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Abstract

Immune checkpoint blockade has emerged as an effective therapeutic strategy for patients with 

advanced cancer. Identification of biomarkers associated with treatment efficacy will help to select 

patients more likely to respond to this approach. High levels of microsatellite instability, tumor 

expression of PD-L1, high tumor mutation burden, and increased tumor infiltrating lymphocytes 

have all been associated with response to checkpoint inhibitor blockade. The purpose of this study 

was to determine if a subset of microsatellite stable endometrioid endometrial carcinomas have 

higher immune cell infiltrates and/or expression of PD-L1. PD-L1 expression and characterization 

of immune cell infiltrates were analyzed in 132 microsatellite stable, FIGO grade 2 endometrioid 

carcinomas. PD-L1 was positive in 48% (63/132) of the tumors. Tumor cell expression of PD-L1 

was significantly associated with lymphatic/vascular invasion and deep myometrial invasion. PD-

L1 expression was especially prominent at the invasive front and in foci of tumor-associated 

squamous metaplasia. Twenty-one cases (16% of the total) with more diffuse and/or especially 

strong PD-L1 expression were identified. This PD-L1 high subset was associated with 

significantly higher numbers of tumor-associated CD3+ and CD8+ lymphocytes. Only one tumor 

in the PD-L1 high subset harbored a POLE mutation. PTEN immunohistochemical loss, a 

common event in endometrioid-type endometrial carcinoma and associated with local immune 

suppression in melanoma, was not associated with PD-L1 expression or lymphocyte/macrophage 

infiltration of the tumor. These results suggest that a subset of microsatellite-stable endometrial 
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cancers has higher expression of PD-L1 and increased tumor-associated CD3+ and CD8+ 

lymphocytes, characteristics more commonly associated with endometrial cancers with high levels 

of microsatellite instability. These results suggest that screening strategies to select only 

microsatellite instability-high advanced endometrial cancers for checkpoint inhibitor therapy 

might exclude patients who could potentially benefit from this therapeutic approach.
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Introduction

Endometrial cancer can be classified into four molecular clusters, including the ultramutated 

(characterized by mutation in the gene polymerase epsilon, POLE), hypermutated 

(characterized by high levels of microsatellite instability), copy number low (characterized 

by absence of POLE and TP53 mutations and absence of microsatellite instability-high), and 

copy number high (characterized by presence of TP53 gene mutations) clusters (1). Two of 

these groups (POLE and microsatellite instability-high) are associated with a high predicted 

mutational load. The neoantigens generated by the high mutational load in these tumors have 

been shown to elicit a more robust host immune response (2, 3). Both of these groups are 

associated with higher tumor-associated immune cells than the tumors in the microsatellite-

stable group (2–5). Similarly, PD-L1 expression has been demonstrated to be higher in 

mismatch repair-deficient endometrial carcinomas compared to mismatch repair intact 

tumors (4–6). Therefore, much of the attention of immunotherapy research and clinical trials 

has focused on the microsatellite instability-high and POLE-mutated tumors (4–7).

While microsatellite instability is routinely measured in many clinical pathology 

laboratories, POLE is not commonly interrogated by most clinically available next-

generation sequencing hotspot panels. Quantifying tumor mutation burden typically requires 

whole exome sequencing or, at the very least, a sequencing panel of several hundred genes. 

Thus, most clinical labs lack effective means to assess tumor mutation burden. A 

complicating issue is that not all tumors with high mutation burdens have POLE mutation or 

high levels of microsatellite instability (8). For endometrial cancer, it was recently shown 

that elevated predicted neoantigen load was associated with better prognosis in the TCGA 

copy number low endometrioid group and in the copy number high serous-like group; 

neither of these groups is associated with POLE mutation or microsatellite instability-high 

(9). These results suggest that in addition to the POLE mutated and microsatellite instability-

high endometrial cancers, there are specific subsets of hypomutated endometrial cancer that 

may be more immunogenic and have improved outcomes and potentially better response to 

immunotherapy. Therefore, the purpose of the current study was to determine if a subset of 

microsatellite-stable/mismatch repair intact endometrial cancers exhibit increased tumor cell 

expression of PD-L1 expression and an immune microenvironment with increased numbers 

of tumor associated immune cells.
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Materials and Methods

