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Human beings are now facing one of the largest public health crises in history with
the outbreak of COVID-19. Traditional drug discovery could not keep peace with
newly discovered infectious diseases. The prediction of drug-virus associations not only
provides insights into the mechanism of drug–virus interactions, but also guides the
screening of potential antiviral drugs. We develop a deep learning algorithm based on the
graph convolutional networks (MDGNN) to predict potential antiviral drugs. MDGNN is
consisted of new node-level attention and feature-level attention mechanism and shows
its effectiveness compared with other comparative algorithms. MDGNN integrates the
global information of the graph in the process of information aggregation by introducing
the attention at node and feature level to graph convolution. Comparative experiments
show that MDGNN achieves state-of-the-art performance with an area under the curve
(AUC) of 0.9726 and an area under the PR curve (AUPR) of 0.9112. In this case
study, two drugs related to SARS-CoV-2 were successfully predicted and verified by
the relevant literature. The data and code are open source and can be accessed from
https://github.com/Pijiangsheng/MDGNN.

Keywords: antimicrobial drug prediction, graph convolution networks (GCN), heterogeneous network (Het-Net),
representation learning, SARS-CoV-2

INTRODUCTION

Microorganisms are the unicellular or multicellular organisms, which include bacteria, archaea,
viruses, protists, and fungi (Human Microbiome Project Consortium, 2012; Sommer and Bäckhed,
2013). Microbes sometimes can protect the human body from lethal pathogens, improve
metabolism, and strengthen the immune system of the host (Ventura et al., 2009). On the other
hand, the imbalance of the microbial community may cause a wide range of human diseases, such as
obesity (Zhang et al., 2009), diabetes (Wen et al., 2008), rheumatoid arthritis (Lynch and Pedersen,
2016), and even cancer (Schwabe and Jobin, 2013).

As a novel coronavirus, SARS-CoV-2 has caused an unprecedented public health crisis recently.
New variants of SARS-CoV-2 with the enhanced transmissibility are emerging globally. Traditional
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drug development could not keep pace with threats from
the fast-spreading SARS-CoV-2 and its variants, because of
the complexity, high cost, and long experiment period of the
traditional drug discovery process. The world needs to speed up
the drug discovery process for COVID-19.

With the recent development of deep learning, especially the
graph neural networks, more and more researchers have begun to
try to find solutions based on the deep learning for their biological
problems (Shamshirband et al., 2021; Zhang et al., 2021), such
as drug interaction identification (Deng et al., 2020; Lin et al.,
2020), protein function prediction (Gligorijević et al., 2021), virus
classification (Deif et al., 2021), and disease-genes association
prediction (Shu et al., 2021), etc. These studies show the potential
of graph representation learning in biological questions.

In the research on microorganisms, there is a large amount
of known information about the action of microorganisms
and drugs, the genetic information of microorganisms, and the
molecular formula information of small molecule drugs. We
can use calculation-based methods to process these data to
predict the possibility of interaction between microorganisms
and drugs. This prediction allows us to initially screen out
related therapeutic drugs for microorganisms that cause diseases,
thereby speeding up the development of specific drugs for
related diseases.

For microbial-drug association prediction, there are also
several reported methods based on the graph representation
algorithms. For example, Zhu et al. (2019) propose a method to
predict human microbe-drug association, which is named
Human Microbe-Drug Association by KATZ measure
(HMDAKATZ). HMDAKATZ predicts possible drug-microbe
associations using chemical similarity of drugs based on the
Gaussian kernel similarity. Long et al. propose a Heterogeneous
Network Embedding Representation framework for Microbe-
Drugs Association prediction (HNERMDA) (Long and Luo,
2020). HNERMDA predicts drug-microbe association by
heterogeneous graph neural network. Long et al. proposed
a graph convolutional network (GCN)-based framework
for predicting human microbe-drug associations, named
GCNMDA (Long et al., 2020a). GCNMDA predicts drug-
microbe association by introducing microbial protein interaction
and chemical similarity of drugs. Long et al. propose a
framework of heterogeneous graph attention networks to predict
the association between drug and microbe (HGATDVA) (Long
et al., 2020b). HGATDVA predicts drug-microbe associations
by introducing a network of protein interactions between
drug targets and microbial hosts. All of these previously
reported methods first construct a heterogeneous network
with microorganisms and drugs as nodes and then use some
network representation methods to get the feature vectors of
nodes in the heterogeneous network. For the prediction of
the potential association between microorganisms and drugs,
a common approach is to first build an action network with
a variety of biological information, such as the interaction
network between microorganisms and drugs. Then, the graph
representation learning algorithm is used to learn node vector
representation from the biological interaction network. Finally,
the node representation vector obtained by the algorithm is

used to predict the probability of potential association between
microorganisms and drugs.

