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Cyclic GMP-AMP synthase (cGAS) recognizes double-stranded DNA (dsDNA) derived
from invading pathogens and induces an interferon response via activation of the key
downstream adaptor protein stimulator of interferon genes (STING). This is the most
classic biological function of the cGAS-STING signaling pathway and is critical for
preventing pathogenic microorganism invasion. In addition, cGAS can interact with
various types of nucleic acids, including cDNA, DNA : RNA hybrids, and circular RNA,
to contribute to a diverse set of biological functions. An increasing number of studies have
revealed an important relationship between the cGAS-STING signaling pathway and
autophagy, cellular senescence, antitumor immunity, inflammation, and autoimmune
diseases. This review details the mechanism of action of cGAS as it interacts with
different types of nucleic acids, its rich biological functions, and the potential for
targeting this pathway to treat various diseases.
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INTRODUCTION

In the 1980s, researchers already understood the correlation between bacterial DNA and immune
activation in vitro (1), i.e., they knew that exposing macrophages to bacterial DNA could stimulate
the expression of interferon-alpha (IFN-a) and interferon-beta (IFN-b), and induce the activation
of natural killer cells and the release of interferon-gamma (IFN-g) (1, 2). Further studies showed that
the immune activation induced by bacterial DNA is related to its large number of unmethylated
CpG motifs, which are different from the DNA motifs in humans and mice (3, 4). When bacteria-
derived DNA invades human cells, the host will recognize its pathogen-associated molecular
patterns and trigger an immune response (3, 5, 6). Similarly, when a virus infects a host cell, the
nucleic acid released into the cell triggers the intracellular immune response, causing antiviral
immunity (7–9). Thus, identifying nucleic acids derived from pathogens is an important task for a
host cell to mount an immune response and eliminate them.

Host cells have evolved different recognition patterns for different types of nucleic acids, via
various pattern recognition receptors (PRRs). PRRs include mainly Toll-like receptors (TLR) (10),
NOD-like receptors (NLRs) (11), C-type lectin receptors (CLRs) (12), RIG-I-like receptors (RLRs)
(13), and DNA receptors/sensors (14). Among these, DAI (15), IFI16 (16, 17), DDX41 (18), MRE11
(19), LSm14A (20), DHX9 (21), hnRNPA2B1 (22), and cGAS (23–25) are considered DNA
receptors/sensors.
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cGAS is a cytoplasmic nucleic acid sensor with the widest
recognition ability for double-stranded DNA (dsDNA); it binds
dsDNA in a manner independent of sequence specificity (23).
cGAS can also recognize other types of nucleic acids that trigger
other important functions dependent on its subcellular location.
The classic function of cGAS is to activate the downstream
adaptor protein STING to induce IFN production and release.
While the cGAS-STING signaling pathway plays a critical role in
resisting pathogen invasion, excessive activation of this pathway
can cause chronic inflammation, autoimmune disease, and cancer.
Therefore, cGAS-STING signaling must be tightly regulated.
cGAS-MEDIATED SIGNALING PATHWAYS

cGAS-STING signaling presents an evolutionarily highly conserved
mechanism of immunity (26, 27). Upon recognition of cytoplasmic
DNA, cGAS uses ATP and GTP as substrates to synthesize cyclin
GMP-AMP (cGAMP), which act as a second messenger to activate
Frontiers in Immunology | www.frontiersin.org 2
STING (28, 29). Activation of STING is critical for initiating the
downstream immune cascade (30). Translocation of STING from
the endoplasmic reticulum (ER) to the Golgi apparatus is a
prerequisite condition for downstream signal transduction and
transcriptional regulation of type I interferons (IFN-I). STING
activation requires the palmitoylation of Cys88 and Cys91, which
takes place in the Golgi (31). Palmitoylation may also promote the
oligomerization of STING and the activation of TANK-binding
kinase 1 (TBK1). Activated STING can recruit and activate
inhibitor of nuclear factor kappa-B kinase (IKK) and TBK1, but
recruiting TBK1 is not sufficient to activate interferon regulatory
factor 3 (IRF3) (32). Phosphorylation of STING at Ser366 by TBK1
allows it to interact with IRF3, and facilitate TBK1 phosphorylation
of IRF3 (33). Phosphorylated IRF3 forms a dimer and transfers to
the nucleus, where it acts together with nuclear factor-kB (NF-kB)
to initiate the expression of IFN-I and other cytokines (Figure 1)
(33, 34). After STING is activated, the “unfolded protein response
(UPR) motif” at the C-terminus triggers the ER stress response and
autophagy by activating the formation of the Unc-51-like
FIGURE 1 | The cGAS-STING signaling pathway. cGAS can recognize exogenous DNA from pathogens or self-DNA (from the mitochondria and nucleus). After
cGAS recognizes DNA, it synthesizes the second messenger 2’3’-cGAMP, which activates STING. The translocation of STING from the endoplasmic reticulum to the
Golgi apparatus is a prerequisite for participating in the downstream signal transduction and regulating IFN-I transcription. Activated STING can recruit and activate
IKK and TBK1. TBK1 phosphorylates IRF3. Subsequently, phosphorylated IRF3 forms a dimer and translocates to the nucleus, where it acts together with NF-kB to
initiate the expression of IFN-I and other immune regulatory factors.
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autophagy activating kinase (ULK1) complex and the Beclin-1-
class III phosphatidylinositol-3 kinase (PI3KC3) complex (35, 36).
cGAS can also trigger autophagy through direct interaction with
the Beclin-1-PI3KC3 complex (37). Autophagy mediated by the
cGAS-STING pathway can spread to the whole cell, helping to
remove pathogenic microorganisms (38) as well as excessive
inflammatory factors and cytoplasmic DNA to prevent
overactivation of the inflammatory response (39). Autophagy
thus acts as negative feedback mechanism to limit continuous
activation of the cGAS-STING signaling pathway.

