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Country transition index based 
on hierarchical clustering to predict 
next COVID‑19 waves
Ricardo A. Rios1*, Tatiane Nogueira1, Danilo B. Coimbra1, Tiago J. S. Lopes2, 
Ajith Abraham3 & Rodrigo F. de Mello4,5

COVID-19 has widely spread around the world, impacting the health systems of several countries in 
addition to the collateral damage that societies will face in the next years. Although the comparison 
between countries is essential for controlling this disease, the main challenge is the fact of countries 
are not simultaneously affected by the virus. Therefore, from the COVID-19 dataset by the Johns 
Hopkins University Center for Systems Science and Engineering, we present a temporal analysis 
on the number of new cases and deaths among countries using artificial intelligence. Our approach 
incrementally models the cases using a hierarchical clustering that emphasizes country transitions 
between infection groups over time. Then, one can compare the current situation of a country against 
others that have already faced previous waves. By using our approach, we designed a transition index 
to estimate the most probable countries’ movements between infectious groups to predict next wave 
trends. We draw two important conclusions: (1) we show the historical infection path taken by specific 
countries and emphasize changing points that occur when countries move between clusters with 
small, medium, or large number of cases; (2) we estimate new waves for specific countries using the 
transition index.

In December 2019, a new disease referred to as COVID-19 (Coronavirus disease 2019) was reported in Wuhan, 
China, and since then it has been spreading globally, leading the World Health Organization (WHO) to declare 
it a pandemic outbreak on March 11th, 20201 (https://​www.​who.​int/​emerg​encies/​disea​ses/​novel-​coron​avirus-​
2019/​inter​active-​timel​ine). COVID-19 is an infectious disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) whose symptomatic cases include fever, cough, fatigue, and shortness of breath2,3. 
Although asymptomatic cases do not require special medical care, the scientific community has been trying to 
understand their influence in the pandemic, that is whether they act as important and silent vectors of person-
to-person transmission4–7 or their immune systems are able to rapidly neutralize the virus8,9.

The great impact of COVID-19 has motivated the Johns Hopkins University Center for Systems Science and 
Engineering (JHU CSSE) to put together an online repository listing the number of new cases and deaths10, 
referred in this manuscript to as COVID-19-CSSE (COVID-19 Data Repository by the Center for Systems Sci-
ence and Engineering (CSSE) at Johns Hopkins University available at https://​github.​com/​CSSEG​ISand​Data/​
COVID-​19). Such a repository includes reports from different institutions such as the World Health Organization 
(WHO) and local health agencies from different countries like China, Taiwan, United States, Australia, Singapore, 
Italy, France, and Israel. The COVID-19-CSSE repository has motivated us to model how this virus spreads in 
order to represent its impact in the most affected countries along time.

Our approach employs a hierarchical clustering algorithm, an unsupervised learning branch from the Artifi-
cial Intelligence, along with the average-link strategy11 to determine the pertinence of countries to groups along 
weeks to analyze how the disease spreads and affects different societies. Clustering partitions were evaluated 
using the mean silhouette12,13 to ensure modeling representability. We propose a transition index to estimate 
the most probable countries’ movements between infectious groups along weeks, helping to identify next waves. 
In summary, our study demonstrates that the usage of known machine learning methods is a feasible approach 
to model the spread of COVID-19. We anticipate that our results, together with other studies from the same 
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scientific context14–19, will aid policymakers to implement guidelines and procedures derived from evidence that 
takes into account the global dynamics of infectious diseases.

Results
To illustrate our approach, we consider the first death registered in Brazil (March 17th, 2020) until October 07th, 
2020, so all countries having historical data before such date are taken into account (more details about the data 
organization is presented in Sections Data Processing and Our Approach). From this perspective, we reduced 
the COVID-19-CSSE dataset from 187 to 54 countries to study the infection trends in Brazil. We performed an 
empirical clustering analysis using the mean silhouette ( Sµ ) to improve the cut off point for all dendrograms.

Finally, we cut dendrograms to form partitions with 3 groups (low, medium, and high disease incidences), sim-
plifying our analysis while respecting the literature recommendation12: reasonable structure ( 0.51 ≤ Sµ ≤ 0.7 ), 
and strong structure ( 0.71 ≤ Sµ ≤ 1 ). In our context, the mean silhouette is not considered to find the optimal 
number of clusters. In turn, it is used to justify that our conclusions are not drawn from weak or non-substantial 
structures. Moreover, possible outliers are not removed from our analyses, once they are useful to, for example, 
track the current and next COVID-19 epicenters.