Human Microbe-Drug Association by KATZ measure is the
first algorithm used to predict potential links between microbes
and drugs. In this method, the graph kernel similarity of
microorganisms was calculated based on the known conditions
to construct the microbial similarity network. Then, the
drug similarity network was constructed according to the
chemical structure similarity of drugs. By integrating the
existing data of microbiota and drug association, a biological
network with microbe and drug can be obtained. The KATZ
algorithm was then used on this biological network to predict
potential associations between microbes and drugs. HNERMDA
is a method based on metapath2vec (Dong et al., 2017)
to learn the node representation vector of microorganisms
and drugs. By constructing an interaction network between
microorganisms and drugs, it utilizes metapath2vec to learn
their node representation vectors. Then, in the downstream
prediction task, the bipartite graph recommendation algorithm
with bias is used to predict the potential association between
microorganisms and drugs. GCNMDA is a method that uses
graph convolutional networks (GCNs) (Kipf and Welling,
2017) to learn node representation in heterogeneous biological
networks composed of microorganisms and drugs, obtaining
node representation vectors of microorganisms and drugs for
the downstream prediction of potential drugs. Host protein
information was introduced into the HGATDVA to construct
two heterogeneous biological networks: One is a biological
network composed of two isomeric nodes of microorganism
and drug, and the other is a biological network composed of
three isomeric nodes of microorganism, host protein, and drug.
During node representation learning, graph attention networks
(GAT) (Velickovic et al., 2018) were used to learn network
representation of two biological networks, respectively, and two
sets of node representation vectors were obtained. The node
representation vectors of the two groups of microorganisms and
drugs were added to predict the potential association between
microorganisms and drugs. In the follow-up prediction of the
association between microorganism and drug, the operation is
carried out on these node feature vectors. Therefore, a good node
feature can make our prediction result more accurate.

In the previously reported studies on the prediction
of microbe-drug association, different graph representation
learning algorithms are mainly used to improve the prediction
performance. With the development of graph neural networks,
there are more and more graph representation algorithms
with better performance, such as GCN, GAT, heterogeneous
graph attention networks (HANs) (Wang et al., 2019), and
heterogeneous graph transformer (HGT) (Hu et al., 2020), etc.

In this article, we propose a model incorporating two attention
mechanisms into a GCN to enhance the performance of graph
characterization algorithms, thereby improving the performance
of microbial-drug association prediction. In terms of relevant
evaluation indicators, our model is better than the relevant
benchmarks. In this case study, we predicted four SARS-CoV-2-
related drugs on the relevant dataset through the trained model
and verified the effectiveness of two of them in the latest database.
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FIGURE 1 | The specific process of MDGNN. (A) Microbiome-drug network. The entire network is composed of three subnetworks, namely, the interaction network
between drugs and drugs, the interaction network between microorganisms, and the associated network between drugs and microorganisms. (B) Graph neural
networks of two attentional mechanisms. Through the graph convolution operation on the node feature and the graph structure and the feature projection of the fully
connected function, the projection of the three-node features can be obtained, which can be used to calculate the attention weight matrix between nodes and the
node feature of attention between feature components, so as to calculate the final node representation features. (C) Prediction of potential associations between
microorganisms and drugs. Through the inner product of the learned node representations, the prediction score between the drug feature and microbe feature can
be obtained, so as to determine whether there is an association between the node pair.

MATERIALS AND METHODS

We divide the information in the network into three levels
of information. The first is the information inside the node.
Generally speaking, entities such as drugs and microbes are
abstracted into nodes in the network. To distinguish different
nodes, unique features are assigned to nodes, namely, feature
vectors of nodes in the network structure. The second is the
information between nodes, the edges in the network. Finally,
there is edge-to-edge information, the meta-path in the network.