Structural Basis for cGAS Binding dsDNA
The structure of cGAS with or without bound dsDNA has been
resolved in various species (40–44). cGAS is inactive and
maintains a U-shaped conformation until DNA binding
induces a conformational change that remodels the enzyme
active site into activated state (42, 45). Human cGAS contains
522 amino acid residues and adopts the characteristic bi-lobal
fold of the nucleotidyltransferase family (42). The N-terminal
lobe is a non-structural, positively charged domain, which
consists of two helices and a highly twisted beta-sheet; all
catalytic residues are located on the central beta-sheet (46).
The C-terminal lobe is a helix bundle that contains a
conserved zinc finger motif and a leucine residue (41, 46). The
zinc finger motif mediates DNA binding and cGAS dimerization
(46), and the leucine residue acts as a conservative structural
switch that strictly regulates cGAMP production in response to
dsDNA binding (41). The cleft between the N- and C-terminal
Frontiers in Immunology | www.frontiersin.org 3
lobes constitutes the substrate binding site of the enzyme
(Figure 2) (42). The C-terminal domain of cGAS is highly
conserved whereas the amino acid sequence homology of the
N-terminal domain is low, though the residues that play decisive
functional roles are relatively conserved (47).

A positively charged patch, located in the groove on the
backside of the substrate binding cleft, is the major DNA binding
site in cGAS (44). The activation loop, containing residues 210 to
220, among which Gly212 and Ser213 are highly conserved, is
located near the DNA binding surface of cGAS and undergoes a
conformational change similar to a switch after DNA binding
(42). Meanwhile, Asn210 is critical for the enzymatic activity of
cGAS. Deamination of Asn210 affects cGAMP synthesis, but
does not weaken the self-dimerization, dsDNA-binding, or
nucleotide-binding activity of cGAS (48). Upon DNA binding,
the DNA binding site clashes with the activation loop, causing
the loop to move inward and expose the binding site to the donor
substrate. In contrast, modeling of the cGAS structures bound to
dsRNA shows that the activation loop inserts into the major
groove of dsRNA and does not cause detectable conformational
changes, which may explain why dsRNA is unable to activate
cGAS (42). In addition to the conformational changes in the
activation loop, DNA binding induces a reorganization of the
two loops at the entrance of the catalytic site in the N-terminal
lobe of cGAS (44). These conformational changes promote
enzyme activation by configuring the active site for Mg2+ ion
binding and enhancing accessibility of the active site to the
substrate (46).
FIGURE 2 | Structures of human cGAS in the apo state. Human cGAS consists of two lobes. The N-terminal lobe consists of two helices and a highly twisted beta-
sheet, and the C-terminal lobe is a helix bundle, which contains a conserved zinc finger motif and a leucine residue. Between the two lobes is a large cleft, which is
the catalytic site for substrate binding. In the apo state, cGAS maintains an autoinhibitory U-shaped conformation (Structure of human cGAS adopted from
PDB:4KM5).
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cGAS-DNA Complex and
Phase Separation
cGAS and DNA binding is primarily mediated by the interaction
between positively charged residues on cGAS with the sugar-
phosphate backbone of DNA, which explains the lack of
sequence specificity of the interaction (46, 49). cGAS-DNA
binding forms a droplet structure, resulting in phase
separation, the degree of which can be enhanced by increasing
the N-terminal binding valence (50). Through X-ray diffraction
technology, it was found that long-stranded DNA can activate
cGAS better than short-stranded DNA because the cGAS-DNA
interaction forms a ladder-like complex; the longer the DNA
chain, the more stable the structure of the complex, which
implies a correlation between DNA length and binding
efficiency (51). The formation of 2:2 cGAS-DNA complex is
arranged into two DNA molecules in a roughly parallel manner,
such that each complex has enhanced ability to bind subsequent
cGAS dimers, thereby promoting a high degree of synergy in
cGAS recruitment and activation (52). Once the cGAS-DNA
complex is formed, a catalytic and accessible nucleotide-binding
pocket is formed, the intermediate product pppGpA is
synthesized, and subsequently cGAMP is generated (40).

Cellular Localization of cGAS
cGAS was first identified as a cytoplasmic DNA sensor abundantly
present in the cytoplasm of L929 and THP1 cells (23). The
physical barrier between cGAS and self-DNA formed by the
mitochondrial membrane and nuclear envelope is regarded as
an important regulatory strategy that prevents self-DNA
recognition and autoimmune activation. However, further
research revealed additional subcellular localization of cGAS,
including at the plasma membrane and in the nucleus (24, 25,
53–55). A recent study showed that cGAS is located in the plasma
membrane through its N-terminal phosphoinositide binding
domain, which selectively interacts with phosphatidylinositol
4,5-bisphosphate; cGAS lacking the N-terminal domain is
mislocalized to the cytoplasmic and nuclear compartments (24).
Membrane localization may help cGAS more rapidly detect viral
DNA that enters cells through endocytosis, while also preventing
cGAS from interacting with endogenous DNA (24). Nuclear
localization of cGAS is found in epithelial cells, long-term
hematopoietic stem cells (LT-HSC), and certain cancer cells (25,
54, 56, 57), and nuclear cGAS has additional functions (see below)
(53, 55, 58, 59). Together, studies suggest that the cellular
localization of cGAS varies greatly across cell types, which may
be linked to specific functions of cGAS.