Confirmed cases.  The first analysis involved the number of daily confirmed cases per million inhabitants. 
Figure 1 illustrates the mean silhouette along time, confirming an average around 0.68 and containing both cen-
tral quantiles above 0.56. Results suggest partitions are representative for our problem.

By considering 3-week windows, sliding a week per iteration, our approach analyzed 35 intervals. Figures 2, 3 
and 4 display World choropleth maps with the most relevant partitions along time, helping us to identify drift 
scenarios. From Fig. 2a,b, China leaves out the intermediary-incidence group, Italy joined that cluster, and Iran 
moved to the highest-incidence one. Figure 2c confirms Italy and Spain in the highest-incidence group, while 
Belgium and Iran move to the intermediary level and no change was performed by other countries. At the bottom 
curves, medoid countries or group descriptors are shown, i.e., countries better representing groups.

In Fig. 3a, Italy moved to the intermediary group while Belgium joined with Spain in the highest incidence. 
Furthermore, there is a reduction trend in this high-incidence group over time. Figure 3b confirmed Brazil, 
the USA, and the greater part of Western Europe in the intermediary group, while Belgium and Spain kept the 
higher incidences however under greater variations (see curves at the bottom of such figure). Brazil and the 
USA moved to the highest incidence group in Fig. 3c, while Canada, Iran and Russia joined most of the West-
ern Europe (including Spain and Belgium) in the intermediary group. India and China maintained the smallest 
number of cases.

From weeks 16 to 18, Brazil was isolated in the worst group (Fig. 4a), while Russia and the USA were in the 
intermediary level. Canada, Western Europe, Iran, India and China somehow managed to reduced the contagion 
and kept the smallest numbers. Next, Russia moved to the best group while the others remain unchanged along 
weeks 25–27. The USA joined Brazil back in the worst-incidence group, while cases increase in Spain making it 
move back to the intermediary group.

From those drifts, we also suggest the interpretation of case trends using curves below World maps. There 
are some clear increases, decreases and stabilities to mention: Iran going up along Fig. 2a,b while decreasing in 
Fig. 2c; Spain and Belgium significantly decreasing along weeks 10–12 as seen in Fig. 3a; finally, many bumps 
in Brazil from weeks 16 to 18 and 25 to 27, and in Spain from weeks 30 to 32, a clear result of measurement 
discontinuities once cases were only accurately reported during business days20.

Death cases.  This second analysis involved the number of daily deaths per million inhabitants. We also ana-
lyzed the mean silhouette for partitions with three groups (Fig. 5), from which we obtained an average around 
0.68 with both central quantiles above 0.56. Results suggest partitions are representative for our problem.

From weeks 1 to 3, Spain and Belgium got isolated into two groups with the highest incidences (Fig. 6a), while 
the remaining countries were still with small numbers. Trends of Spain and Belgium are very steep what most 
certainly confirms the motivation for the distancing policy adopted by their governments.

Figure 1.   Mean Silhouette variation ( Sµ ), considering three groups of countries clustered by the absolute 
number of confirmed cases per million inhabitants.
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Belgium keeps increasing its death numbers from weeks 4 to 6 (Fig. 6b) at a greater pace than Spain, Italy 
and the UK, being all three located at the intermediary group. Then UK, Spain and Italy moved to the highest-
incidence group with Belgium (Fig. 6c). France and the USA took over the intermediary group, depicting a 
relevant increase in death counts.

Along weeks 10–12, Argentina started participating in the less affected group. Brazil, Spain, Italy, Belgium, 
the UK and the USA composed the intermediary group. France took over the group with the highest inci-
dence, besides its trend approaches the intermediary group (Fig. 7a). Next, from weeks 15 to 17 (Fig. 7b), Spain 
decreased its numbers, participating in the lowest-incidence group; meanwhile, Belgium, Argentina, Canada, the 
USA, most of the Western Europe, Turkey, Iran, India and China were at the intermediary level. Brazil started 
its upward trend by taking over the highest-incidence group.

From weeks 20 to 22, Canada, the Western Europe, Turkey, India and China had the smallest indices (Fig. 7c). 
Argentina, the USA and Iran were clustered together in the intermediary level, while the highest incidences were 
still on Brazil. We again noticed the bumpy Brazilian curve associated to less accurate reports at the weekends.