Patient Selection

The study was approved by the University of Texas MD Anderson Cancer Center’s 

institutional review board (Protocol LAB01–718). Retrospective review from January 1, 

2013 – May 5th, 2016 revealed 382 consecutive cases of endometrial carcinoma with 

available tissue that had previously been tested for DNA mismatch repair protein 

immunohistochemistry and/or microsatellite instability. It has been shown that endometrial 

tumor histology can influence PD-L1 expression, with higher expression observed in grade 3 

endometrioid and non-endometrioid histologies (10). To minimize any possible variation in 

immune cell infiltrate that could be attributed to the histotype or grade of tumor, we selected 

for further examination FIGO grade 2 endometrioid carcinomas, as this was the most 

common histotype. A total of 132 microsatellite-stable, FIGO grade 2 endometrial 

endometrioid cancers with intact immunohistochemical expression of MLH1, MSH2, 

MSH6, and PMS2 were identified for further study (Figure 1). Tumor histotype was verified 

by light microscopic examination of H&E stained slides. Clinical and pathological variables, 

including, patient age, tumor size, myometrial invasion (less than or greater than 50%), 

lymphovascular space invasion, and tumor stage, were derived from the electronic medical 

record and pathology reports.

Assessment of DNA mismatch repair

Mismatch repair protein and microsatellite instability testing were performed according to 

methodology previously described (11). Immunohistochemistry of mismatch repair proteins 

was performed using standard techniques for MLH1 (G168–15 1:25; BD Biosciences 

Pharmingen), MSH2 (FE11, 1:100; Calbiochem), MSH6 (44, 1:300; BD Biosciences 

Pharmingen), and PMS2 (Alb-4, 1:125; BD Biosciences Pharmingen). 

Immunohistochemistry was scored as mismatch repair protein intact or deficient using light 

microscopic examination. Complete absence of mismatch repair protein expression was 

required in order for a case to be designated as mismatch repair deficient. Stromal cells 

served as an internal positive control. PCR-based microsatellite instability analysis was 

performed using 7 microsatellites (TGFBR2 and the 6 National Cancer Institute 

recommended microsatellites, BAT25, BAT26, BAT40, D2S123, D5S346, and D17S250). A 

tumor was considered microsatellite instability-high if three or more of the seven markers 

demonstrated allelic shift. Tumors without allelic shift were designated as microsatellite 

stable.

Immunohistochemistry

Immunohistochemistry was performed on a Leica Bond autostainer with the following 

antibodies and 3,3’-diaminobenzidine chromogen: CD3 (Dako AO452, 1:100), CD8 (Life 

Sciences Technology MS457s, 1:25), CD68 (Dako PG-M1, 1:450), programmed death 

ligand-1 (PD-L1; Cell Signaling Technology 13684S, clone E13N, 1:100), PTEN (Dako, 

clone 6H2.1, 1:100), p53 (Dako, clone D0–7, 1:100), and β-catenin (BD Biosciences, clone 

14, 1:1500). Immunohistochemistry for PTEN, PD-L1, p53, and β-catenin was assessed by 

light microscopic examination. PTEN staining was classified as positive, negative, or 

heterogeneous, with adjacent stromal cells serving as an internal positive control (12; Figure 
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1). PD-L1 expression was characterized in tumor cells and classified as 1+ (faint), 2+ 

(moderate), and 3+ (strong) as well as the percentage of positive staining present. A 

subgroup of cases with either 2% or greater percentage of staining in the tumor and/or 3+ 

tumor positivity was considered as the “tumor PD-L1 high positive” subgroup. We focused 

primarily on PD-L1 expression in tumor cells, rather than expression in stroma or tumor-

associated inflammatory cells, as tumor cell PD-L1 expression is associated with response to 

anti-PD-1 therapy (13), and there is poor inter-observer agreement for interpretation of PD-

L1 in tumor-associated immune cells (14). This PD-L1 antibody clone (E13N) has been 

recently shown to have comparable performance characteristics as the FDA-approved 

companion diagnostic assays employing clones 22c3 and 28–8 (14). Any nuclear expression 

of β-catenin by light microscopy is highly associated with the presence of an exon 3 

CTNNB1 gene mutation (15). For p53 immunohistochemistry, scattered nuclear staining in 

the tumor is correlated to TP53 gene wildtype, while strong, diffuse nuclear expression or 

complete lack of nuclear staining is associated with TP53 gene mutation (summarized for 

endometrial cancer in 16).

