSCs were 0.781, 0.821, and 0.825 in PZ; 0.871, 0.916, and 0.917 in non-PZ; 0.909, 0.937, and
0.940 in WP for V-Net, nnU-Net-2D, and nnU-Net-3D, respectively, in scan 1; 0.714, 0.788,
and 0.798 in PZ; 0.853, 0.896 and 0.904 in non-PZ; 0.893, 0.917, and 0.929 in WP for V-Net,
nnU-Net-2D, and nnU-Net-3D, respectively, in scan 2. Median of DSC difference between
the scans (scan 2–scan 1) was −9.49%, −4.06% and −3.65% in PZ; −3.12%, −1.80% and
−1.08% in non-PZ; −1.98%, −1.95% and −1.39% in WP for V-Net, nnU-Net-2D and nnU-
Net-3D, respectively. V-Net performed significantly lower (p < 0.001) than nnU-Net-2D
and nnU-Net-3D in both of the scans and all of VOIs. nnU-Net-3D performed significantly
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higher (p < 0.01) than nnU-Net-2D in scan 2 for all of VOIs. In addition, each of the CNNs
performed significantly lower (p < 0.001) in scan 2 compared to scan 1.

Figure 2. The performance (dice similarity coefficient-DSC) of the segmentation methods for the whole prostate gland (WP),
peripheral zone (PZ), and the remaining prostate zones (non-PZ). The Manual segmentations were considered as reference.
The means are denoted by
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Figure 3 shows the ICCs from the extracted shape features from scan 1 and scan 2,
where the segmentation post-processing step was included, and the segmentation quality
control system was not implemented, demonstrating that the reproducibility of DL-based
segmentation is comparable to manual segmentation for all networks (14/14 features),
except for V-Net in PZ (7/14 features). In both manual and DL-based segmentations,
Elongation, Flatness, and Sphericity had a remarkably lower ICC than the other features in
WP and non-PZ. nnU-Net-3D showed higher reproducibility than the rest of the CNNs
with a median difference in ICC equal to 54.03% and 9.06% in PZ; 3.95% and 0.38% in
non-PZ; 0.95% and 1.09% in WP with V-Net and nnU-Net-2D, respectively. Additionally, in
most cases, feature reproducibility in the non-PZ and WP was higher than in the PZ. V-Net
had significantly higher (p < 0.01) ICCs in non-PZ and WP compared to PZ.
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Figure 3. The single score intra-class correlation coefficient (ICC), with the 95% confidence interval (95% CI), of the shape
features extracted from the whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate zones (non-PZ) for
the investigated methods, where the segmentation post-processing step was included, and the segmentation quality control
system was not implemented.

Comparing reproducibility when including (Figure 3) and excluding (Figure A1) the
segmentation post-processing step, while SQCS was not implemented in any of them,
shows that the reproducibility is remarkably enhanced when including the segmentation
post-processing step. The ICC, after including the segmentation post-processing step, was
significantly better in (4/14) features for V-Net in non-PZ; (14/14), (12/14), and (13/14)
features for nnU-Net-2D in PZ, non-PZ, and WP, respectively; (13/14), (14/14), and (13/14)
features for nnU-Net-3D in PZ, non-PZ, and WP, respectively.

Similarly, the reproducibility was increased with the SQCS implementation
(Figure A2) compared to no implementation (Figure 3); the segmentation post-processing
step was included in both cases. After implementing the SQCS, 10, 11, and 6 patient’s
segmentations were excluded from V-Net, nnU-Net-2D, and nnU-Net-3D, respectively.
The ICC after implementing the SQCS was significantly better in (3/14), (2/14), and (3/14)
features for V-Net in PZ, non-PZ, and WP, respectively; in (7/14) and (2/14), features for
nnU-Net-2D in non-PZ, and WP, respectively; in (1/14) and (5/14) features for nnU-Net-3D
in non-PZ and WP, respectively.