Figure 8a illustrates weeks 26–28, confirming Canada, Turkey, India, China and the Western Europe in the 
lowest-incidence group; Iran got isolated in the intermediary group, while Brazil, the USA and Argentina were 
in the worst group. From weeks 28 to 30 (Fig. 8b), Argentina was isolated in the worst group, while Brazil, the 
USA and Iran were at the intermediary level. Figure 8c shows a similar scenario except due to a greater variance 
in the intermediary group and some increase of death reports in Argentina.

Visual transition.  In Fig. 9, we analyzed how some countries with the greatest numbers of confirmed cases 
per million inhabitants transitioned along groups. Brazil, Canada, China, France, Germany, India, Russia, USA, 
UK, Belgium, Iran, Spain and Italy were analyzed. Line widths represent the mean number of confirmed cases 
within some time window. As new cases are registered, one may notice how countries behave over time.

By assessing Italy, we notice the number of confirmed cases has rapidly increased (line width), leading it from 
the green (lowest incidence) to the purple cluster (highest incidence) during the first 5 weeks. In weeks 6–8, a 
similar behavior is noticed with Spain that moves to the same group as Italy. According to Fig. 2c, such countries 
are characterized by a strong positive trend. Another important information highlighted by the visual transition 
is the line width of Brazil, France, Germany, the USA, and the UK that got wider as new cases were reported, 
indicating those countries were moving to high-incidence groups.

To estimate new waves, we also analyzed some countries by using the visual transition during the last weeks 
(Fig. 10). One may notice the line width of Spain increases during weeks 30–32, leading it to an intermediary 

Figure 2.   Confirmed cases per million inhabitants: country partitions along weeks 1–8. Top images identify 
country groups and bottom curves correspond to the infection incidence levels: green, orange and purple 
correspondingly map the low, medium and high-incidence groups. Curve legends indicate the group descriptor. 
Top-most maps were generated by using Tableau Desktop-Professional Edition (https://​www.​table​au.​com/, 
version 20181.20.0213.2110-64 bit), and bottom-most charts were generated by using Google Charts (https://​
devel​opers.​google.​com/​chart, version 49).

https://www.tableau.com/
https://developers.google.com/chart
https://developers.google.com/chart
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cluster and pointing out the beginning of its second wave. The line widths for Belgium and India have been 
increasing, calling the attention of their public authorities. Meanwhile, besides Russia moved from the interme-
diary to the less affected group, its line width still suggests awareness. Another interesting situation is observed 
for the USA, whose number of confirmed cases increases making it be grouped with Brazil. Indeed, it was an 
expected behavior due to the agglomeration caused by several protests21 and the election run22,23.

Modeling transitions.  The trend of confirmed cases is essential to support local public authorities in mod-
eling the probability of a country or region in facing a new wave. From this motivation, we designed a transition 
index to assess contamination trends detailed in “Country transition index”.

Moreover, our index brings scientific justification to country intervention measurements in an attempt to 
reduce the disease incidence due to the use of non-pharmacological policies. As a piece of remainder, our index 
takes a pair of time-consecutive hierarchical clustering partitions to measure the distance ratio of a specific 
country from its current group to its most probable next one.

To exemplify how our index captures the temporal transition information as new data is collected, we used 
last-weeks data to analyze new cases in Spain. In this illustration, the transition index TX of a country X calcu-
lates the distance from its current cluster to its closest one (further details about the transition index is provided 
in  “Country transition index”).

In Fig. 11a, Spain is distant �h = (379− 265) = 114 its current cluster composed of Belgium, India, 
and Iran. Its distance to its closest cluster composed of France, China, the UK, Canada, Italy, and Germany 
is �H = (505− 265) = 240 . From those distances, we calculate the transition index TSpain = �h

�H = 47.5% , 
assessing the possible move of Spain towards both subgroups. The closer to 100% this index is, the greater is the 
probability of moving to another group.

We noticed that some transitions between groups happened even without having this index close to 100% . 
This situation is expected once the whole environment is episodic and dynamic24, i.e., while analyzing a country, 
the recorded numbers of others may also change. Such a relation to other countries is illustrated in Fig. 11b, in 
which the distance from Spain to the subgroup containing Belgium, India, and Iran increases, but Russia gets 
between them, thus providing a transition index equals to TSpain = 41.1% . It means the number of cases in 
Spain surpasses Russia’s. Next, Spain gets even far from this subgroup (Fig. 11c), what is corroborated by the 
transition index TSpain = 88%.