Tumor-associated immune cell infiltrate analysis

Immunohistochemistry with antibodies for CD3 (lymphocytes), CD8 (lymphocytes), and 

CD68 (macrophages) was used to determine the composition, density, and distribution of the 

tumor-associated immune cell infiltrates. Immunohistochemical stained slides were analyzed 

using image analysis software (Aperio ImageScope) in order to quantify the number of 

positive cells within designated areas. Slides were scanned at 20X (Aperio Scanscope AT 

Turbo; Leica Biosystems) utilizing methods previously described (17). The areas of highest 

positive cell density for each immune cell marker were identified by placement of five 1 

mm2 boxes in the center of the tumor and along the periphery/leading edge of the tumor 

(Figure 2). The periphery/leading edge of the tumor was defined as +/− 1 mm from the 

invasive tumor front (if present) or +/− 1 mm from the endometrial-myometrial interface. 

The center of the tumor was defined as the area greater than 1 mm towards the luminal 

aspect from the endometrial-myometrial interface or invasive tumor front (Figure 2). 

Therefore, for both the tumor periphery and center, a total of 5 mm2 areas containing the 

highest density of CD3-, CD8-, or CD68- positive cells were identified. The single highest 

density box among these was designated as the hotspot for each immune cell marker. 

“Overall” was defined as the combined sum of the positive cells tabulated along the tumor 

periphery and within the tumor center. For each region (periphery, center, hotspot, and 

overall), the number of total positive cells was added and divided by the total area (mm2) in 

which the cells were counted. The results for CD3, CD8, and CD68 were reported as 

number of positive cells/mm2.

POLE Mutational Analysis

The cases designated as tumor PD-L1 high (n=21) were tested by Sanger sequencing for 

mutation in the exonuclease domain of DNA polymerase ε (POLE; exons 9–14) (18). 

Microdissected sections from formalin-fixed, paraffin-embedded tumor were used for 

sequencing. DNA was extracted using the Pico Pure DNA extraction kit (Applied 

Biosystems).
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Statistical Analysis

Demographic and clinical characteristics for all patients were summarized with descriptive 

statistics. Characteristics were compared by tumor PD-L1 status (negative vs. positive; 

negative vs high positive). Wilcoxon rank-sum test was used to compare continuous 

variables, and chi –squared or Fisher’s exact test was used to compare categorical variables. 

A Bonferroni correction was used to control the false discovery rate within each of the main 

comparisons. Statistical significance threshold was defined at 0.0025 (0.05/20). All 

statistical analyses were conducted using Stata v14.1 (College Station, TX).

Results

The clinical and pathological characteristics for the 132 cases of mismatch repair intact 

endometrial endometrioid adenocarcinoma, FIGO Grade 2, are summarized in Table 1. The 

median patient age was 60 years. The majority of patients presented with early stage disease 

(stage I or II, 89% of patients).

PD-L1 was positive in 48% (63/132) of the tumors. The majority of cases had weaker 1–2+ 

PD-L1 staining (55/63, 87%) and/or PD-L1 staining was very focal, staining 1% of the 

tumor (43/63, 68%). Tumor cell expression of PD-L1 was associated with deeper 

myometrial invasion and the presence of lymphatic/vascular space invasion in the 

hysterectomy (Table 2). Both advanced tumor stage (p=0.012) and PTEN loss (p=0.012) 

showed trends towards being associated with PD-L1 expression, but these differences were 

not statistically significant given the threshold of 0.0025 to control for false discovery with 

multiple comparisons (Table 2).

Despite controlling for endometrial cancer histotype (endometrioid), grade (FIGO 2), and 

having comparable mean patient ages for PD-L1 negative and PD-L1 positive groups, a 

broad spectrum of CD3+, CD8+, and CD68+ expression within the tumor was encountered. 