The segmented volume (Voxel Volume feature) was further investigated, as it is
an important and in-use biomarker for multiple clinical applications [41–43]. Its ICC
score, when the segmentation post-processing step was included and the SQCS was not
implemented, was 0.888, 0.607, 0.819, and 0.903 in PZ; 0.988, 0.967, 0.986, and 0.983 in non-
PZ; 0.982, 0.975, 0.973, and 0.984 in WP for manual, V-Net, nnU-Net-2D, and nnU-Net-3D,
respectively. Figure 4 shows that the segmented volume was significantly lower in scan 2,
compared to scan 1, for all the methods in PZ and WP (p < 0.001) and for nnU-Net-2D in
non-PZ (p = 0.003). Bland–Altman analysis shows a similar bias for manual and DL-based
methods (Figure A3). Median of volume difference between the scans (scan 2–scan 1) was
−4.33%, −3.58%, −5.80%, and −3.32% in WP for manual, V-Net, nnU-Net-2D, and nnU-
Net-3D, respectively. It also shows a small bias between the volumes of the DL-based and
manual segmentations in scan 1 (Figure A4) and scan 2 (Figure A5). It was noticed that PZ
has higher bias between scans and methods than non-PZ and WP. V-Net has also showed a
slightly higher bias between scans and methods than nnU-Net-2D and nnU-Net-3D.
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Figure 4. The segmented volume of the whole prostate gland (WP), peripheral zone (PZ), and the remaining prostate zones
(non-PZ) from the investigated methods in scan 1 and scan 2. The means are denoted by
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4. Discussion

VOI segmentation is an essential step in CAD systems. DL-based methods provide
good performance for prostate segmentation, but little is known about their reproducibility.
The reproducibility of radiomics shape features can be used as an indicator of the segmen-
tation reproducibility. Therefore, in this paper, we investigated the reproducibility of the
shape features extracted from DL-based segmentations of the WP, PZ, and non-PZ on T2W
MR images, acquired with short time intervals (median = 7 days), and compared them to
those of manual segmentations. Prostate gland volume is proportionally related to benign
enlargement [44] and inversely related to prostate cancer [45]. Both of those conditions
usually require long time to develop, thus no significant change in prostate gland volume
is expected during a short time interval. Shape features, such as prostate volume, used
to measure the PSA-density (PSA level/prostate volume) [46], are already part of today’s
clinical risk calculators for prostate cancer [8] and will likely play an important role in
future radiomics-based clinical applications. For clinical applications based on multiple
scans in time, like active surveillance, it is key that extracted features are both accurate
and reproducible.

The DSC values were in line with those expected from the literature [16,18], indicating
that the trained networks have state-of-the-art performance. nnU-Net-3D had the best
overall segmentation accuracy, while V-Net showed the lowest segmentation accuracy
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comparable to the manual segmentations. This work extends previous studies, showing
the excellent performance of nnU-Net, specifically the 3D volume basis model, on a wide
variety of medical image segmentation tasks [16]. The DSC values were slightly lower in
scan 2 compared to scan 1. This is probably due to the nature of the segmentation training
set, which consisted of cases acquired with a scan protocol similar to that of scan 1.

Based on ICCs of the shape features, nnU-Net-2D and nnU-Net-3D were shown to
have comparable reproducibility to manual segmentations in all VOIs. WP and non-PZ
showed higher ICCs compared to PZ, which was expected due to the low PZ segmentation
performance. nnU-Net-3D provided higher ICCs compared to the other CNNs, which
was expected as it had the highest segmentation performance among CNNs. Overall,
the results show that DL-based segmentation methods can generate highly intra-patient
reproducible masks for T2W images of the prostate. Good reproducibility gives potential
for picking up changes in the prostate when they appear, an important step towards the
clinical implementation of prostate CAD systems, based on multiple T2W MRI scans.

Including a post-processing step to the segmentation, where only the largest connected
component in 3D volume is kept, was shown to remarkably enhance the features reproducibil-
ity. Similarly, the implementation of the SQCS significantly increased the reproducibility.
Therefore, the implementation of these two post-processing steps in a CAD system pipeline is
recommended to assure highly reproducible shape features. In clinical applications, the cases
with low segmentation quality score, predicted by the SQCS, should be either referred to a
radiologist for manual intervention or re-segmented using another CNN.