In addition, the cellular localization of cGAS appears to
change during the cell cycle or under conditions of cellular
stress. cGAS is mainly located in the cytoplasm during the
interphase, and rapidly transfers to the chromosomes when
the nuclear membrane disappears in metaphase (60). One
study described that a gradual decrease in cGAS Y215
phosphorylation is accompanied by an increase in cGAS
nuclear translocation in response to cell damage caused by
DNA damaging agents (55). Another study found that in
migrating mammalian cells, the nuclear membrane opens at
Frontiers in Immunology | www.frontiersin.org 4
a high frequency during interphase, which allows cytoplasmic
cGAS translocation to chromatin (61).
A VARIETY OF NUCLEIC ACID SPECIES
ARE SENSED BY cGAS

cGAS Recognizes Pathogen-Derived
dsDNA
DNA immune recognition mediated by cGAS-STING signaling
plays a vital role in preventing pathogenic microbial infection
(62). cGAS recognizes pathogen-derived DNA to activate innate
immunity and antiviral immune responses (63).

Herpes simplex virus 1 (HSV-1) is the first DNA virus shown
to activate the cGAS-STING signaling pathway in vitro and in
vivo (64, 65). In vitro, acetyltransferase KAT5 mediates cGAS
acetylation upon HSV-1 infection, which enhances the affinity of
cGAS binding to viral DNA and is thought to enhance antiviral
immunity (66). In vivo, cGas-/- mice developed ataxia and
paralysis and had a higher mortality rate upon HSV-1
infection; high titers of HSV-1 were also detected in the
knockout mouse brain (67). This phenomenon has also been
verified in sting-/- mice (68). In contrast, wildtype mice were less
likely to develop symptoms or die after HSV-1 infection (67). In
addition to HSV-1, Kaposi’s sarcoma-associated herpes virus
(KSHV) can also activate the cGAS-STING signaling pathway
(69). Compared with wildtype controls, cGAS or STING
knockdown inhibited the expression of IFN-b in endothelial
cells, and caused an increase in KSHV gene transcription and
genomic copy number (69). DNA viruses such as human
papillomavirus (70), cytomegalovirus (71), adenovirus (72),
and vaccinia virus (73) have all been shown to activate cGAS
and induce a host immune response to resist viral infection (74).

Many Gram-negative and positive bacteria can also activate
the cGAS-STING signaling pathway. Listeria monocytogenes can
replicate in the cytoplasm of human bone marrow cells, and its
dsDNA is a major trigger of IFN-b expression dependent on
IFI16, cGAS and STING (75). Neisseria gonorrhoeae induces the
production of IFN through TLR4 and further enhances the IFN
response by activating cGAS after it invades the cytoplasm of
bone marrow-derived macrophages (76). In addition, the DNA
derived from pathogenic microorganisms including
Mycobacteria, Legionella, Shigella, Francisella, group B
streptococcus, and Chlamydia can all be recognized by cGAS
and activate STING to induce the body’s immune response to
eliminate the invading pathogenic microorganisms (32).

Thus, recognizing pathogen-derived dsDNA by cGAS is a key
event for the host to perceive pathogen invasion and induce a
response. Although other PRRs can recognize pathogen-derived
nucleic acids and activate an immune response, activation of the
cGAS-STING signaling pathway plays an indispensable role in
helping the host to resist pathogenic microorganism invasion.

cGAS Recognizes Plasmid DNA
Plasmid transfection is used as a transient gene delivery system
to express a foreign protein in the cell. Interestingly, a study
February 2022 | Volume 13 | Article 826880
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found that after cells were transfected with foreign plasmids, the
ability of host cells to prevent viral infections improved,
suggesting that activation of cGAS-STING signaling may ready
the cell for subsequently fighting viral infections (77).

In addition, our research group found that inhibition of cGAS
by gene knockout or chemical inhibition can increase transgene
expression at the transcriptional level, and that this increase is
negatively correlated with IFN and interferon-stimulated gene
(ISG) expression (78). Thus, targeting the cGAS-STING
signaling pathway is likely an effective strategy for gene
therapy and nucleic acid drug development.

cGAS Recognizes Endogenous dsDNA
DNA is mainly stored in the nucleus; however, mitochondria, the
organelles that supply energy to cells, also contain DNA molecules,
namely mitochondrial DNA (mtDNA). Under normal
circumstances, no (or little) free DNA is present in the cytoplasm
and other organelles. Mitochondrial or nuclear damage caused by
physical, chemical, and other factors can cause mtDNA or nuclear
DNA to leak into the cytoplasm where it is recognized by cGAS,
leading to the immune activation (59, 79, 80). Excessive activation of
cGAS-STING signaling by endogenous dsDNA is related to the
development of inflammatory and autoimmune diseases, including
systemic lupus erythematosus (SLE), Aicardi-Goutières syndrome
(AGS), and neurodegenerative diseases (81–83).

cGAS Recognizes dsDNA Derived From
Mitochondria
Cells have many ways to maintain mitochondrial homeostasis.
When mitochondria respond to stress, mtDNA is released into
the cytoplasm through the Bax/Bak channel on the outer
mitochondrial membrane. Subsequent activation of the
mtDNA-cGAS-STING pathway induces the production of
IFN-I (84).

Human mitochondrial transcription factor A (TFAM) is a
type of mtDNA binding protein that controls mtDNA
separation, abundance, and nucleoid structure (85). Genetic
deletion of TFAM causes abnormal accumulation of mtDNA
in the cytoplasm, leading to the activation of the cGAS-STING
signaling pathway and production of IFN-I and ISGs (86). TDP-
43, a nuclear DNA/RNA binding protein, is present in patients
with Alzheimer’s disease (87) and amyotrophic lateral sclerosis
(ALS) (88). The inflammatory response triggered by TDP-43
depends on the cGAS-STING signaling pathway. In ALS, after
TDP-43 enters the mitochondria of neuronal cells, it triggers
mtDNA release into the cytoplasm through the mitochondrial
permeability transition pore (mPTP), leading to the release of
inflammatory factors and IFN-I mediated by the cGAS-STING
signaling pathway (Figure 3) (89). Mitochondrial DNA can also
be released from dying cells, which then triggers release of pro-
inflammatory factors and IFN-I that acts on hematopoietic stem
cells and has a profound impact on cell function (90, 91).