In general, CD3+ or CD8+ lymphocytes comprised most of the tumor-associated immune 

cell infiltrate, with smaller numbers of CD68+ macrophages (Table 2). The numbers of 

lymphocytes and macrophages did not differ significantly when comparing tumor center to 

tumor periphery (Table 2). Tumor cell expression of PD-L1 was not associated with 

significant differences in CD3+ or CD8+ tumor-associated lymphocytes, although the PD-

L1 positive group showed trends towards higher numbers of these lymphocytes (Table 2). 

The number of CD68+ tumor-associated macrophages did not differ significantly according 

to PD-L1 expression (Table 2). Independent of PD-L1 expression, the presence of 

myometrial invasion, myometrial invasion ≥50% myometrial thickness, and lymphatic/

vascular space invasion were not associated with significant changes in CD3+, CD8+, or 

CD68+ immune cell composition (data not shown).

Tumor cell expression of PD-L1 was especially prominent in foci of tumor squamous 

metaplasia, foci of myometrial invasion, and foci of lymphatic/vascular space invasion 

(Figure 2 C, D). When present, squamous differentiation appeared to be more strongly 

associated with PD-L1 expression. Absence of squamous differentiation was noted in 74% 

of the PD-L1 negative cases, but only in 29% of the PD-L1 positive cases. A subset of 

tumors (21/63 PD-L1 positive cases, 33%; 21/132 total cases, 16%) had higher PD-L1 
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expression, characterized as either increased percentage of tumor cells positively staining or 

the presence of 3+ staining intensity. Sixteen of 63 cases (25%) had 2–5% of tumor staining, 

3 cases (5%) had 6–20% of tumor staining, and 1 case (2%) had 75% of tumor staining. One 

case with 1% of tumor staining positive for PD-L1 was included in the PD-L1 high subset 

because it had stronger intensity of staining (3+) in tumor cells. Only 10% of the tumors in 

the PD-L1 high subset lacked squamous differentiation, and in 86% of the PD-L1 high 

tumors the squamous portion was positive for PD-L1. Presence of PD-L1 high was 

associated with significantly increased CD3+ and CD8+ lymphocytes in the tumor hotspot 

and significantly increased CD3+ lymphocytes in the tumor periphery compared to PD-L1 

negative cases (Table 3). The number of CD68+ macrophages was not significantly different 

between PD-L1 high and PD-L1 negative cases (Table 3). Higher levels of PD-L1 were not 

significantly associated with any of the other clinical or pathological variables studied (Table 

3).

POLE mutation has been previously associated with increased tumor infiltrating 

lymphocytes (4). We hypothesized that because of its association with higher CD3+ and 

CD8+ lymphocytes, the PD-L1 high subset would be enriched with tumors with POLE 
mutation. However, only 1 mutation, a POLE exon 9 mutation, was identified in the PD-L1 

high subset. This case was from a 60 year-old patient with a stage I, grade 2 endometrioid 

carcinoma with less than 50% myometrial invasion. Microscopically, this tumor did not have 

distinct features. Lymphatic/vascular space invasion was absent, and there was no metastasis 

in 12 surgically resected lymph nodes or the omentum. The tumor had 3+ strength of tumor 

staining for PD-L1 in approximately 3% of the tumor cells. The number of CD3+, CD8+, 

and CD68+ cells were not significantly higher in the one POLE mutant tumor compared to 

the POLE wildtype tumors (data not shown).

Higher expression of PD-L1 has been observed in grade 3 endometrioid and non-

endometrioid carcinomas (10). As these histotypes are associated with TP53 gene mutation 

and/or immunohistochemistry patterns suggestive of TP53 gene mutation, we speculated 

that the PD-L1 high subset was enriched with tumors with TP53 gene mutation. However, 

all of the 21 tumors in this subset had scattered, weak nuclear expression of p53, associated 

with TP53 gene wildtype (data not shown). Seven of the 21 tumors in the PD-L1 high subset 

had nuclear localization of β-catenin, associated with CTNNB1 gene mutation. The CD3+, 

CD8+, and CD68+ immune cell infiltrates in these 7 tumors were not significantly different 

compared to the 14 PD-L1 high cases without nuclear β-catenin (data not shown).

