
Leeser et al. BMC Research Notes 2014, 7:582
http://www.biomedcentral.com/1756-0500/7/582

TECHNICAL NOTE Open Access

Fast reconstruction of 3D volumes from 2D CT
projection data with GPUs
Miriam Leeser1*, Saoni Mukherjee1 and James Brock2

Abstract

Background: Biomedical image reconstruction applications require producing high fidelity images in or close to
real-time. We have implemented reconstruction of three dimensional conebeam computed tomography(CBCT) with
two dimensional projections. The algorithm takes slices of the target, weights and filters them to backproject the data,
then creates the final 3D volume. We have implemented the algorithm using several hardware and software
approaches and taken advantage of different types of parallelism in modern processors. The two hardware platforms
used are a Central Processing Unit (CPU) and a heterogeneous system with a combination of CPU and GPU. On the
CPU we implement serial MATLAB, parallel MATLAB, C and parallel C with OpenMP extensions. These codes are
compared against the heterogeneous versions written in CUDA-C and OpenCL.

Findings: Our results show that GPUs are particularly well suited to accelerating CBCT. Relative performance was
evaluated on a mathematical phantom as well as on mouse data. Speedups of up to 200x are observed by using an
AMD GPU compared to a parallel version in C with OpenMP constructs.

Conclusions: In this paper, we have implemented the Feldkamp-Davis-Kress algorithm, compatible with Fessler’s
image reconstruction toolbox and tested it on different hardware platforms including CPU and a combination of CPU
and GPU. Both NVIDIA and AMD GPUs have been used for performance evaluation. GPUs provide significant speedup
over the parallel CPU version.

Keywords: Computed tomography, Graphics processing unit, Conebeam reconstruction, CUDA, OpenCL

Findings
Introduction
CT imaging is one of the most used diagnostic methods
in interventional and minimally invasive surgeries [1]. As
the importance of the access to medical imagery before
or during surgical procedures increases, the computa-
tional need for CT imaging becomes more demanding
and challenging. It requires producing high fidelity images
in or close to real-time to avoid interruptions during the
treatment of patients. Conebeam CT is used to acquire
knowledge of parts of the human body to obtain a clear
image during/before performing a procedure. Today, most
conebeam CT scanners use the Feldkamp Davis Kress
algorithm [2] as the standard reconstruction method. The
method takes a slice of the target, weights the projection

*Correspondence: mel@coe.neu.edu
1Department of Electrical and Computer Engineering, 440 Dana Building,
Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
Full list of author information is available at the end of the article

data and then filters the weighted data before backpro-
jecting and creating the final three dimensional image.
The last step, backprojection, is the most computation-
ally intensive with a complexity of O(N4) in the spatial
domain and it is the bottleneck [3]. Researchers have used
different architectures to accelerate this process includ-
ing Application Specific Integrated Circuits (ASICs) and
Field Programmable Gate Arrays (FPGAs). However, the
expensive nature of these boards along with the steep
learning curve necessary to program these devices often
limit their use. Graphics Processing Units (GPUs) offer
an alternative approach for accelerating computationally
intensive jobs. Algorithms such as CT image reconstruc-
tion with intensive computation and massive data paral-
lelism are particularly well suited for GPUs.

A popular image reconstruction toolbox, provided
by Fessler [4], consists of a collection of open source
algorithms for image reconstruction written in MAT-
LAB. We have implemented the FDK algorithm from this

© 2014 Leeser et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: mel@coe.neu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Leeser et al. BMC Research Notes 2014, 7:582 Page 2 of 8
http://www.biomedcentral.com/1756-0500/7/582

toolbox using several different methods including single
threaded code written in C, parallel code written in C with
OpenMP constructs, parallel code in MATLAB using the
parallel computing toolbox (PCT) and GPU codes written
in CUDA-C and OpenCL. The purpose of this study is
to explore the performance of these implementations on
different architectures. These codes are run on two types
of architectures including CPU and a combination of
CPU and GPU. We have tested our implementations on
both NVIDIA and AMD GPUs using both a mathematical
phantom and mouse scan data.