As a consequence, Spain gets closer to the USA and Brazil having the greatest numbers of confirmed 
cases in such window (Fig. 11d). After calculating the transition indexes from Fig. 11d,e, we get TSpain = 9% 
and TSpain = 23.4% , respectively. This strong variation emphasizes the transition that happened in the next 

Figure 3.   Confirmed cases per million inhabitants: country partitions along weeks 10–16. Top images identify 
country groups and bottom curves correspond to the infection incidence levels: green, orange and purple 
correspondingly map the low, medium and high-incidence groups. Curve legends indicate the group descriptor. 
Top-most maps were generated by using Tableau Desktop-Professional Edition (https://​www.​table​au.​com/, 
version 20181.20.0213.2110-64 bit), and bottom-most charts were generated by using Google Charts (https://​
devel​opers.​google.​com/​chart, version 49).

https://www.tableau.com/
https://developers.google.com/chart
https://developers.google.com/chart
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dendrogram Fig. 11f, indicating the disease was escalating in Spain thus approaching the numbers of Brazil 
and the USA.

The next transition indexes of Spain—Fig. 11f–h with TSpain = 45.2% , TSpain = 37.5% , and TSpain = 61.4% , 
respectively—strongly suggest a new contamination wave and the next COVID-19 epicenter returning to Europe. 
Finally, as expected, Spain moved away from Brazil and the USA to lead the number of confirmed cases—Fig. 11i. 
Besides analyzing Spain, we call the readers’ attention back to India, France, and China, whose numbers are 
strongly increasing.

For example, after calculating the transition index for France, only using the last three time windows 
(Fig. 11g–i), we obtained TFrance = 7.8%, 10.5% , and 21.26% , respectively (this last one does not consider 
China, only the nearby countries as Germany, the UK, Italy, and Belgium), respectively. By keeping China in 
this last analysis, Fig. 11i, the transition index TFrance would reduce, once China took a place between France 
and the group of countries below it. However, the distance between France and its local neighbors was, indeed, 

Figure 4.   Confirmed cases per million inhabitants: country partitions along weeks 16–32. Top images identify 
country groups and bottom curves correspond to the infection incidence levels: green, orange and purple 
correspondingly map the low, medium and high-incidence groups. Curve legends indicate the group descriptor. 
Top-most maps were generated by using Tableau Desktop-Professional Edition (https://​www.​table​au.​com/, 
version 20181.20.0213.2110-64 bit), and bottom-most charts were generated by using Google Charts (https://​
devel​opers.​google.​com/​chart, version 49).

Figure 5.   Mean Silhouette ( Sµ ) variation by considering three groups of countries clustered by the absolute 
number of death per million inhabitants.

https://www.tableau.com/
https://developers.google.com/chart
https://developers.google.com/chart
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increasing, thus suggesting the number of cases was higher as well. Therefore, during the period of our analysis 
(up to October 7th, 2020), the positive trend supports the conclusion that France is also approaching a new 
contamination wave.

Discussion
This research has presented a new approach to analyze the notification evolution of confirmed and death cases 
per million inhabitants in different countries due to the COVID-19. We have observed that there is a strong 
motivation to understand and eventually forecast the COVID-19 evolution in a given country by taking into 
account historical reports from other countries14–19,25.

Such observation has called our attention and motivated us to rise a fundamental question: Could we take 
country “X” to understand the evolution of cases caused by Sars-CoV-2 in another country “Y”? To answer 
this question, we have designed a new artificial intelligence approach based on unsupervised machine learning 
methods to perform an exploratory data analysis, without information provided by specialists (e.g. label), to 
create partitions of countries that minimize intra-cluster and maximize inter-cluster distances.

In summary, the main contributions of our work are the organization of time series, thus better allowing a 
comparison among different countries, which is a challenge in the COVID-19 scenario, and the transition index. 
Our approach emphasizes the number of cases of a country is indeed useful to analyze possible outcomes in 
other regions. When a country is not placed in the same cluster, they cannot be considered somehow similar. 
In addition to the partition information, we recommend the use of our transition index to calculate eventual 
country trends over time in an attempt of identifying the next waves and draw public prevention and contain-
ment policies. In addition to the contribution to the study of COVID-19, our transition index is also a relevant 
proposal to future researches in the unsupervised machine learning area due to the possibility of extracting new 
information from cluster partition.