PTEN loss is one of the most common molecular events in endometrioid-type endometrial 

carcinoma (12). In the 132 carcinomas examined in this study, 45% had PTEN protein loss 

by immunohistochemistry (Table 1). In melanoma, PTEN loss is associated with fewer 

CD8+ lymphocytes at the tumor site, decreased T-lymphocyte-mediated cell death, and 

decreased response to PD-1 blockade (19). In the current study, PTEN loss was not 

significantly associated with expression of PD-L1 or PD-L1 high (Tables 2 and 3). 

Independent of tumor PD-L1 status, there were no significant differences in numbers of 

CD3+ lymphocytes, CD8+ lymphocytes, or CD68+ macrophages in PTEN positive vs. 

PTEN negative tumors (Table 4).
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Discussion

Efforts to identify biomarkers associated with endometrial cancer patients most likely to 

respond to immune based therapeutic approaches are important. Endometrial cancer is the 

most common gynecologic malignancy, with an estimated 63,230 new diagnoses in 2018 

(20). In contrast to many other common cancer types, incidence and annual deaths from 

endometrial cancer are increasing (20,21). There are few therapeutic options for women with 

advanced or recurrent endometrial cancer, and no new agents have been approved in the past 

few decades (22,23). Therefore, immune-based approaches, in carefully chosen patients, 

have the potential to make a real impact in this disease.

In this study, we identified a subset (16%) of microsatellite-stable, mismatch repair intact 

endometrioid type endometrial carcinomas with increased tumor PD-L1 

immunohistochemical staining (PD-L1 high positive subgroup). The tumors with increased 

tumor PD-L1 expression also showed increased numbers of CD3+ and CD8+ lymphocytes. 

This PD-L1 high group was not enriched with POLE mutations. These findings support the 

idea proposed by Shukla et al. (9) that there is a subset of POLE wildtype, mismatch repair 

intact endometrial cancers with increased tumor-associated lymphocytes. As yet unknown 

molecular mechanisms may underlie the recruitment of immune cells to these particular 

endometrioid carcinomas. Data from immunotherapy clinical trials will be necessary to 

determine if this subset is also more responsive to this therapeutic approach.

Although PD-L1 expression has been shown to be more frequent in microsatellite 

instability-high/POLE-mutated endometrial cancer (4–6, 10), PD-L1 staining has also been 

reported in microsatellite-stable endometrial carcinoma. In recent studies, the reported 

percentage of mismatch repair intact endometrial carcinomas with tumor cell expression of 

PD-L1 ranged from 4–20% (4, 5, 10); this range is comparable to the percentage of PD-L1 

high (16%) in the current study. The variable percentage of cases positive for PD-L1 may be 

due to varying methodologies, including different PD-L1 antibodies, inclusion of 

endometrioid versus non-endometrioid histologies, stochastic geographic differences in PD-

L1 expression, as well as tissue sampling by microarray versus full tissue sections. To keep 

tumor histology constant, the current study only included patients with FIGO grade 2 

endometrioid endometrial carcinomas. It has been previously shown that lower grade 

endometrioid tumors have lower PD-L1 expression compared to grade 3 endometrioid 

carcinomas and non-endometrioid carcinomas (10). The detection of any tumoral staining 

was higher in the current study (48%) as compared to these previous studies. This may be 

due, in part, to the fact that full tissue sections of tumor were used in the current study, as the 

staining by PD-L1 can be very focal (1% tumor cells positive in the majority of cases in this 

study). Given that we frequently observed positive PD-L1 tumor staining in the invasive 

front, inclusion of the periphery/invasive front should be considered if tissue microarray 

analyses are performed. Overall, the focal and weak PD-L1 staining in the majority of cases 

of mismatch repair intact endometrial cancers in our study is consistent with the results of 

previous published work.