The main contributions of this paper are:

• Our implementations are compatible with Fessler’s
image reconstruction toolbox [4], a popular toolbox
of open source algorithms for reconstruction of
images written in MATLAB. We use the same input
files and same general approach as Fessler in our
implementations.

• Our implementations are tested on two types of
hardware platforms: CPU and a combination of CPU
and GPU. The performance has been evaluated using
GPUs from two different vendors: NVIDIA and
AMD.

• The performances of two complete GPU
implementations of the same approach are
compared, in CUDA-C and OpenCL, to serial and
multithreaded C and MATLAB implementations.

• Our NVIDIA CUDA code is compatible with
NVIDIA’s CUDA compiler, while other open source
software is not. Our OpenCL implementation is
optimized and complete.

Our code is available open source [5].

Background
This section describes the FDK method along with a brief
introduction to GPU computing and recent advances in
the GPU computing model. We also discuss related work
that aims at accelerating FDK using GPU, CPU, or other
heterogeneous architectures.

FDK method
The FDK method, published by Feldkamp, Davis and
Kramp in 1984 [2], introduced a method to reconstruct
a 3D volume from multiple 2D projections. Here a scan-
ner along with a 2D detector takes a full rotation around
the patient or object of interest to capture the data.
In this process, called conebeam scanning, the trajec-
tory of the source is circular and each horizontal row of
detector values is ramp filtered and considered as a two
dimensional object. These filtered projections are then
backprojected along the original rays. During the process
of acquiring scanned data, the X-ray source moves in a

circular orbital path, which has a radius r. The detector
plane stands perpendicular to the rotational axis of the
source and moves with it. It produces a set of projections
P1, P2, . . . , PK at K discrete positions of the source with
uniform angular spacing. Sometimes there are mechan-
ical limitations that preclude a full rotation from being
completed.

The method can be conceptualized as a reconstruction
with weighted backprojection. It is performed in two
stages. First, the raw data is individually weighted
and ramp filtered to produce filtered projections
Q1, Q2, . . . , QK . These projections are collected at a dis-
tance from X-ray source to detector d′ with angle θn
where 1 ≤ n ≤ K . The distance between the volume ori-
gin and the source is denoted di. Let Fx,y,z represent the
value of voxel (x, y, z) in volume F (Figure 1). The volume
is in xyz space and uv represents the projections that are
to be backprojected to the volume. Figure 1 shows the
coordinate space. In the backprojection step, the volume
F is reconstructed using the following equations [6]. From
Equation 1, it is clear that each value in the 3D volume is
independent and can be calculated in parallel.

F(x, y, z) = 1
2π t

t∑

i=1
W2(x, y, i)Qi(u(x, y, i), v(x, y, z, i)),

(1)

where W2(x, y, n) represents the weight value and
u(x, y, n) and v(x, y, z, n) represent the co-ordinates.

u(x, y, i) = d′(−x sin θi + y cos θi)

(di − x cos θi − y sin θi)
, (2)

v(x, y, z, i) = d′z
(di − x cos θi − y sin θi)

, (3)

W2(x, y, i) = di
(di − x cos θi − y sin θi)

. (4)

GPU computing
For many algorithms with massive parallelism, GPUs pro-
vided higher peak performance than CPUs. Initially GPUs
were designed for processing graphics applications and
games, but they have been increasingly used for scientific
computing and biomedical applications such as Smith-
Waterman alignment algorithm, protein folding, DNA
sequencing, statistical phylogenetics, molecular dynam-
ics, diffuse optical tomography and biological systems
simulation [7-13].

GPUs have many parallel cores that run simultaneously
and each core can run multiple threads. CT reconstruc-
tion has inherent features that can be parallelized. The
sequential parts can be run on the CPU and the com-
putationally intensive parallel parts can be accelerated on
the GPU.



Leeser et al. BMC Research Notes 2014, 7:582 Page 3 of 8
http://www.biomedcentral.com/1756-0500/7/582

Figure 1 Co-ordinate system for backprojection.