One possible explanation for the lower ICC of Elongation, Flatness, and Sphericity
in WP and non-PZ is that the prostate gland in scan 2 was potentially compressed due
to a guiding probe for the biopsy needle inside the patient’s rectum during the image
acquisition. Moreover, the patients were scanned in prone position during scan 2, in
contrast to scan 1, where they were scanned in supine position. The probe and the prone
position would, indeed, not alter the volume of the prostate but might deform its shape
slightly. In their study, Osman et al. [47] have investigated the endorectal coil effect
on the WP volume and shape during prostate T2W MRI and concluded that, despite
shape deformation, there is no significant change in the WP volume between including
and excluding the endorectal coil. Although the needle guiding probe differs from the
endorectal coil, its impact may be expected to be similar. In addition, the prostate gland
might deform between scans due to other factors, e.g., different bladder/bowel loading,
which were not taken into account in this study. The shape deformation may have had an
impact on the decision of including or excluding a slice from the segmentation. We noticed
that, overall, scan 2 had a lower number of segmented slices than scan 1. Median of the
segmented slices number was 14, 14, 14, and 14 in WP for manual, V-Net, nnU-Net-2D,
and nnU-Net-3D, respectively, in scan 1 and 13, 13.5, 13, and 14 in WP for manual, V-Net,
nnU-Net-2D, and nnU-Net-3D, respectively, in scan 2. Although the difference between the
numbers is small (≈1 slice), it will influence the segmented volumes, which were indeed
slightly lower in scan 2 than in scan 1.

The reproducibility of the segmented volume might be the most important among the
14 investigated features. WP volume is used by the radiologist to measure the PSA-density,
which is part of today’s clinical risk calculators [8], and can be used as a biomarker to evaluate
prostate cancer progression and the need for re-biopsy [43]. An alternative biomarker to the
traditional PSA-density is the zonal adjusted PSA-density, which depends on the segmented
volume from various prostate gland zones, i.e., non-PZ volume [48,49]. Our study shows
that the segmented volume feature is highly reproducible, and in agreement with manual
volumes on both zonal and whole prostate-level.

In their work, Schwier et al. [22] used manual segmentations to assess the repro-
ducibility of radiomics features on prostate T2W MR images. Their focus was mainly on
the reproducibility of the radiomics textural features under different settings, but they have
also included results on some of the shape features reproducibility. Although there is some
similarity between their work and ours, our work focused on the reproducibility of DL-
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based segmentations. Like in our work, Schwier et al. showed that the reproducibility of
shape features is high. Furthermore, they showed that the segmented volume reproducibil-
ity is higher in WP than in PZ, which was also in line with our findings. The high ICC
values found in this work suggest that all the shape features, except for Elongation, Flatness,
and Sphericity, extracted using DL-based segmentation methods, can be used in clinical
applications based on multiple scans without being concerned about their reproducibility.

In this work, we used a dataset from prostate cancer patients referred and scanned
according to prevailing guidelines. Consequently, the results represent the reproducibility
of the DL-based segmentations in a real clinical setting. Nevertheless, our study has some
limitations. The patient cohort was relatively small, and it was obtained from a single
center. Conducting a multicenter study in the future might give additional insight on
the reproducibility of DL-based segmentation across institutions. Moreover, the manual
segmentations in this study have been performed by one reader. A set of manual segmen-
tations, where multiple readers are included, will facilitate additional comparisons, which
might provide us with more information, but this can be considered for a future work.

5. Conclusions

We investigated the reproducibility of the shape features, extracted from DL-based
segmentations, of the prostate gland and zones on T2W MR images acquired with short
time intervals. The reproducibility of the best-performing DL-based prostate segmentation
methods is comparable to that of manual segmentations, which is important for clinical
applications, based on multiple scans in time.
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Appendix A

Figure A1. The single score intra-class correlation coefficient (ICC) with its 95% confidence interval (95%CI) of the shape
features extracted from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) for
the investigated methods, where the segmentation post-processing step was skipped and the segmentation quality control
system was not implemented.

Figure A2. The single score intra-class correlation coefficient (ICC) with its 95% confidence interval (95%CI) of the shape
features extracted from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) for
the investigated methods, where the segmentation post-processing step was included and the segmentation quality control
system was implemented. The patients with a quality score less than 85 for scan 1 or/and scan 2 were excluded.
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Figure A3. The Bland-Altman plots for the agreement between scan 1 and scan 2 volumes from the whole prostate gland
(WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) for the investigated methods. The 95% confidence
interval limits for mean and agreement limits are denoted by I, while the cases are denoted by #.

Figure A4. The Bland-Altman plots for the agreement between manual and rest of the investigated methods volumes
from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) in scan 1. The 95%
confidence interval limits for mean and agreement limits are denoted by I, while the cases are denoted by #.
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Figure A5. The Bland-Altman plots for the agreement between manual and rest of the investigated methods volumes
from the whole prostate gland (WP), peripheral zone (PZ) and the remaining prostate zones (non-PZ) in scan 2. The 95%
confidence interval limits for mean and agreement limits are denoted by I, while the cases are denoted by #.
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