A study conducted in a cohort of White adults found that
plasma mtDNA levels gradually increased after the age of 50 years;
levels of tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6)
were positively associated with plasma mtDNA levels, suggesting a
possible correlation between the level of blood mtDNA and
Frontiers in Immunology | www.frontiersin.org 5
age-associated mild chronic inflammation (92). Although the
detailed mechanism is unclear, these pro-inflammatory and
apoptotic factors may increase through the mtDNA-cGAS-STING
pathway. In addition, the internalized bacterial endotoxin
lipopolysaccharide activated Gasdermin D, which promotes the
formation of mitochondrial pores and induces mtDNA release into
the cytosol of endothelial cells (93). The released mtDNA was
recognized by cGAS, leading to the synthesis of cGAMP, which
suppressed endothelial cell proliferation by down-regulating the
YAP1 signaling pathway (93). In the inflammatory lung injury
model, cGAS deficiency can restore the regeneration capacity of
endothelial cells, suggesting that targeting the Gasdermin D-
activated cGAS-YAP signaling pathway may be a new strategy for
restoring endothelial function after inflammatory injury (93).
Furthermore, viral infection also induces mtDNA release, for
example, cGAS senses the virus by detecting the release of
mtDNA during dengue virus infection (94), and viroporin activity
of influenza virusM2 is essential for mtDNA release into the cytosol
in a MAVS-dependent manner (95). mtDNA stress promotes
cGAS-dependent cytoplasmic mtDNA recognition, enhancing
antiviral signaling and IFN-I responses during infection by
activating STING-TBK1-IRF3 signaling (86).

Overactivation of the mtDNA-cGAS-STING axis is an
important factor in inflammation caused by mtDNA leakage.
Conversely, mtDNA released in response to stress in tumor cells
induces autophagy-dependent ferroptosis through cGAS-STING
signaling pathway activation (96). Therefore, regulating the
activation of cGAS-STING in response to mtDNA leakage
could be a disease treatment strategy.

cGAS Recognizes Nuclear-Derived dsDNA
in the Cytoplasm
Nuclear DNA leakage, which forms micronuclei in the
cytoplasm, is the main source for abnormal accumulation of
cytoplasmic DNA (97). In normal cells, DNA double-strand
breaks can be precisely repaired by homologous recombination
to maintain genome stability and inhibit tumorigenesis (98). In
contrast, widespread instability of the tumor cell genome could
lead to chromosome pulverization that generates micronuclei
during mitosis (99). The nuclear membrane of micronuclei is
unstable and easy to rupture, causing micronucleus-derived
DNA to activate cGAS and induce IFN-I (Figure 4) (100).

DNA damage and the expression of senescence-associated
secretory phenotype (SASP) factors, including pro-inflammatory
factors, are the key signs of cellular senescence (101, 102). Once
cells enter the senescence process, nuclear membrane damage
occurs, causing nuclear DNA leakage. The nuclear-derived DNA
activates cGAS, which in turn increases SASP expression (101).
Deletion of cGAS eliminates SASP gene expression and other
cellular senescence markers, suggesting a key role of cGAS in
regulating the effect of DNA damage, SASP expression, and
cellular senescence (101).

cGAS Enters the Nucleus to Recognize
Genomic DNA
cGAS has been reported to be abundantly present in the nucleus
of certain cells, including HeLa and MEF cells (103), which raises
February 2022 | Volume 13 | Article 826880
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two issues that need to be addressed. First, it is unclear whether
there are functional differences between nuclear-localized cGAS
and cytoplasmic cGAS. Second, if nuclear-localized cGAS can
also recognize DNA, what mechanism is involved? Indeed,
nuclear-localized cGAS displays non-canonical functions
independent of STING. One study found that cGAS slows
down the replication fork by interacting with replication fork
proteins in a DNA binding-dependent manner (58). Another
study revealed that nuclear cGAS recruits protein arginine
methyltransferase 5 to the enhancer of antiviral genes and
enhances antiviral gene transcription through histone
modification, thereby inducing innate immune responses (53).
In addition, during DNA damage, nuclear translocation of cGAS
is induced in a manner that is dependent on importin-a (55). In
the nucleus, cGAS is recruited to DNA double-strand breaks and
interacts with PARP1 through poly (ADP-ribose), which hinders
the formation of PARP1-Timeless complex and inhibits the
homologous recombination of broken double strands to
promote tumorigenesis (55). In addition to the above non-
canonical functions, activation of the IFN pathway by cGAS is
Frontiers in Immunology | www.frontiersin.org 6
inhibited during mitosis. Recent research revealed a critical
mechanism underlying cGAS inactivation in mitosis: nuclear
cGAS is tethered tightly by a salt-resistant interaction, which
maintains the quiescent state of cGAS and prevents
autoreactivity (25). Barrier-to-autointegration factor 1 (BAF), a
chromatin-binding protein, can also inhibit cGAS activity
through competitive binding with dsDNA, thereby inhibiting
the formation of cGAS-DNA complexes during mitosis (104).
Another study found that nuclear cGAS binds to the negatively
charged acidic plaques formed by histones H2A and H2B
through its second DNA binding site, which blocks the
binding of cGAS and dsDNA and maintains nuclear cGAS in
an inactive conformation (103, 105). In addition, two studies
revealed that during mitotic entry, the CDK1-cyclin B complex
hyperphosphorylates human cGAS at S305 (or mouse cGAS at
S291), which inhibits its ability to synthesize cGAMP. Upon
mitotic exit, type 1 phosphatase dephosphorylates cGAS to
restore its DNA sensing ability (60, 106).