The immunohistochemical expression characteristics of PD-L1 identified in this study 

provide useful insight into the staining pattern in endometrial cancer. Cancers with 
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metaplastic changes, such as squamous metaplasia, were noted to have increased PD-L1 

staining (Figure 2). Tumor PD-L1 positivity was frequently noted in the invasive front in the 

tumor PD-L1 high subgroup. In addition, staining was noted more frequently in cases with 

lymphatic/vascular space invasion, which was also previously reported (10). This raises the 

possibility that the microcystic elongated fragmented pattern of endometrial cancer invasion 

(24) could be associated with PD-L1 expression, due to its morphologic associations with 

metaplastic changes and lymphatic/vascular space invasion. The current study was not 

optimally designed to examine any possible association between PD-L1 and this distinctive 

invasive pattern, as only 5% of the 132 endometrial cancers examined showed this invasion 

pattern. This relatively low percentage is likely due to the fact that 99/132 (75%) of the cases 

included in this study had no myometrial invasion or less than 50% myometrial thickness 

invasion (stage IA). The PD-L1 high subset was not associated with aberrant p53 tumor 

expression. Nuclear translocation of β-catenin did not preferentially occur in the PD-L1 high 

subset. Thus, other than the presence of squamous metaplasia, which is very common in 

endoometrioid carcinomas, and increased numbers of CD3 positive and CD8 positive 

lymphocytes, this PD-L1 high subset does not have distinctive clinical or pathological 

features. Based on these results, this subset would reside in the copy number-low TCGA 

group of endometrial cancers, which is the largest group (1).

Tumors with POLE mutation, high levels of microsatellite instability, or high tumor 

mutation burden all seem to have in common a higher tumor associated immune cell 

infiltrate. This is important, as evidence suggests that increased tumor associated immune 

cells is associated with better survival and improved responses to checkpoint inhibitor 

therapy. In a mouse model of melanoma, pre-treatment with a PI3Kβ inhibitor resulted in 

increased tumor T lymphocytes and improved responses to anti-CTLA-4 and anti-PD-1 

therapy (19). Responders to PD-1 blockade have significantly increased density in CD3+, 

CD8+, and CD45RO+ T lymphocytes in melanoma (25). In colorectal adenocarcinoma, 

higher intra-tumoral CD8+ T cells are associated with objective response to pembrolizumab 

(7). Higher expression in the tumor of CD8 mRNA is associated with higher PD-L1 mRNA 

expression and significantly increased survival in endometrioid-type endometrial carcinoma 

(26). It has been argued that both increased tumor associated lymphocytes and increased PD-

L1 expression on tumor cells are necessary for optimal response to checkpoint inhibitor 

blockade (13).

An emerging area of study is the concept that tumor associated mutations may act as 

molecular modifiers of immune cell function. PTEN loss has been shown to be associated 

with decreased CD8+ immune cells and resistance to anti-PD-1 therapy in melanoma (19). 

PTEN loss does not seem to be associated with increased PD-L1 expression in melanoma 

(19). It was proposed that PTEN loss and PD-L1 expression were occurring due to two 

separate mechanisms that evolved independently to influence the immune 

microenvironment. An association with PTEN loss and PD-L1 expression has been reported 

in other tumor types such as glioblastoma multiforme and colorectal cancer (27). In the 

current study, PTEN loss had no statistically significant impact on PD-L1 expression or the 

density of CD3, CD8, and CD68 tumor associated immune cells. This suggests that 

molecular modifiers of the local tumor immune response may be tumor type-specific. Using 

a pan-cancer analytic approach, tumor driver mutations in CTNNB1, NRAS, and IDH1 have 
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been associated with lower levels of immune cells in tumors (28). NRAS and IDH1 
mutations are uncommon in endometrial cancer, but CTNNB1 mutation occurs in 

approximately 20% of endometrioid endometrial carcinomas and has been associated with 

decreased recurrence-free survival (29,30). Activation of the Wnt/β-catenin pathway in 

melanoma is associated with local immune suppression (31). Such a mechanism of local 

immune suppression by CTNNB1 mutation or activation of the Wnt/β-catenin pathway has 

not yet been described for endometrial cancer, but it could explain, at least in part, the worse 

survival in this group of patients.
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Figure 1. 
Schematic overview of study design. A total of 382 endometrial cancers were tested for 

mismatch repair immunohistochemistry and/or PCR-based microsatellite instability analysis. 