We have implemented FDK using two GPGPU lan-
guages: OpenCL and CUDA-C. While CUDA-C runs
only on NVIDIA hardware, OpenCL is platform indepen-
dent and runs on several hardware architectures including
AMD, Intel, and NVIDIA. NVIDIA provides optimized
libraries along with CUDA-C, which often results in
better performance. Both CUDA-C and OpenCL sup-
port heterogeneous computing with separate host and
device code. Both languages require minimal extensions
to C/C++ programs. The accuracy of the results is of
paramount importance in biomedical applications. We
have shown that the results provided by GPU may have
better precision over serial CPU code for floating point
values [14].

Related work
There are several areas to explore to make the recon-
struction faster. The first is to use a different algorithm.

Authors have used this approach to obtain around 40
times speed up of reconstruction over traditional filtered
backprojection [15,16]. However, the quality of the recon-
struction has been questioned [17]. Another area is to
explore different parallel techniques and architectures.
The intrinsic parallel nature of the algorithm makes it
amenable to hardware acceleration for real-time process-
ing. A popular hardware platform for parallel processing
is to use GPUs. Attempts to use GPU hardware to accel-
erate CT algorithms date back to the early 90s when
texture mapping hardware was used for 3D reconstruc-
tion [18]. Later Mueller and Xu used a GPU to accelerate
backprojection by using accelerated graphics components
[3,19]. Zhao et al. [1] introduced an idea to allow larger
datasets to fit in GPU memory. Noel et al. [20] used
device memory to transfer all images and calculate inten-
sity of a voxel. However accessing this memory can have
long latency, so to avoid it, Knaup et al. [21] divided the

Figure 2 Overview of serial CPU implementation and the implementation that makes use of a combination of CPU and GPU.



Leeser et al. BMC Research Notes 2014, 7:582 Page 4 of 8
http://www.biomedcentral.com/1756-0500/7/582

Table 1 Hardware details

Processor Clock Number of Cache Memory
speed cores size size

Intel Xeon 2.00 GHz 6 15 MB 32 GB
E5-2620

NVIDIA Tesla 1.15 GHz 448 768 KB 6 GB
C2075

AMD Radeon 925 MHz 2048 768 KB 3 GB
HD 7970

total data into chunks to fit in shared memory. Mueller
et al. [22] divided the processing by doing convolution on
the CPU and backprojection on the GPU to reconstruct
faster. The most similar work to ours is the Reconstruction
Toolkit (RTK) [23], based on the Insight Toolkit [24]. Our
approach is completely stand alone and does not require
ITK or any other packages to operate. It makes use of the
same inputs as those used by Fessler. Our CUDA-C code
is compatible with nvcc, the NVIDIA C Compiler while
that from RTK is not. Our OpenCL implementation is as
optimized as the CUDA-C version and in fact produces
superior results.

Our approach can be seen as a combination of previous
work. The implementation is divided into two parts with
convolution on the CPU and backprojection on the GPU.
In our implementation, we consider each pixel to be inde-
pendent and load the full volume on the GPU. In contrast
[25], considers all projections, but only part of the vol-
ume. We transfer the whole projection data to the GPU at
an early stage and transfer the reconstructed volume back
to the CPU at the end of all three steps: weighting, filter-
ing and backprojection. The processing steps for the CPU
and GPU implementations are shown in Figure 2. During
backprojection, a large number of threads are launched on
the GPU to compute each voxel in parallel. Each voxel is
independently mapped to the final 3D volume.

This paper presents a more complete and consistent set
of experiments and results than our previously published

work [26]. All experiments in this paper are done on the
same hardware for better comparison; the hardware is
described in Section ‘Experimental results’. The OpenCL
version is more advanced than in our previous publication
and the best OpenCL implementation of backprojection
available. The software described is now available for
download [5].