In summary, cells utilize several ingenious molecular
mechanisms to mitigate the potential immune activation
FIGURE 3 | TDP-43 induces mtDNA leakage in ALS neuronal cells. A large amount of TDP-43 protein is present in the neuronal cells of patients with ALS, which
causes mtDNA release into the cytoplasm through the mPTP pathway. mtDNA leakage in turn activates the cGAS-STING signaling pathway and induces the
production of inflammatory factors.
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caused by the recognition of nuclear DNA by cGAS, thereby
ensuring cGAS perform its biological functions normally. When
these regulatory mechanisms fail, cGAS misrecognition of
nuclear DNA can lead to various cellular dysfunctional
processes, including cellular senescence, inflammation, and
tumorigenesis (17, 97, 107–109).

cGAS Associates With Telomeric DNA
Telomeres are protective structures at the end of chromosomes
that gradually shorten with cell division (110). When telomeres
are shortened to the limit, DNA damage signaling will be
Frontiers in Immunology | www.frontiersin.org 7
activated, triggering replicative senescence (111). A recent
study showed that cGAS binds to telomeric/subtelomeric and
recruits CDK1, which blocks the recruitment of RNF8 and avoids
inappropriate DNA damage repair during mitosis (111). cGAS
deficiency will cause chromosome end-to-end fusion between
short telomeres to form dicentric chromosomes, hindering the
initiation of cellular replicative senescence, resulting in genomic
instability and increasing the probability of cell cancerization
(111). In addition, telomere dysfunction leads to production of
extrachromosomal DNA fragments that promote autophagy by
activating the cGAS-STING signaling pathway (112).
FIGURE 4 | Micronucleus-derived DNA activates the cGAS-STING signaling pathway. DNA double-strand breaks caused by physical or chemical factors during
mitosis can be repaired by homologous recombination in normal cells. However, due to the instability of the cancer genome, chromosomal missegregation is often
caused during mitosis, resulting in the formation of micronuclei. The nuclear membrane of these micronuclei is fragile and easily ruptured, causing the DNA to leak
into the cytoplasm, which in turn activates the cGAS-STING signaling pathway.
February 2022 | Volume 13 | Article 826880
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Telomerase activity is significantly elevated in cancer
cells. However, there is another mechanism to maintain
extrachromosomal telomere repeats (ECTR) DNA sequence in
cancer cells called alternative lengthening of telomeres (ALT)
(113, 114). Studies have confirmed that induction of ECTRs in
normal human fibroblasts activates the cGAS-STING signaling
pathway, which in turn induces IFN-b production and leads to
cell proliferation defect (114). Given that IFN-b has the function
of activating immunity (115), in vivo, ECTR-induced IFN-b
produced by ALT-induced cancer cells may exert anticancer
functions. However, cGAS and STING expression are lost in
most ALT cancer cell lines (114). Therefore, specific activation of
the cGAS-STING signaling pathway in ALT-induced cancers
may become a new therapeutic option.

cGAS Recognizes cDNA
cGAS can also recognize cDNA (ssDNA) reverse-transcribed
from HIV-1 virus, causing a cascade of immune responses and
inducing IRF3 activation and IFN production; these effects are
inhibited in the absence of or by knocking down cGAS-STING
signaling (116, 117). A subsequent study found that ssDNA is a
predominantly cytosolic DNA species in the early stage of HIV
infection. Stem-loop structures in primary HIV-1 cDNA, similar
to the Y-form structure, activate cGAS in a sequence-specific
manner (118). These phenomena were also observed for other
retroviruses, including HIV-2 (119), mouse leukemia virus, and
simian immunodeficiency virus (116).

Hepatitis B virus (HBV) is an enveloped virus containing
par t ia l ly double-s t randed DNA, be longing to the
Hepadnaviridae family. The mechanism for induction of innate
immunity in response to HBV has been controversial (120–122).
However, a recent study showed that HBV RNA does not cause
immune stimulation in immunologically active bone marrow
cells, while naked HBV DNA can (123). It was shown that the
relaxed circular DNA (rcDNA) produced during HBV
replication can be recognized by cGAS, thereby inducing an
immune response (123).

Long interspersed element-1 (LINE1) is a type of
retrotransposon (124). In the human genome, the vast majority
of LINE1 are silent, but their overactivation can cause a variety of
age-related pathologies, such as neurodegenerative diseases and
cancer (125). SIRT6 is an ADP-ribose transferase enzyme/
deacetylase involved in the regulation of LINE1 (126, 127). In
sirt6-/- mice, the activity of LINE1 and the levels of IFN-I were
significantly increased along with many aging-related
characteristics, including growth retardation and a significantly
shortened lifespan (128). In vivo, the use of nucleoside reverse
transcriptase inhibitors (NRTIs) to target LINE1 can significantly
extend the lifespan of sirt6-/-mice; in vitro, inhibiting LINE1 with
siRNA or NRTIs can eliminate IFN-I production. The number of
detectable DNA damage markers in the cytoplasm is also
significantly reduced (128). Interestingly, cGAS expression was
also elevated in sirt6-/- MEF cells. Knockdown of cGAS in sirt6-/-