From this group, 132 FIGO grade 2, microsatellite-stable endometrial cancers with intact 

expression of mismatch repair proteins were identified. PD-L1, PTEN, CD3, CD8, and 

CD68 immunohistochemical analyses were performed in this set of tumors.
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Figure 2. 
Photomicrographs demonstrating approach for quantification of tumor-associated 

lymphocytes and macrophages (A and B) and representative examples of PD-L1 expression 

in endometrioid endometrial adenocarcinoma (C and D). A. Representative H&E of an 

endometrial cancer to demonstrate definitions of tumor center and periphery. B. 

Quantification of CD3+, CD8+, and CD68+ cells in the tumor center and periphery was 

performed using Aperio whole slide imaging software. Five 1 mm2 boxes were placed at the 

tumor center (yellow boxes) and periphery (green boxes) in the areas of highest staining 

density by morphologic examination. Following quantification of positive cells in each box, 

mean positive cells/mm2 was calculated for the tumor center and periphery. C. Positive PD-

L1 expression in the invasive front of an endometrial cancer. D. Positive PD-L1 expression 

in foci of squamous metaplasia in an endometrial cancer.
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Table 1.

Clinical and Pathological Characteristics of Mismatch Repair Intact Endometrial Carcinoma Cohort

Characteristics (n=132) Value

Age, median (range), years 60 (27-88)

Tumor size*, median (range), mm 35 (10-145)

FIGO tumor stage, n (%)

 I 112 (85)

 II 5 (4)

 III 13 (10)

 IV 2 (1)

Any myometrial invasion, n (%)

 Yes 95 (72)

 No 37 (28)

Myometrial invasion ≥50%, n (%)

 Yes 30 (23)

 No 102 (77)

Lymphovascular space invasion, n (%)

 Yes 30 (23)

 No 102 (77)

Metastasis to pelvic lymph nodes, n (%)

 Yes 11 (8)

 No 77 (58)

 Lymph node dissection not performed 44 (33)

Metastasis to para-aortic lymph nodes, n (%)

 Yes 5 (4)

 No 46 (35)

 Lymph node dissection not performed 81 (61)

PTEN immunohistochemistry

 Positive 65 (49)

 Heterogeneous 8 (6)

 Negative 59 (45)
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Table 2.

Clinical and Pathological Characteristics Associated with Tumor PD-L1 Positivity in Mismatch Repair Intact 

Grade 2 Endometrial Endometrioid Adenocarcinoma

Variable Tumor PD-L1 negative
(69/132; 52%)

Tumor PD-L1 positive
(63/132; 48%) p-value

Age, n, years

 Mean (SD) 59 (12) 59 (11)
0.857

 Median (Minimum-Maximum) 60 (27-82) 60 (30-88)

Tumor size (mm), n (%)

 Mean (SD) 43 (26) 47 (27)

0.202 Median (Minimum- Maximum) 35 (13-127) 43 (10-145)

Tumor stage, n (%)

 I or II 66 (96) 51 (81)
0.012

 III or IV 3 (4) 12 (19)

Any myometrial invasion, n (%)

 Yes 44 (64) 51 (81)
0.028

 No 25 (36) 12 (19)

Myometrial invasion present and ≥50%, n (%)

 Yes 7 (16) 23 (45)
0.002

 No 37 (84) 28 (55)

 Not applicable (no myometrial invasion) 25 12

LVSI, n (%)

 Yes 8 (12) 22 (35)
0.001

 No 61 (88) 41 (65)

Metastasis to pelvic lymph nodes, n (%)

 Yes 2 (5) 9 (18)
0.105

 No 36 (95) 41 (82)

Metastasis to para-aortic lymph nodes, n (%)

 Yes 0 5 (15)
0.156

 No 17 (100) 29 (85)

PTEN IHC, n (%)

 Positive 42 (61) 23 (37)

0.012 Heterogeneous 2 (3) 6 (10)

 Negative 25 (36) 34 (54)

CD3 (mean cells/mm2, SD)

 Overall 800 (470) 989 (642) 0.110

 Hotspot 1287 (688) 1647 (622) 0.024

 Periphery 729 (436) 1087 (746) 0.003

 Center 811 (516) 920 (627) 0.367

CD8 (mean cells/mm2, SD)

 Overall 398 (293) 571 (548) 0.137

 Hotspot 652 (441) 950 (733) 0.017

 Periphery 383 (275) 654 (604) 0.010
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Variable Tumor PD-L1 negative
(69/132; 52%)

Tumor PD-L1 positive
(63/132; 48%) p-value

 Center 379 (319) 508 (548) 0.323

CD68 (mean cells/mm2, SD)

 Overall 176 (158) 179 (116) 0.315

 Hotspot 286 (241) 308 (182) 0.118

 Periphery 157 (152) 179 (120) 0.058

 Center 193 (183) 183 (131) 0.696
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Table 3.