The attention mechanism was first proposed in the field of
natural language processing; that is, we can assign different
weights to different word vectors. GAT is the earliest method to
introduce an attention mechanism in the field of graph neural
networks. It assigns different weights to different adjacency
features in the stage of information aggregation. This kind
of attention is not global attention, but only the attention
between first-order neighbor nodes. HAN is an attention-based
model for heterogeneous networks, which proposes two attention
mechanisms: one is node-level attention, the other is attention
between different meta-paths. First, feature vectors from different
adjacent points are aggregated on each meta-path by the attention
mechanism, and then, feature vectors from each source path

are aggregated by assigning different weights to each meta-
path. Node-level attention in HAN is still the attention of
local nodes, whereas attention between meta-paths is indirect
global attention. But this approach relies heavily on setting up
the meta-path. HGT is an improved approach to GCN that
brings attention to message aggregation by introducing query
vectors and key vectors. There are also two attention mechanisms
in HGT, namely, attention between local nodes and attention
between meta-paths.

However, the existing graph neural networks with attention
mechanisms are all based on the local nodes; that is, the
attention weight is only allocated between the source node and
its neighbors. Due to the limitation of the network structure, the
attention information between the source node and its higher-
order neighbors is not calculated.

In view of the problems in the above methods, we propose
two attention mechanisms, namely, the attention mechanism
between all nodes and the attention mechanism between
feature components within nodes. Through this new attention-
based graph neural network, better node feature vectors for
predicting microbial-drug association can be obtained. The
whole prediction process is shown in Figure 1. Through node-
attention, we can get the attention of one node in the graph to the
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nodes of the whole graph. Through feature-attention, we can get
the weight of each dimension between feature vectors of a node.

The prediction process is to first build a heterogeneous
network with drug nodes and microbial nodes. In this network,
there are microbial–microbial, microbial–drug, and drug–drug
interactions. We mainly predict the potential association between
microbial–drug interaction. Then, node-attention and feature-
attention mechanisms are used to learn node representation on
the network. Finally, after the representation vectors of the two
heterogeneous nodes were obtained, they were directly used to
predict the link between drugs and microorganisms.

The network representation algorithm is divided into
three parts: node-attention, feature-attention, multi-layer
feature fusion.

Node-Attention
Considering the sequence data, in which a single word is used as a
data unit and connected together, we can think of sequence data
as a special kind of graph structure, which can be regarded as a
graph structure in which the in and out degrees of all nodes are 1.
Different from GAT’s node-attention mechanism, we also have a
weight for higher-order neighbor nodes. Therefore, the advantage
of using such global node-attention is that we can aggregate the
node information of higher-order neighbors by calculating self-
attention, instead of being limited to the structure of the graph to
capture the information of other nodes.

Suppose there exists graph G, which can be represented by
its adjacency matrix A and node feature matrix X, namely,
G = (A, X). For the nodes in graph G, we can calculate
their weights and then aggregate the information based on
the weights. Different from graph convolution operation, graph
convolution operation aggregates information according to the
graph structure. When aggregating information according to
weight, it can break through the limitation of graph structure and
aggregate corresponding information even when there is no edge
connection between nodes (refer to Figure 1B).

In this paragraph, we will introduce some commonly used
formulas in the following text, such as GCN, Linear. GCN is a
neural network layer that can learn the structure information
of graph structure data. The calculation method is shown in
Formula (1)

Z = GCN (A, X) = ReLU
(
ÃXW

)
, (1)

which X is the original feature, ReLU is activation function, W
is the learnable parameter matrix, and Ã is the adjacency matrix
with self-loop of the graph. Linear is a fully connected function,
and its formula is shown in (2)

X′ = Linear (X) = WX + b, (2)

which X is the original feature, and W and b are learnable
parameter matrix.

Our method is mainly based on the idea that GCN learns
the structural information of the network and triplet attention
learns the disconnect node interaction information. First, we
aggregate node features in GCN, and after learning the structural
information of the network, treat all nodes as sequence data

and temporarily ignore their structural information, as shown in
Formula (3) (σ is non-linear activation function, like ReLU).

GCNLinear = σ (Linear (GCN (G, X))) (3)

By using Formula (1), we can obtain the features of three groups
of nodes needed to calculate triplet attention. QNode, KNode, and
VNode. As shown in Formulas (4–6).

QNode = GCNLinear (G, X) (4)

KNode = GCNLinear (G, X) (5)

VNode = GCNLinear (G, X) (6)

Then, the node weight matrix WNode (N × N) is obtained from
its inner product, and its row direction is normalized, as shown
in Formulas (7, 8).