Finally, our visualization metaphors allow understanding the historical infection path taken by specific coun-
tries and estimate new waves using the transition index. In future studies, we plan to include a longer historical 
series and other demographic and social indicators (i.e., criminality, economy, population density). Additionally, 
other clustering methods as such as Latent Class Analysis26,27 present an attractive alternative to the methods 
used here.

The main limitations of our analyses are related to the challenges to collect and compare new cases and 
deaths from different countries. As discussed in the Data Processing section, different monitoring strategies are 
considered by the affected countries, which may add biases to the analyzed data28,29. Furthermore, especially in 

Figure 6.   Death cases per million inhabitants: country partitions along weeks 1–9. Top images identify 
country groups and bottom curves correspond to the infection incidence levels: green, orange and purple 
correspondingly map the low, medium and high-incidence groups. Curve legends indicate the group descriptor. 
Top-most maps were generated by using Tableau Desktop-Professional Edition (https://​www.​table​au.​com/, 
version 20181.20.0213.2110-64 bit), and bottom-most charts were generated by using Google Charts (https://​
devel​opers.​google.​com/​chart, version 49).

https://www.tableau.com/
https://developers.google.com/chart
https://developers.google.com/chart
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early phases of the pandemic, the criteria for data collection were not uniform30,31, once the virus reaches the 
countries, and their health systems, at different moments. We emphasize such limitations are not only related to 
our proposed approach, but also usually faced by data-driven projects in general.

Methods
Data processing.  The comparison between countries is an essential tool for the control of COVID-19, thus 
allowing to learn, for example, variations and similarities from different regions, and time trends28. However, 
such a comparison is not an easy task due to the different strategies to collect data, restrain the disease, and 
report new cases. Therefore, aiming at mitigating these drawbacks, comparisons are only possible by considering 
that the virus arrives at different moments in every country29. Besides that, absolute numbers are incomparable 
due to different population sizes29. Finally, the analysis on cumulative cases might not easily support the identi-
fication of local variation, that is, cyclical and seasonal components within short periods of time.

In this sense, we designed our experiments on time series from 186 countries available in COVID-19-CSSE, 
containing the numbers of confirmed and death cases per million inhabitants. To proceed with our analysis, 
each of those time series was transformed into daily observations, aiming at supporting the identification of 
their intrinsic similarities as, for example, local trend and seasonality influences, usually hidden by cumulative 
analyses. For example, let confirmed cases be organized as X = {x1, x2, . . . , xt} , in which xi is the absolute num-
ber of cases per million inhabitants registered up to the ith day. Then, each series is reorganized to represent the 
number of cases registered at every individual day, i.e., X̂ = {x̂1, x̂2, . . . , x̂t−1} , given x̂i = xi+1 − xi and 1 ≤ i < t . 
Next, all time series are aligned from the first death and confirmed cases to allow the use of historical data to 
study the disease spreading, once not all countries are homogeneously affected by virus29. More details about 
the importance of the time series alignment is discussed in  “Country transition index”.

Artificial intelligence: unsupervised learning.  The recent artificial intelligence researchers have been 
dedicating a great effort to model the occurrence of new COVID-19 cases. As discussed by Aydin and Yurdakul32, 
such researches are focused on using different algorithm biases to extract useful information and patterns from 
data in order to examine factors that may affect the number of cases, deaths, and recovered patients. From a 
carefully search in the literature, we also noticed valuable researches that model COVID-19 data by taking into 
account the temporal dependencies among their observations18,19,25,32–35.

Figure 7.   Death cases per million inhabitants: country partitions along weeks 10–22. Top images identify 
country groups and bottom curves correspond to the infection incidence levels: green, orange and purple 
correspondingly map the low, medium and high-incidence groups. Curve legends indicate the group descriptor. 
Top-most maps were generated by using Tableau Desktop-Professional Edition (https://​www.​table​au.​com/, 
version 20181.20.0213.2110-64 bit), and bottom-most charts were generated by using Google Charts (https://​
devel​opers.​google.​com/​chart, version 49).

https://www.tableau.com/
https://developers.google.com/chart
https://developers.google.com/chart
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After analyzing such manuscripts, we have realized an important research opportunity that aims at using 
unsupervised learning to perform an exploratory data analysis on the COVID-19-CSSE dataset looking for 
similar patterns in different countries over time.