Implementations
We have several implementation of backprojection: 1) the
MATLAB code originally writtend by Fessler et al. [4],
2) a version of Fessler’s code parallelized with MATLAB
Parallel Computing Toolbox (PCT) 3) a serial implemen-
tation written in C, 4) the C implementation parallelized
with OpenMP constructs [27], 5) a version that uses a
combination of CPU and GPU written in CUDA-C that
compiles with the NVIDIA compiler, nvcc, and 6) a ver-
sion that uses a combination of CPU and GPU written in
OpenCL.

We have implemented the FDK method in a basic pro-
cessing chain in a pipelined fashion. The steps in the
pipeline are: 1) load projection data, 2) ramp filter the
weighted data and 3) backproject it to the final volume.
Note that the structure of our code follows that of Fessler’s
implementation. The input and output formats are also
the same.

For the GPU implementations, different kernels are
launched for different stages. Although the kernel calls
are issued in a non-blocking manner, they are exe-
cuted in series as each step needs to complete before
the next can begin. In the filtering stage, different pix-
els for the same projection can be simultaneously fil-
tered as there is no dependency between pixels. The
filtering stage uses a Fast Fourier Transform (FFT). In
the CUDA code we used the CUFFT available from
NVIDIA [28] while for OpenCL we use Apple’s FFT
package. The final step is to calculate voxel-based back-
projection. Here each voxel is calculated in parallel by

Figure 3 A projection of the mathematical phantom (left) and the mouse phantom (right).



Leeser et al. BMC Research Notes 2014, 7:582 Page 5 of 8
http://www.biomedcentral.com/1756-0500/7/582

Figure 4 Comparison of results obtained using C, OpenCL and CUDA-C run on phantom data.

performing a matrix-vector product for each voxel in
order to determine the corresponding projection value
(see Equation 1). After all projections have been pro-
cessed and mapped to the appropriate voxel, the final
reconstructed volume is transferred to host memory. As
memory transfer from host to device is expensive, trans-
ferring all the data to the GPU before the start of com-
putation and transferring back the result after the final
volume is reconstructed saves data transfer cycles. We use

asynchronous data transfers to overlap data transfer with
computation.

Experimental results
We demonstrate the implementation of the FDK algo-
rithm on two types of architectures: CPU and a combi-
nation of CPU and GPU. Details of the different hard-
ware is summarized in Table 1. Note the difference

Table 2 Performance of different implementations (in seconds)

Dataset Approach Backprojection time Total time Speedup over MATLAB Speedup over C

Phantom MATLAB 51.06 51.11 – –

Phantom C 3.93 3.95 12.94 –

Phantom C + OpenMP (4 threads) 0.85 0.89 57.43 4.44

Phantom OpenCL (NVIDIA) 0.01 0.30 170.37 13.17

Phantom CUDA (NVIDIA) 0.01 0.30 170.37 13.17

Phantom OpenCL (AMD) 0.01 0.32 159.72 12.34

Mouse scan MATLAB 33760.40 33777.33 – –

Mouse scan MATLAB PCT 22506.49 22513.90 1.5 –

Mouse scan C 18451.77 18462.60 1.83 –

Mouse scan C + OpenMP 5112.94 5615.65 6.01 3.29

Mouse scan OpenCL (NVIDIA) 49.44 60.45 558.76 305.42

Mouse scan CUDA (NVIDIA) 47.79 58.87 573.76 313.62

Mouse scan OpenCL(AMD) 16.01 28.02 1205.47 658.91



Leeser et al. BMC Research Notes 2014, 7:582 Page 6 of 8
http://www.biomedcentral.com/1756-0500/7/582

Figure 5 Runtimes of different implementations applied to phantom data (top), mouse data (middle) and mouse data for each
implementation component (bottom).



Leeser et al. BMC Research Notes 2014, 7:582 Page 7 of 8
http://www.biomedcentral.com/1756-0500/7/582

in numbers of cores. As will be seen in the results
section this is the largest contributor to performance
since backprojection has a large number of independent
compuations.