WNode = QNode ⊗ KT
Node (7)

wi· = Softmax (wi·) , i ∈ (0, 1, 2, . . . , n) (8)

Finally, the inner product of weight matrix WNode (N × N) and
VNode (N × F) is integrated to obtain the node feature matrix
XNode (N × F), as shown in Formula (9).

XNode = X +WNode ⊗ VNode (9)

In this process, we model the information of interaction between
nodes in the whole network by calculating a node weight matrix
WNode (N × N). The node weight matrix WNode (N × N) is
different from the adjacency matrix of the network A (N × N),
which can be regarded as the n power of the adjacency matrix
A (N × N),namely, WNode (N × N) = An (N × N) and the
n varies according to the size of the structure of the network.

Feature-Attention
The graph can be represented by the node set V and the edge
set E, as well as the node eigenmatrix X (N × F) For any
node Ni ∈ V , node Ni can be represented by a node feature
vector

(
f1, f2, f3, · · · , fn

)
. For a certain node Ni, we can express

the importance of different features by feature weight vectors
(w1, w2, w3, · · · , wn), and distribute feature weights by inner
product. In other words, for different nodes, there is always some
feature components fi, where i ∈ 1, 2, 3, · · · , n. In the dimension
of fi, this node is significantly different from other nodes. For
some other feature components fj, the values of all nodes are
almost the same, so we need to give different weight values
to these two different feature components. We use a feature
component attention weight matrix to model the relationship
between feature components within such nodes, as shown in the
Figure 1B.

Just as in the calculation of node-attention, three feature
vector matrices corresponding to node-features, query, key, and
value, are first calculated. The difference lies in that we calculate
the weight between node feature components through query
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FIGURE 2 | Multi-layer concatenates. For each node-attention and
feature-attention, the node information has different structural information. By
fusing the features of each layer of nodes based on the two attention
mechanisms, it can effectively use these node features integrating different
structural information.

and key feature vector matrix, that is, attention weight matrix
belonging to feature components, as shown in Formula (10)

WFeature = QT
Feature ⊗ KFeature (10)

It should be noted that the node weight matrix is WNode (N × N)
and the feature component weight matrix is WFeature (F × F).
After the matrix WFeature (F × F) is obtained, the final
WFeature (F × F) is obtained through the normalization of the
column direction, as shown in Formula (10). Then, the final
feature vector of nodes is obtained by Formula (11, 12)

w·j = Softmax
(
w·j
)
, j ∈ (0, 1, 2, . . . , n) (11)

XFeature = X + VFeature ⊗WFeature (12)

Multi-Layer Feature Concatenates
Generally speaking, GCN can only aggregate information to
first-order neighbors of the source node, whereas aggregation
to higher-order information requires the number of layers
of stacked GCN. For GCN with different layers, the node
information represented by GCN is obtained by aggregating the
node information within the scope of different graph structures,
and these node feature vectors have different structural semantic
information. By integrating the node information obtained from
these different GCN layers, better results can be obtained for
link prediction. For example, in jump-knowledge networks (Xu
et al., 2018), node features from different GCN layers are added
or spliced as the final node features. It is worth noting that
jump-knowledge networks simply add up the node information
learned from GCN of different layers and serve as the final
node information.

Suppose that for graph G (A, X), after n layer message
aggregation, a list of node features (X1, X2, X3, · · · ,Xn) will be
obtained. The feature vector matrix in this list represents the node
features obtained by integrating the substructure information
of different graphs. We use triple-based attention to assign
different weights to these node features and then fuse them for
downstream tasks. We give a schematic diagram of node features

obtained by three-layer GNN, as shown in Figure 2. Specifically,
for each set of node features, we use the following formulas to
calculate,

Qi = σ (Linear (Xi)) , i ∈ (1, 2, · · · , n) (13)

Ki = σ (Linear (Xi)) , i ∈ (1, 2, · · · , n) (14)

Vi = σ (Linear (Xi)) , i ∈ (1, 2, · · · , n) (15)

After calculating the Qi, Ki, and Vi corresponding to each group
of node features, the final feature vector X′i of the group of nodes
can be calculated by Formula (16)

X′i = Softmax
(

Qi ⊗ KT
i

)
⊗ Vi (16)

Finally, by concatenating multiple sets of node features, the final
node feature X′ can be gain by Formula (17), which can be used
to predict the score.