Unsupervised learning looks for data space structures when no label information is available11, from which 
data are organized into partitions (or other structures) to reflect the similarities among objects. Traditional 

Figure 8.   Death cases per million inhabitants: country partitions along weeks 26–33. Top images identify 
country groups and bottom curves correspond to the infection incidence levels: green, orange and purple 
correspondingly map the low, medium and high-incidence groups. Curve legends indicate the group descriptor. 
Top-most maps were generated by using Tableau Desktop-Professional Edition (https://​www.​table​au.​com/, 
version 20181.20.0213.2110-64 bit), and bottom-most charts were generated by using Google Charts (https://​
devel​opers.​google.​com/​chart, version 49).

Figure 9.   Confirmed cases for the first eight weeks: visualization of the temporal transition of countries 
between pairs of clusters. Green, orange and purple correspondingly map the low, medium and high-incidence 
groups. This chart was generated by using Google Charts (https://​devel​opers.​google.​com/​chart, version 49).

https://www.tableau.com/
https://developers.google.com/chart
https://developers.google.com/chart
https://developers.google.com/chart
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clustering algorithms assume datasets are independent and identically distributed11. However, our data has evi-
dent dependencies once confirmed cases and deaths result from temporal interactions among people, therefore 
a different criterion must measure object similarities. In this sense, we employ Dynamic Time Warping (DTW)36 
to find the best alignment between series and compute their similarities. DTW maps all series elements into one 
another to reduce their dissimilarities over time. In our experiments, we have considered the Euclidean distance 
as a pointwise (local) distance function to calculate the warping path37.

In this research, we decided to use hierarchical clustering38–40 once: their execution is completely determin-
istic, allowing reproducibility; and they extract patterns under different cluster shapes. Moreover, hierarchical 
clustering has also been used in other epidemiological applications besides COVID-19, such as chronic inflam-
matory diseases41, airborne infectious diseases42, Alzheimer’s Disease43, Ebola44 and others45.

Our algorithm starts with a single cluster per object, then clusters are iteratively merged using a bottom-up 
approach (agglomerative) until providing a single group containing all objects. At every step, two clusters are 
merged together using a linkage method11. The average-link is used to merge the two nearest clusters based on 
the mean distance among their inner objects, as defined in Eq. (1), in which Cp and Cq are two clusters, X and Y 
are time series belonging to those clusters, function d(·, ·) is the DTW method.

Our approach.  Our approach is composed of four steps, as illustrated in Fig. 12. Firstly, we analyzed each 
dataset containing the daily-confirmed cases and deaths per million inhabitants by aligning all time series 
according to the first record of a given country (left-most plot). The time series alignment is a very important 
step once all countries are not simultaneously affected by the virus29. For example, during the first global wave, 
the highest number of cases (921) in Italy happened on March 27th, 2020, whereas Brazil was still registering 
the first deaths. Without aligning their time series, they would never be placed in the same group with higher 
records, once there is a displacement between the crest points on their waves. Moreover, our goal is not only 
to analyze the similarities among countries. In turn, our focus is to identify a transition that indicates a given 
country is moving from a group (e.g. low occurrence of cases) to another (e.g. with a higher number of cases). 
This is the main reason why we remove from our analysis countries whose the first record happened after some 
country of interest, that is, this filter gives the idea of analyzing some next disease epicenter depends on past data.

Aiming at illustrating these assumptions, consider the USA as the country of interest. First, we align its first 
death (recorded on February 29th, 2020) along with the first death in other countries as, for example, in Italy that 
happened on February 21th, 2020. Then, we can compare whether, after a few days during their first wave, the 
USA was presenting enough similar behavior to be placed into the same group as Italy, which was the COVID-19 
epicenter at that time. In our strategy to compare different countries, by considering this wave-based behavior 
of the infection, we would not intend to compare whether, after the first death, the USA was going to present a 
behavior similar to Brazil, whose first death wave started later on March 17th, 2020. The reverse analysis makes 
sense, though, that is, we can use both the USA and Italy by considering Brazil as a country of interest, thus cal-
culating if Brazil is approaching the USA or Italy. Although we recommend the alignment and filtering processes 
to compare different countries, the reader can omit them to consider all countries starting from the same day.