Clinical and Pathological Characteristics Associated with High Tumor PD-L1 Positivity in Mismatch Repair 

Intact Grade 2 Endometrial Endometrioid Adenocarcinoma

Variable Tumor PD-L1 negative
(69/132; 52%)

Tumor PD-L1 high positive
(21/132; 16%) p-value

Age in years

 Mean (SD) 59 (12) 56 (12)
0.260

 Median (Minimum-Maximum) 60 (27-82) 59 (30 – 77)

Tumor size (mm)

 Mean (SD) 43 (26) 35 (17)

0.355 Median (Minimum- Maximum) 35 (13-127) 31(12-75)

Tumor stage, n (%)

 I or II 66 (96) 18 (86)
0.735

 III or IV 3 (4) 3 (14)

Any myometrial invasion, n (%)

 Yes 44 (64) 18 (86)
0.065

 No 25 (36) 3 (14)

Myometrial invasion present and ≥50%, n (%)

 Yes 7 (16) 8 (44)
0.017

 No 37 (84) 10 (56)

 Not applicable (no myometrial invasion) 25 3

LVSI, n (%)

Yes 8 (12) 8 (38)
0.005

 No 61 (88) 13 (62)

Metastasis to pelvic lymph nodes, n (%)

 Yes 2 (5) 3 (18)
0.165

 No 36 (95) 14 (82)

Metastasis to para-aortic lymph nodes, n (%)

 Yes 0 2 (18)
0.146

 No 17 (100) 9 (82)

PTEN IHC, n (%)

 Positive 42 (61) 8 (38)

0.148 Heterogeneous 2 (3) 1 (5)

 Negative 25 (36) 12 (57)

CD3 (mean cells/mm2, SD)

 Overall 800 (470) 1174 (724) 0.014

 Hotspot 1287 (688) 1963 (895) 0.001

Periphery 729 (436) 1214 (749) 0.002

 Center 811 (516) 1134 (766) 0.066

CD8 (mean cells/mm2, SD)

 Overall 398 (293) 804 (755) .017

 Hotspot 652 (441) 1233 (859) 0.001

 Periphery 383 (275) 882 (782) 0.003
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Variable Tumor PD-L1 negative
(69/132; 52%)

Tumor PD-L1 high positive
(21/132; 16%) p-value

 Center 379 (319) 720 (782) 0.073

CD68 (mean cells/mm2, SD)

 Overall 176 (158) 170 (106) 0.650

 Hotspot 286 (241) 287 (159) 0.499

 Periphery 157 (152) 171 (109) 0.231

 Center 193 (183) 170 (118) 0.963
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Table 4.

Effect of PTEN status on Tumor-Associated Immune Cell Infiltrates

Variable Tumor PTEN Negative
(59/132; 45%)

Tumor PTEN Positive/Heterogeneous
(73/132; 55%) p-value

CD3 (mean cells/mm2, SD)

 Overall 879 (556) 899 (575) 0.967

 Hotspot 1466 (777) 1454 (868) 0.714

 Periphery 908 (575) 900 (678) 0.517

 Center 846 (588) 879 (562) 0.643

CD8 (mean cells/mm2, SD)

 Overall 462 (411) 495 (464) 0.969

 Hotspot 781 (596) 803 (631) 0.998

 Periphery 507 (472) 526 (500) 0.844

 Center 413 (404) 464 (481) 0.912

CD68 (mean cells/mm2, SD)

 Overall 194 (159) 163 (119) 0.332

 Hotspot 324 (232) 274 (196) 0.175

 Periphery 182 (144) 156 (130) 0.219

 Center 204 (182) 175 (137) 0.560
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