X′ =
(
X′1 ‖ X′2 · · · ‖ X′n

)
(17)

Microbial Drug Association Prediction
After getting the final feature vector X of the microbe node and
the drug node, the prediction score between a certain microbe
and the drug node pair can be calculated, that is, the probability
of the correlation between the microbe and the drug, as shown in
Formula (18)

S(u,v) = Sigmoid(Xu ⊗ Xv) (18)

where Xu ∈ R1 × n, Xu ∈ R1 × n, and Sigmoid is an
activation function.

During the training process, we use binary cross-entropy as
our loss function for training, as shown in Formula (19)

loss =
∑

(u,v)∈pos,neg

BCE(S(u,v), A(u,v)), (19)

while A is the adjacency matrix, and (u, v) ∈ pos means
A(u,v) = 1, and (u, v) ∈ neg means A(u,v) = 0.

RESULTS

Dataset
In the experiment, we used data coming from three datasets:
DrugVirus (Andersen et al., 2020), MDAD (Sun et al., 2018),
and aBiofilm (Rajput et al., 2018). We integrated the data of
these three datasets after removing duplicate microorganisms
and drugs. By calculating the similarity of drug structure, and
taking the drug interaction with similarity greater than 0.5 as
the relationship between drugs, the drug interaction network is
obtained. Similarly, the microbial similarity is calculated through
the microbial gene sequence, and the microbial similarity greater
than 0.5 is taken as the microbial association to obtain the
microbial interaction network. The data used in our experiment
are shown in Tables 1, 2.
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TABLE 1 | Data used in this study were obtained by integrating three datasets:
DrugVirus, MDAD, and aBiofilm.

Name Number

Drugs 3,091

Microbes 328

Drug–drug interaction 270,877

Microbe–microbe interaction 467

Drug–microbe interaction 3,900

TABLE 2 | The statistics for each microbe-drug association dataset.

Datasets Microbes Drugs Associations

MDAD 173 1,373 2,470

aBiofilm 140 1,720 2,884

DrugVirus 95 175 933

TABLE 3 | Comparative experiment of different benchmarks and MDGNN.

Model AUC AUPR

GCN 0.9439 (0.0038) 0.8721 (±0.0102)

GAT 0.9385 (0.0057) 0.8479 (0.0139)

HAN 0.9443 (0.0041) 0.8086 (0.0118)

HGT 0.9251 (0.0073) 0.8275 (0.0126)

GCNMDA 0.9541 (0.0036) 0.8796 (0.0103)

GraphSAINT 0.9653 (0.0081) 0.8938 (0.0135)

MDGNN 0.9721 (0.0053) 0.9102 (0.0118)

MDGNN outperforms all baselines including GCN, GAT, HAN, HGT,
GCNMDA, and GraphSAINT.
The bold value means the best model, and the underlined value means the
second-best model.

Experiment Result
To verify the effectiveness of our method, we divided the dataset
by 5-fold cross-validation of the data related to the known
microorganisms a drug and randomly divided the data related
to the known microorganisms and drugs into five groups.
In each fold experiment, we take turns to select a group of
related data as the test set, and the remaining four groups as
the training set for training. In addition, because in the real
world, it is more common that there is no interaction between
microorganisms and drugs. At the same time, to compare the
performance of each model in the case of unbalanced positive and
negative samples, we set the number of negative samples in the
experiment set to four.

In our model, we set that the learning rate in optimization
algorithm was 0.001 with Adam optimizer, and other related
hyperparameters, such as the number of model layers, feature
dimensions, and training times, are described in the ablation
experiments. The equipment used in the experiment is Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20 GHz, running memory
is 128 GB, hard disk storage space is 10TB, and it is
equipped with two Tesla P40 GPU with a total memory
capacity of 48 GB.

The comparative models we used are GCN, GAT, HAN,
HGT, GCNMDA, and GraphSAINT (Zeng et al., 2020). The

FIGURE 3 | Receiver operating characteristic (ROC) curves of different
models under the first-fold verification.

hyperparameters of the benchmark model are set according to
their papers. The experimental results are shown in Table 3. ROC
curves of the models are shown in Figure 3.

Area under the curve (AUC) is an index to measure the sorting
performance. It is not sensitive to the balance of positive and
negative samples. When the samples are unbalanced, it can also
make a reasonable evaluation, which is suitable for measuring
the sorting task. The closer of the result is to 1, the better
performance it is.

Area under the PR curve (AUPR) is the area value under the
curve composed of recall rate and accuracy rate in the prediction
results. It is generally used to measure the performance of correct
prediction results in the dataset with unbalanced positive and
negative samples.