(1)
dist(Cp,Cq) =

1

|Cp| · |Cq|

∑

∀X ∈ Cp

∀Y ∈ Cq

d(X,Y), for p �= q

Figure 10.   Confirmed cases for weeks 24–32 given no relevant change was observed later: visualization of the 
temporal transition of countries between pairs of clusters. Green, orange and purple correspondingly map the 
low, medium and high-incidence groups. This chart was generated by using Google Charts (https://​devel​opers.​
google.​com/​chart, version 49).

https://developers.google.com/chart
https://developers.google.com/chart
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Then, we define the time length to support the comparison of evolving behaviors (Step 2), using a sliding win-
dow with 3 weeks moving a week forward, forgetting the first 7 observations and including 7 new ones (2-week 
overlapping). To illustrate this process, consider we are analyzing data from 5 weeks. We start observing the first 
three windows: weeks 1, 2, and 3. Then, we sliding the window to forget the first week of data and include the 
next one, thus analyzing weeks 2, 3, and 4. Next, the process is repeated by considering weeks 3, 4, and 5. The 
windowed analyses, illustrated by the bounding boxes with different colors in the left-most plot of Fig. 12, cre-
ate the movement captured by our visual analyses and are used by our transition index to perform predictions.

At the third step, DTW is applied on evolving pairs of time series under the same window length, proceeding 
with the hierarchical clustering and the dendrogram analysis. DTW produces square matrices containing dis-
similarity values between all time series pairs. At last, we perform the average-link-based hierarchical clustering 
on all dissimilarity matrices to build up a dendrogram (Step 3 of Fig. 12). To proceed with the visual metaphor 

Figure 11.   Spain prediction using weeks from 27 to 37 (starting counting weeks just after the first death in 
Brazil). The software used to cluster the time series and plot the dendrograms was the package hclust from R 
version 3.6.3.
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interpretation, we cut the dendrogram at a selected height to form partitions and use such information to color 
countries (Step 4 of Fig. 12).

Cluster validity.  The quality of clustering partitions is assessed using the mean silhouette Sµ over all ana-
lyzed objects, summarizing the geometric measures of group compactness and separation (more details in11,46). 
The best partition is achieved when Sµ is maximized, reflecting the minimization of intra and the maximization 
of inter-cluster distances.

Country transition index.  We designed a country transition index to model historical events and track 
infection changing points. Let a time series of a specific country be X and its two closest groups Cp and Cq , TX 
measures the transition relation of X in form TX = �h

�H (Fig. 13). In this equation, �h measures the height of 
the branch that connects the group with X (clade α ) and the lower cluster (clade β ): |α − β| . In turn, �h calcu-

Figure 12.   General overview about the proposed approach. Firstly (left-most), the time series are aligned 
by considering a reference country. Then (middle), we calculated the distance matrix that will be used by the 
clustering algorithm (right-most).

Figure 13.   Visual interpretation of TX . In this illustration, the transition index of a country X calculates the 
distance from its current cluster Cp to its closest one Cq . For example, if this ratio increases in the next time 
window, the chance of moving X to Cq is greater. The dendrogram clades α , β , and γ are used to calculate TX . 
This figure was generated by using the software Inkscape 1.0.2 available at https://​www.​inksc​ape.​org.

https://www.inkscape.org
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lates the height between the lower (clade β ) and greater (clade γ ) groups by using |γ − β| . Thus, one can identify 
whether a given country X has been moving out Cp towards Cq or the opposite, for p  = q.

This ratio is defined in Eq. (2), in which function d is DTW and the groups Cp and Cq were built upon the 
average-link criterion (Eq. 1). With this, we draw conclusions on country transitions to understand infection 
trends, being specially useful to highlight new contamination waves.

Data availability
An online system with our analyses is available at https://​github.​com/​ricar​doari​os/​hcti. The dataset and source 
codes used to produce the findings of this study can be found at http://​dx.​doi.​org/​10.​17632/​7tyw5​d3ccm.2, an 
open-source online data repository hosted at Mendeley Data-Rios, Ricardo; Nogueira, Tatiane; Coimbra, Danilo; 
Lopes, Tiago; Abraham, Ajith; Mello, Rodrigo (2020), “Artificial Intelligence to Model the COVID-19 Country 
Infection Trends”, Mendeley Data, V2.
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