We have implemented the FDK method. Relative perfor-
mance is measured using two datasets. One, a synthetic
mathematical phantom generated by MATLAB, has an
input data size of 64 × 60 pixels with 72 projections to get
a final volume of 64 × 60 × 50 voxels. The second is a
mouse scan of 512 × 768 pixels with 361 projections. The
dimensions of the output volume are 512 × 512 × 768. A
single projection of the phantom and the animal scan is
shown in Figure 3. This data was obtained and is presented
with permission of Mass General Hospital.

The input and output sizes of the mathematical phan-
tom are both 1MB. For the mouse scan, the sizes of the
input and output projections are 542 MB and 768 MB
respectively. Note that the code and therefore the run time
only depend on the size of the data, not the content.

As mentioned earlier, the quality of reconstruction is
important. To show that accuracy is not compromised,
Figure 4 compares one slice of the final reconstructed vol-
ume in three implementations: 1) single threaded C, 2)
OpenCL on NVIDIA and 3) CUDA-C on NVIDIA as well
as the difference in values. Note that the difference in
values is bounded by 2.2 × 10−3.

The performance of different implementations is listed
in Table 2. Our performance data measure end-to-end
execution time. For GPU implementations, they include
data transfer times to and from the GPU as well as kernel
execution times.

It is evident that backprojection takes more than 99%
of the total time in the serial MATLAB code. This is the
motivation for parallelizing backprojection. The multi-
threaded MATLAB implementation shows a speedup of
1.5x over serial MATLAB for the mouse scan data. The
C implementation is 1.83 times faster than serial MAT-
LAB, and the multithreaded C implementation with four
threads is approximately 3.25 times faster again. Com-
pared to the multithreaded C implementation, GPUs give
the best performance. CUDA-C and OpenCL on the
NVIDIA GPU we targeted both give a speedup of approx-
imately 93 times over multi-threaded C. The fastest time
of all was with OpenCL run on the AMD GPU. Here
the speedup was 200 times compared to multithreaded
C. Figure 5 top and middle show the runtime of differ-
ent implementations on a logarithmic scale. The same
OpenCL run on an NVIDIA GPU takes 60.45 seconds to
reconstruct the image while it takes 28.02 seconds on the
AMD GPU we used. Figure 5 bottom shows the runtime
taken by each of the three stages of the algorithm on the
two GPU cards: AMD and NVIDIA for two implementa-
tions: CUDA and OpenCL. Measured runtimes are given
in Table 2.

Conclusions
We have implemented the FDK algorithm [2], compatible
with Fessler’s image reconstruction toolbox [4] and tested
on two different architectures: CPU and a combination of
CPU and GPU. Both NVIDIA and AMD GPUs have been
used for performance evaluation. The performance of two
GPU implementations in CUDA-C and OpenCL have
been compared to MATLAB, Multithreaded MATLAB,
and serial and multi-threaded C. The OpenCL implemen-
tation on the AMD card yields the largest speed up of 200x
over multi-threaded C and three orders of magnitude over
the original MATLAB code.

In the future, we will continue to improve our approach.
After parallelizing backprojection, the new bottleneck is
weighted filtering. We plan to investigate improved per-
formance for the filtering stage. In addition, for the GPU
implementations, only a subset of the number of launch
configurations for kernels have been tested so far. The
number of threads have been arbitrarily chosen. These
issues will be investigated with auto-tuning. The data
sizes that have been tested so far can be accommodated
in the GPU memory, but for larger data sizes, stream-
ing needs to be added to the current implementation.
We plan to do so in future versions of the open source
code.

Availability and requirements
• Project name: Accelerating 3D CBCT with GPU
• Project home page: http://sourceforge.net/projects/

acceleratecbct/
• Operating system(s): Linux
• Programming language: C with OpenMP, CUDA,

OpenCL.
• Other requirements: CUDA compiler installed
• License: GPL
• Any restrictions to use by non-academics: Only those

imposed already by the license.

Availability of supporting data
All materials are available online. The source codes as
well as input data phantom are released into the public
domain. The documentation for the software pipeline is
also included. This is available as Open Source software
under the General Public License (GPL) version 2.0. as a
part of the open source software [5].