Under a single index, the bold one is the best model, and
the underlined one is the second-best model. It can be seen
that the performance of our model under AUC evaluation index
is ahead of state-of-the-art baseline GraphSAINT. Our model
achieves an AUC of 0.9721, better than GraphSAINT, which is
0.9653. Under the evaluation index of AUPR, the performance
of our model is significantly ahead of other models. Compared
with state-of-the-art baseline GraphSAINT (0.8938), our model
(0.9102) has increased by about 1.74%, which is better than
GCN (0.8721), GAT (0.8479), HAN (0.8086), HGT (0.8275), and
GCNMDA (0.8796).

Through comparative experiments with baseline, it can be
seen that our model has achieved a great improvement in
performance after calculating the attention between all nodes
based on the entire graph. Compared with the model that
calculates the attention between 1-hop neighbor nodes, our
model is more able to mine the relationship between high-
order neighbor nodes, In the association of microbial and
drugs, an intuitive idea is if drug A interacts with drug B, and
drug A interacts with microorganisms C, then we are likely
to be inclined to speculate that drug B and microorganisms
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TABLE 4 | Compare the 5-fold crossover experimental results of MDGNN and GCNMDA on three small datasets (MDAD, aBiofilm, and DrugVirus).

Methods MDAD aBiofilm DrugVirus

AUC AUPR AUC AUPR AUC AUPR

GCNMDA 0.9423 (0.0105) 0.9376 (0.0115) 0.9517 (0.0035) 0.9488 (0.0031) 0.8986 (0.0305) 0.9038 (0.0372)

MDGNN 0.9457 (0.0083) 0.9431 (0.0102) 0.9608 (0.0054) 0.9566 (0.0084) 0.8737 (0.0167) 0.8904 (0.0212)

FIGURE 4 | AUC, AUPR values of different numbers of epochs.

C have an interaction. When calculating 1-hop-based attention
(such as GAT, HAN, HGT, and GCNMDA), this indirect
correlation between drug B and microorganism C is ignored.
However, in MDGNN, this indirect correlation will be taken
into consideration, and the message will be passed between the
nodes B and C through our proposed method, thus improving
the prediction performance of the model.

By comparing MDGNN and GCNMDA on three
small datasets, we can further confirm our inference. On
large dataset (MDAD, aBiofilm), our method is better
than GCNMDA, and especially on aBiofilm dataset, our
method can be nearly a percentage point higher than
GCNMDA. This dataset is the most data in these three
datasets. On the smallest dataset (DrugVirus), our method
(AUC:0.8737, AUPR:0.8943) is inferior to GCNMDA
(AUC:0.8986, AUPR:0.9038).

According to the results in Table 4, it can be seen that when the
size of dataset grows, the number of indirect associations (like the
relationship between B and C mentioned above) in the dataset
will increase accordingly. This means that on large dataset, our
method can learn more information about potential associations,
and many of our final predictions of the association between
microorganisms and drugs are inferred based on this potential
association information.

It can be seen that the calculation of the two kinds
of attention brings stronger fitting ability to the model.
Moreover, this powerful fitting ability allows our model to
learn more structural information every time it performs

TABLE 5 | Ablation experiments on modules of feature-attention and
multi-layer feature.

Multi-layer Feature-attention Layer AUC AUPR

w/o Multi-layer w/o Feature-attention 3 layers 0.9621 0.8891

4 layers 0.9614 0.8816

5 layers 0.9652 0.8909

Feature-attention 3 layers 0.9637 0.8896

4 layers 0.9640 0.8909

5 layers 0.9694 0.9034

Multi-layer w/o Feature-attention 3 layers 0.8696 0.7362

4 layers 0.8760 0.7264

5 layers 0.8756 0.7410

Feature-attention 3 layers 0.9706 0.8982

4 layers 0.9711 0.9097

5 layers 0.9726 0.9112

The bold value means the best model.

gradient descent, so as to converge more quickly during the
training process.

During the training process, we found that the optimization
of these baseline training is extremely slow, and our model
converges fast, so we train the model under different epochs
settings to compare the effect of model training. When different
numbers of epochs were set, the results obtained by each model
are shown in Figure 4.

As can be seen from the experimental results, our model can
converge to the optimal value within a very short training period.
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FIGURE 5 | AUC, AUPR values of different feature dimensions.