MEF cells resulted in a decrease of IFN-I in the cytoplasm. Further
evidence shows that cGAS can induce IFN-I by recognizing the
cDNA transcribed from LINE1 (128).
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Potential Functional Relationships
Between cGAS and RNA
Virus-Derived RNA
Current research shows that the expression of IFNs induced by
cGAS is stimulated by dsDNA, not RNA binding. The induction
of IFN-b by dsRNA analogs poly(I:C) and poly(dA:dT) depends
on the classic RIG-I-like receptor, not cGAS (129). Sendai virus is
a known RNA virus that activates the RIG-I pathway and
induces IFN-b expression, which is not affected by cGAS or
STING deletion (67). However, not all RNA viruses follow the
classic receptor recognition pathway. Some RNA virus infections
seem to be affected by cGAS. West Nile virus is a single-stranded
RNA virus, but cGas-/- mice are significantly more susceptible to
infection compared to wildtype controls (130). Chikungunya
virus (CHIKV) is another positive-sense single-stranded RNA
virus. A study reported that the CHIKV capsid protein could
induce cGAS degradation, thereby inhibiting DNA-dependent
IFN-b transcription, whereas the cGAS-STING signaling
pathway restrained CHIKV replication in fibroblasts and
immune cells (131). Therefore, cGAS deficiency may
downregulate certain antiviral genes, making cells more
susceptible to some RNA viruses.

Interestingly, cGAS can recognize DNA : RNA hybrids and
efficiently synthesize cGAMP in THP1 cells, although the
induced cGAMP is less than that induced by dsDNA (132). In
one protein-nucleic acid interaction model, RNA : DNA hybrids
could bind the cGAS cleft in the same way as dsDNA, regardless
of the orientation of the RNA and DNA strands. The structural
comparison of dsDNA and RNA : DNA hybrids shows that they
have similar double-stranded helical conformations, and their
small and large grooves have similar shapes (132). Therefore, the
mechanism by which RNA : DNA hybrids activate cGAS may be
similar to that used by dsDNA to activate cGAS. Though the
cGAS-STING signaling pathway responds to some RNA virus
infections, the detailed underlying mechanism needs
further investigation.

Circular RNAs (circRNAs)
circRNAs are a widespread form of non-coding RNA in
eukaryotes, with tissue-specific and cell-specific expression
patterns, whose biogenesis is regulated by specific cis-acting
elements and trans-acting factors (133).

Under homeostasis, most hematopoietic stem cells in the
bone marrow are quiescent and maintain the potential for self-
renewal and differentiation (134). Disrupting the balance
between self-renewal and differentiation of hematopoietic stem
cells can cause bone marrow failure or hematological
malignancies (135). A recent study found a circRNA derived
from the D430042O09Rik gene transcript in mice, cia-cGAS,
regulates the long-term homeostasis of hematopoietic stem cells
(57). cia-cGAS is highly expressed in the nucleus of LT-HSC.
IFN-I expression is increased in the bone marrow of cia-cGAS
deficient mice, which in turn causes hematopoietic stem cells to
exit the G0 phase and enter the active phase until exhaustion
(57). Under homeostasis, cia-cGAS binds to cGAS in the nucleus,
inhibits its enzymatic activity, and protects LT-HSC in the
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dormant phase from cGAS-mediated “cell exhaustion”.
Furthermore, the binding affinity of cia-cGAS to cGAS is
stronger than self-DNA to cGAS, which inhibits the
production of IFN-I mediated by cGAS in LT-HSC, thereby
maintaining the steady-state of LT-HSC (57).

This study provided an interesting new avenue for exploring
the correlation and interaction between cGAS and circRNA,
suggesting a potential new function of cGAS that is distinct from
its role as a DNA sensor.
cGAS SIGNALING IN CELLULAR
DYSFUNCTION

cGAS Signaling and Cellular Senescence
Cellular senescence is a state of irreversible growth arrest caused
by various factors including oxidative stress, oncogenic stress,
and telomere shortening. Although the causes and phenotypes of
cellular senescence are diverse, a persistent DNA damage
response is considered to be an important feature of cellular
senescence (136).

Multiple studies provide strong evidence that cGAS plays an
important role in promoting cellular senescence (101, 137, 138).
With successive passaging of primary MEFs, most of the cells
eventually senesce, and only a small fraction overcome the
growth crisis and become immortal. Indepth studies have
found that cGAS deletion accelerates the spontaneous
immortalization of MEF cells, because the absence of cGAS
eliminates SASP induced by spontaneous immortalization or
DNA damaging agents (101). In addition, cGAS is activated by
cytosolic chromatin fragments in senescent cells, which triggers
the production of SASP factors through STING, thereby
promoting paracrine senescence (137). These studies provided
new insight into the mechanism of cellular senescence by
establishing the cGAS-STING signaling pathway as an
intermediate bridge between senescence and the SASP.

cGAS Signaling and Inflammation
The aberrant activation of the cGAS-STING signaling pathway
has been implicated in a variety of inflammatory diseases.

Myocardial infarction (MI) involves a strong inflammatory
response in related tissues. One study found that cGAS activation
by self-DNA from apoptotic cells is the main cause of MI-related
IFN-I production (139). In this model, ischemic myocardial
injury causes cardiomyocyte damage and nucleic acid release,
which activates the cGAS-STING axis. Compared to wildtype
littermates, the survival rate of cGAS-deficient mice after MI is
significantly higher, with the mice also showing reduced
pathological remodeling including ventricular rupture,
enhanced angiogenesis, and maintenance of myocardial
contractile function (140).

Aicardi-Goutières syndrome (AGS) is a rare genetic disease
characterized by systemic inflammation that most commonly
affects the brain and skin. Patients with this disease often develop
severe physical and mental disorders, chronic aseptic
lymphocytosis, and elevated IFN-I levels (82). Studies have
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confirmed that the loss-of-function mutation of trex1
exonuclease is related to the development of AGS (141, 142).
Similar to human AGS patients, trex1-deficient mice develop
autoimmune disorders and fatal inflammatory phenotypes
associated with high expression of ISGs (143, 144), which can
be rescued by cGAS gene knockout (145). Elevated cGAMP can
be detected in tissues from trex1-/- mice, demonstrating that
cGAS is activated in these mice (142).