Abbreviations
CUDA: Compute unified device architecture; CT: Computed tomography,
AMD: Advanced micro devices, Inc., FDK: Feldkamp–Davis–Kress, GPU:
Graphics processing unit; PCT: Parallel computing toolbox.

Competing interests
The authors declare that they have no competing interests.

http://sourceforge.net/projects/acceleratecbct/
http://sourceforge.net/projects/acceleratecbct/


Leeser et al. BMC Research Notes 2014, 7:582 Page 8 of 8
http://www.biomedcentral.com/1756-0500/7/582

Authors’ contributions
ML, SM, and JB worked together in the design, implementation and testing
phase of software development. All authors have read and approved this
manuscript.

Acknowledgements
This work was supported in part by the National Science Foundation
Engineering Research Centers Innovations Program, Biomedical Imaging
Acceleration Testbench (Award Number EEC-0946463), by National Science
Foundation grant CCF-1218075 and by gifts from Mathworks and NVIDIA.
We thank Dr. Nicholas Moore for his helpful input, and Drs. Ralph Weissleder
and Sarit Sekhar Agasthi, Massachusetts General Hospital for providing the
mouse scan data.

Author details
1Department of Electrical and Computer Engineering, 440 Dana Building,
Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
2Cognitive Electronics, 201 South St, Suite 301, Boston, MA 02111, USA.

Received: 3 March 2014 Accepted: 18 August 2014
Published: 30 August 2014

References
1. Zhao X, Hu J-j, Zhang P: Gpu-based 3d cone beam ct image

reconstruction for large data volume. Int J Biomed Imaging 2009,
2009:149079.

2. Feldkamp LA, Davis LC, Kress JW: Practical cone-beam algorithm. J Opt
Soc Am 1984, 1:612–619.

3. Mueller K, Xu F: Practical consideration for gpu-accelerated ct. IEEE Int
Symp Biomed Imaging 2006, 11:1184.

4. Fessler J: Image reconstruction toolbox [http://web.eecs.umich.edu/~
fessler/irt/fessler.tgz]

5. Cbct open source software [http://www.coe.neu.edu/Research/rcl//
projects/CBCT.php]

6. Ino F, Yoshida S, Hagihara K: RGBA packing for fast cone beam
reconstruction on the GPU. In SPIE Medical Imaging: International
Society for Optics and Photonics; 2009:725858–725858.

7. de O Sandes EF, de Melo AC: Retrieving smith-waterman alignments
with optimizations for megabase biological sequences using GPU.
Parallel Distributed Syst IEEE Trans 2013, 24(5):1009–1021.

8. Sukhwani B, Herbordt MC: Gpu acceleration of a production molecular
docking code. In Proceedings of 2nd Workshop on General Purpose
Processing on Graphics Processing Units. New York: ACM; 2009:19–27.

9. Liu C-M, Wong T, Wu E, Luo R, Yiu S-M, Li Y, Wang B, Yu C, Chu X, Zhao K,
Li R, Lam TW: SOAP3: ultra-fast gpu-based parallel alignment tool for
short reads. Bioinformatics 2012, 28(6):878–879.

10. Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Huelsenbeck
JP, Ronquist F, Swofford DL, Cummings MP, Rambaut A, Suchard MA:
Beagle: An application programming interface and
high-performance computing library for statistical phylogenetics.
System Biol 2012, 61(1):170.

11. Jie L, Li K, Shi L, Liu R, Mei J: Accelerating solidification process
simulation for large-sized system of liquid metal atoms using GPU
with CUDA. J Comput Phys 2014, 257 Part A(0):521–535.

12. Valim N, Brock J, Leeser M, Niedre M: The effect of temporal impulse
response on experimental reduction of photon scatter in
time-resolved diffuse optical tomography. Phys Med Biol 2013,
58(2):335.

13. Okuyama T, Okita M, Abe T, Asai Y, Kitano H, Nomura T, Hagihara K:
Accelerating ODE-based simulation of general and heterogeneous
biophysical models using a GPU. Parallel Distributed Syst EEE Trans 2014,
25(8):1966–1975.