TABLE 6 | Predicted drugs that can treat SARS-CoV-2 (negative means that the
drug is not associated with SARS in our dataset).

Predicted drugs Prediction score

Mefloquine 0.9361

Darunavir (negative) 0.9177

Nelfinavir 0.9096

Azithromycin(negative) 0.8904

Vancomycin 0.8731

Dicinnamyl (negative) 0.8685

Niclosamide 0.8663

Chitosan (negative) 0.8529

Chlorpromazine 0.8467

Ribavirin 0.8406

Under the same epoch value, our model has greatly improved
compared with other models. MDGNN requires less than 500
epochs to make the AUC converge to above 0.96, while other
comparison models fail to exceed 0.95 after 3,000 epochs.

Through ablation experiments, we can analyze the role of
each module. In the experiment, we analyze the function of each
module by setting a model with different number of blocks. The
specific ablation experimental results are shown in Table 5.

As can be seen from Table 4, when both modules are
used, the performance is the best. Specifically, when the node
information integrated with node-attention is directly aggregated
through multi-layer module, the model will produce negative
optimization. The reason may be that after removing the
feature-attention, the calculation in the multi-layer module
is performed directly on the node vector that incorporates
the node-attention, which will cause the decoupling of the
attention calculated in the node-attention, which results in a
decrease in the result.

In addition, we conducted comparative experiments on the
dimensions of different feature vectors and verified that the
best experimental results were obtained when the dimension of
feature vector was set to 100. The result is shown in Figure 5.

Case Study
In case study, we use the deduplicated datasets, which contains
the SARS-CoV-2-related data from the DrugVirus dataset. We
save the trained model parameters and use them to make
predictions on the entire dataset. The parameters of the model
are trained on the randomly divided training set, selected, and
saved according to the results on the test set.

We load the trained model and then input the entire dataset
into the model to obtain the feature vector of microorganisms
and the feature vector of drugs. The corresponding microbial
drug association score is obtained by inner product of the feature
vector of microbe and the feature vector of drug.

Taking SARS-CoV-2 as an example, we predicted the drugs
that may treat the virus and took out the 10 drugs with the
greatest possibility. The results are shown in Table 6.

Among the ten drugs that we predicted to treat SARS-
CoV-2, four drugs were not associated with SARS-CoV-2 in
our dataset, but our model predicted that these four drugs
had a high potential to treat SARS-CoV-2. Through searching
PubChem database, we found that two of the four drugs
can indeed treat SARS-CoV-2. Darunavir is an antiretroviral
protease inhibitor that is used in the therapy and prevention
of human immunodeficiency virus (HIV) infection and the
acquired immunodeficiency syndrome (AIDS) (Deeks, 2018). In
our dataset, there is indeed an association between Darunavir
and HIV, but there is no association between Darunavir and
SARS-CoV-2 (Costanzo et al., 2020). This real association
does not exist in our dataset, and we can predict this
association through the dataset. Similarly, Azithromycin is a
drug that can treat SARS-CoV-2 (Rosenberg et al., 2020).
However, there is no association between Azithromycin and
SARS-CoV-2 in our dataset where Azithromycin is only
associated with Hepatitis C virus and HIV. In addition, our
model successfully predicts the potential association between
Azithromycin and SARS-CoV-2.

CONCLUSION

With the rapid development of deep learning, there are many
deep learning methods reported for drug development. For
example, Beck et al. identified commercially available drugs
to treat viral proteins using a pretrained deep learning-based
drug target interaction model. Their results showed that drugs
used to treat HIV might be effective against SARS-CoV-2 (Beck
et al., 2020). Joshi et al. (2020) used deep learning methods to
predict the structural formula of chemical molecules and predict
potential drugs for SARS-CoV-2. A total of 39 potential drugs for
SARS-CoV-2 were predicted based on the CHEMBL dataset.

The rapid spread of SARS-COV-2 and its variants have
resulted a serious public health crisis. How to develop a specific
drug quickly to tackle SARS-CoV-2 and its variants is an
urgent problem. We propose a novel attentional mechanism-
based graph neural network framework for learning network
node representation and prove that our framework is superior
to other state-of-the-art methods, which includes GCN, GAT,
HAN, and HGT, etc. In addition, through a large number of
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drug and microbial data, we have screened potential drugs for
the treatment of SARS-CoV-2, most of which are known to
treat SARS-CoV-2.
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