Systemic lupus erythematosus (SLE) is a serious chronic
inflammatory disease that can affect most of the body’s tissues
and organs, including the skin, joints, kidneys, blood cells, and
nervous system. Although the phenotype and course of SLE vary
greatly, the disease is associated with a systemic increase of IFN-I
and a defect in apoptotic cell clearance (81). A recent study
showed that the expression of cGAS in peripheral blood
mononuclear cells of patients with SLE was significantly higher
than that of the control group; the higher the cGAMP level, the
higher the disease activity in patients with SLE (146). Loss of
trex1 can lead to accumulation of cytoplasmic DNA and the
development of autoimmune diseases, including AGS and SLE.
Our research group constructed trex1D18N/D18N mice, which
show similar disease phenotypes as in patients with AGS and
SLE. In these mice, we verified that cGAS deletion reduces
multiple organ inflammation (147). Together, ours and others’
studies indicate that cGAS is a key mediator of autoimmune
diseases related to trex1 dysfunction.

In conclusion, several studies strongly support a central role
of the cGAS-cGAMP-STING pathway in the pathogenesis of
various IFN-I-mediated inflammatory diseases. Therefore, the
development of drugs that target this pathway may provide new
hope for the treatment of such inflammatory diseases.

cGAS Signaling and Tumorigenesis
The link between DNA damage and cancer has long been
established. While this means that cells with DNA damage will
be recognized and eliminated by immune cells, genomic
instability itself is an important driver of cancer. Given the
importance of cGAS in the DNA recognition pathway, it plays
a crucial role in both aspects of cancer. Although the activation of
the cGAS-STING signaling pathway has been tested as a
potential cancer immunotherapy (see Therapeutic Strategies in
Tumor Immunotherapy), the potential negative tumorigenic
effects of overactivation of the cGAS signaling cannot be ignored.

7,12-dimethylbenz[a]anthracene (DMBA) is a known
carcinogen. It activates the cGAS-STING signaling pathway by
inducing DNA breaks and promotes skin carcinogenesis in mice.
Interestingly, unlike other cancer models, DMBA-treated sting-/-

mice were found to be more resistant to DMBA-induced skin
cancer growth (148). Brain metastatic cells contain cytoplasmic
dsDNA, which activate cGAS and produce large amounts of
cGAMP. The connexin 43-based functional gap junctions
between cancer cells and astrocytes allow the transfer of
cGAMP to astrocytes, where it activates TBK1 and IRF3 and
induces the production of IFN-a and TNF-a. These cytokines
activate STAT1 and NF-kB signaling pathways in brain metastatic
cells to support the growth and survival of cancer cells under the
pressure of chemotherapy (149). Furthermore, the DNA damage
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caused by etoposide, camptothecin, and H2O2 treatment can
induce nuclear translocation of cGAS. The nuclear cGAS
significantly suppresses the repair of DNA damage mediated by
homologous recombination, and induces transformation of the
damaged cells leading to tumorigenesis (55).
THERAPEUTIC STRATEGIES TARGETING
THE cGAS PATHWAY

Therapeutic Strategies in
Inflammatory Diseases
Given that the cGAS pathway is involved in a variety of
inflammatory diseases, inhibitors or antagonists targeting the
cGAS-STING signaling pathway are being considered as
potential therapeutics. At present, a variety of effective
inhibitors/antagonists of cGAS have been developed. 2-amino
pyridine ring (G150) blocks the binding of dsDNA and cGAS
by occupying the ATP and GTP binding active sites on cGAS
(150). Suramin replaces the DNA bound to cGAS to block the
downstream immune response. In vitro, adding suramin to
THP1 cells can effectively reduce the expression levels of IFN-b
mRNA and protein (151). RU.521 selectively binds to cGAS,
thereby inhibiting cGAMP induced by dsDNA and reducing
expression of IFN in a dose-dependent manner, without
affecting other inflammatory pathways independent of the
cGAS pathway (152). Aspirin is a common non-steroidal
anti-inflammatory drug. It can acetylate cyclooxygenase,
including cGAS, thereby inactivating cGAS. One study
confirmed that aspirin can effectively inhibit autoimmunity
induced by self-DNA in the cells of patients with AGS and AGS
mouse models (153).

Therapeutic Strategies in Tumor
Immunotherapy
Radiotherapy is a conventional cancer treatment method;
damage of cancer cells triggers the release of pro-inflammatory
factors and increases the infiltration of immune cells in the
tumor (154). Studies have found that radiotherapy induces IFN-I
in tumors and IFN-I receptors on immune cells (especially CD8+

T cells), which are critical to its therapeutic effectiveness (155,
156). Meanwhile, cGAS deficiency in dendritic cells (DC) is
sufficient to eliminate antitumor immunity in vitro (157).
Subsequent studies have shown that the cGAS-STING
signaling pathway is an important contributor to antitumor
immunity after radiotherapy by detecting DNA damage in
tumor cells and promoting the recognition of tumor-derived
DNA in immune cells (158, 159). Additional studies have shown
that cGAS is essential for the antitumor effect of immune
checkpoint blockade in mice (160). Antibodies against the
immune checkpoint inhibitor PD1/PD-L1 can effectively slow
the growth rate of mouse B16 melanoma (161). Intramuscular
injection of cGAMP also inhibits the growth of melanoma and
prolongs the survival of tumor-bearing mice, as cGAMP
activates DC and enhances the cross-presentation of tumor-
associated antigens to CD8 T cells. The combination of the
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PD-L1 antibodies and cGAMP has a synergistic effect beyond
each treatment alone (160). These studies show that the
activation of the cGAS pathway is important in anti-tumor
immunotherapy; however, given that the cGAS pathway also
has a tumor-promoting effect, unchecked activation of the cGAS
signaling pathway in tumor cells is not a therapeutic option.
CONCLUSIONS AND FUTURE
DIRECTIONS