14. Leeser M, Ramachandran J, Wahl T, Yablonski D: OpenCL floating point
software on heterogeneous architectures–portable or not. In
Workshop on Numerical Software Verification (NSV); 2012. Available from
[http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/]

15. Xiao S, Bresler Y, Munson Jr DC: Fast Feldkamp algorithm for
cone-beam computer tomography. In Image Processing, International
Conference on (ICIP), Volume 2. New York: IEEE; 2003:819.

16. Basu S, Bresler Y: O(n2log2n) filtered backprojection reconstruction
algorithm for tomography. IEEE Trans Image Process 2000, 9:10.

17. Rodet T, Noo F, Defrise M: The cone-beam algorithm of feldkamp,
davis, and kress preserves oblique line integrals. Med Phys 2004,
31:1972.

18. Cabral B, Cam N, Foran J: Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware. In
Proceedings of the 1994 Symposium on Volume Visualization. New York:
ACM; 1994:91–98.

19. Mueller K, Xu F: Real-time 3d computed tomographic reconstruction
using commodity graphics hardware. Phys Med Biol 2007, 52:3405.

20. Noël PB, Walczak AM, Xu J, Corso JJ, Hoffmann KR, Schafer S: GPU-based
cone beam computed tomography. Comput Methods Prog Biomed
2010, 98(3):271–277.

21. Knaup M, Steckmann S, Kachelriess M: GPU-based parallel-beam and
cone-beam forward-and backprojection using CUDA. In Nuclear
Science Symposium Conference Record (NSS). New York: IEEE;
2008:5153–5157.

22. Mueller K, Xu F, Neophytou N: Why do commodity graphics hardware
boards (GPUs) work so well for acceleration of computed
tomography? In Electronic Imaging 2007: International Society for Optics
and Photonics; 2007:64980–64980.

23. Jomier J, Rit S, Oliva MV: Rtk: The reconstruction toolkit [http://www.
kitware.com/source/home/post/115]

24. National Library of Medicine: Insight Segmentation and Registration
Toolkit (ITK). [http://www.itk.org/]

25. Noël PB, Walczak A, Hoffmann KR, Xu J, Corso JJ, Schafer S: Clinical
evaluation of gpu-based cone beam computed tomography. Proc.
High-Performance Comput Biomed Image Anal 2008. [http://www.miccai.
org/]

26. Mukherjee S, Moore N, Brock J, Leeser M: CUDA and OpenCL
implementations of 3D CT reconstruction for biomedical imaging. In
High Performance Extreme Computing (HPEC), Conference On. New York:
IEEE; 2012:1–6.

27. OpenMP: OpenMP Standard Version 3.1 [http://www.openmp.org/
mp-documents/OpenMP3.1.pdf]

28. NVIDIA: CUDA CUFFT Library [http://docs.nvidia.com/cuda/cufft/index.
html]

doi:10.1186/1756-0500-7-582
Cite this article as: Leeser et al.: Fast reconstruction of 3D volumes from
2D CT projection data with GPUs. BMC Research Notes 2014 7:582.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://web.eecs.umich.edu/~fessler/irt/fessler.tgz
http://web.eecs.umich.edu/~fessler/irt/fessler.tgz
http://www.coe.neu.edu/Research/rcl//projects/CBCT.php
http://www.coe.neu.edu/Research/rcl//projects/CBCT.php
http://www.ccs.neu.edu/home/wahl/Research/FPA-Heterogeneous/
http://www.kitware.com/source/home/post/115
http://www.kitware.com/source/home/post/115
http://www.itk.org/
http://www.miccai.org/
http://www.miccai.org/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://docs.nvidia.com/cuda/cufft/index.html
http://docs.nvidia.com/cuda/cufft/index.html

	Abstract
	Background
	Findings
	Conclusions
	Keywords

	Findings
	Introduction
	Background
	FDK method
	GPU computing
	Related work

	Implementations
	Experimental results

	Conclusions
	Availability and requirements
	Availability of supporting data
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