The discovery of the cGAS-STING signaling pathway provides a
comprehensive functional network for activation of the dsDNA-
dependent innate immune response, and plays a particularly
important role in activating the immune response against DNA
viruses. The cGAS-STING signaling pathway also modulates cell
transfection and gene delivery, and may be harnessed to enhance
the development of new antiviral therapies and nucleic acid
vaccines (68, 162). However, the recognition of self-DNA by
cGAS can cause various diseases, including inflammatory and
autoimmune diseases, largely due to the overexpression of IFN.
Therefore, inhibitors targeting cGAS may be a promising
treatment approach for such diseases. Given that STING is the
most important adaptor protein mediating cGAS-mediated IFN
expression, inhibitors targeting STING may also have
therapeutic applications (Figure 5).

At the same time, researchers have also found that the cGAS-
STING signaling pathway is inhibited in various cancer cells
ranging from melanoma (163) to ovarian cancer (164), and
colorectal carcinoma (165). The mechanisms underlying this
phenomenon have yet to be uncovered. Our group recently used
zebularine (a demethylating agent) to activate the cGAS-STING
signaling pathway in tumor cells (166). In ourmouse tumormodels,
zebularine enhanced STING expression by reducing DNA
methylation on the STING gene promoter. Administration of
zebularine alone reduced tumor burden and extended mouse
survival; its combination with cGAMP or immune checkpoint
inhibitors had a synergistic anti-tumor effect (166). Thus,
activating the cGAS-STING signaling pathway in tumor cells can
significantly enhance tumor immunotherapy effects (Figure 5).

In addition, the ability of cGAS to sense cDNA, DNA : RNA
hybrids, and circRNA, as well as the functional differences
related to its subcellular localization, indicates that cGAS has
multifaceted biological functions. Although no research has
shown whether dsDNA, cDNA, DNA : RNA hybrids, and
circRNA have similar characteristics, it is conceivable that the
nucleic acid-sensing ability of cGAS may depend on the
modulation of its structural flexibility and the interaction
between cGAS and the elaborate structures of these different
nucleic acid species.

In summary, research on cGAS has expanded our
understanding of its roles, beyond a traditional cytoplasmic
nucleic acid sensor, and has clarified the mechanisms that
cGAS uses to recognize different types of nucleic acids. These
studies have shed light on the relationship between cGAS and
antiviral immunity, tumor immunity, inflammatory response,
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and autoimmune diseases. The cGAS-STING signaling pathway
may be a promising drug target for inflammatory and
autoimmune diseases or inform the design of effective nucleic
acid drugs to treat various diseases.
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102. Coppé JP, Desprez PY, Krtolica A, Campisi J. The Senescence-Associated
Secretory Phenotype: The Dark Side of Tumor Suppression. Annu Rev Pathol
(2010) 5:99–118. doi: 10.1146/annurev-pathol-121808-102144

103. Zhao B, Xu P, Rowlett CM, Jing T, Shinde O, Lei Y, et al. The Molecular Basis
of Tight Nuclear Tethering and Inactivation of cGAS. Nature (2020)
587:673–7. doi: 10.1038/s41586-020-2749-z

104. Guey B, Wischnewski M, Decout A, Makasheva K, Kaynak M, Sakar MS,
et al. BAF Restricts cGAS on Nuclear DNA to Prevent Innate Immune
Activation. Science (2020) 369:823–8. doi: 10.1126/science.aaw6421

105. Pathare GR, Decout A, Glück S, Cavadini S, Makasheva K, Hovius R, et al.
Structural Mechanism of cGAS Inhibition by the Nucleosome. Nature (2020)
587:668–72. doi: 10.1038/s41586-020-2750-6

106. Li T, Huang T, Du M, Chen X, Du F, Ren J, et al. Phosphorylation and
Chromatin Tethering Prevent cGAS Activation During Mitosis. Science
(2021) 371:eabc5386. doi: 10.1126/science.abc5386

107. Loo TM,Miyata K, Tanaka Y, Takahashi A. Cellular Senescence and Senescence-
Associated Secretory Phenotype via the cGAS-STING Signaling Pathway in
Cancer. Cancer Sci (2020) 111:304–11. doi: 10.1111/cas.14266

108. Wan D, Jiang W, Hao J. Research Advances in How the cGAS-STING
Pathway Controls the Cellular Inflammatory Response. Front Immunol
(2020) 11:615. doi: 10.3389/fimmu.2020.00615

109. Zheng J, Mo J, Zhu T, Zhuo W, Yi Y, Hu S, et al. Comprehensive Elaboration
of the cGAS-STING Signaling Axis in Cancer Development and
Immunotherapy. Mol Cancer (2020) 19:133. doi: 10.1186/s12943-020-
01250-1

110. Turner KJ, Vasu V, Griffin DK. Telomere Biology and Human Phenotype.
Cells (2019) 8:73. doi: 10.3390/cells8010073

111. Li X, Li X, Xie C, Cai S, Li M, Jin H, et al. cGAS Guards Against Chromosome
End-to-End Fusions During Mitosis and Facilitates Replicative Senescence.
Protein Cell (2021) 13:47–64. doi: 10.1007/s13238-021-00879-y

112. Nassour J, Radford R, Correia A, Fusté JM, Schoell B, Jauch A, et al.
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