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Abstract

Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory
regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory
regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and
animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers,
and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other
mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and
experimental assays to find homologous regions that are conserved in sequences and genome organization and are
enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a
filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific
experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination
of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated
the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and
climate change adaptation traits and identifying potential genome editing targets.
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Background

Predicting functional features of the genome beyond protein-
coding regions has been the primary focus of the post-genome
sequencing era [1, 2]. More than 90% of common genetic vari-
ants associated with phenotypic variation of complex traits are
located in intergenic and intronic regions that regulate gene ex-
pression but do not change protein structure [3–5]. Moreover,
SNPs associated with diseases such as autoimmune diseases,
multiple sclerosis, Crohn’s disease, rheumatoid arthritis, and
type 1 diabetes are strikingly enriched in promoters and en-
hancers [4, 6, 7]. Annotation of functional regions of the genome
that harbour SNPs identified by genome-wide association stud-
ies (GWAS) to be significantly associated with variation in phe-
notype will contribute to the identification of functional SNPs
and causativemutations, thereby suggesting genetic targets and
markers for numerous applications in human health care and
agricultural livestock production [8–11].

However, in mammalian species other than the human and
mouse, there are few data available at the genome level for dis-
covery of regulatory elements. The recently established Func-
tional Annotation of ANimal Genomes (FAANG) consortium has
begun to address this deficiency in a coordinated fashion [12,
13]. It is expected that core assays identifying regulatory ele-
ments for key tissues in a number of production animals will be
produced by the FAANG consortium and collaborators. However,
the information generated in the foreseeable future for livestock
is likely to remain far less comprehensive for coverage of tis-
sues, sampling conditions, and breadth of annotation of regu-
latory elements compared with the human and mouse. The de-
ficiency in the genome-wide prediction of regulatory elements
is far greater for most other mammalian species. We have de-
veloped a computational method to utilize thousands of human
regulatory datasets to predict regulatory elements in important
mammalian species.

Transcriptional regulatory DNA elements (RDEs) are defined
as genomic regions that are binding sites for 1, or usually a
combination of, transcription factors (TFs) and transcriptional
coregulators [14–16]. Across distant species from C. elegans to
D. melanogaster to humans, the architecture of gene regulatory
networks, organization of chromatin topological domains, chro-
matin context at enhancer and promoter regions, and nucle-
osome positioning are remarkably conserved [17, 18]. For ex-
ample, the majority of co-associations of transcription factors
(i.e., combinations of different transcription factors binding to
the same genomic region) at proximal transcription start site
regions in humans remain proximal in the worm (80%) and
fly (100%). Large-scale comparisons between the human and
mouse (M. musculus) in the Encyclopedia of DNA Elements (EN-
CODE) project found a high level of conservation of binding mo-
tifs and activities, including TF binding to different chromatin
states (r = 0.9), proportion of enhancers in TF binding regions
(r = 0.7), DNA methylation preferences within TF-occupied re-
gions (hypomethylated regions in both species), and TFs sharing
a conserved primary binding motif sequence (∼94% of studied
TFs) [19]. The human Encyclopedia of DNA Elements (ENCODE),
Functional Annotation of the Mammalian genome (FANTOM),
Roadmap Epigenomics Mapping Consortium (ROADMAP), and
related projects have generated large volumes of data relevant
to the identification of promoters, enhancers, and other RDEs [6,
20, 21]. However, these data have not been utilized for predict-
ing regulatory genomic regions in other mammalian species—a
strategy that can producemore comprehensive predictions than
alternative options using a small set of experimental assays to

identify a part of the regulatory repertory in the targeted species.
We recognize that species-specific regulatory elements may be
underrepresented in this process. However, we note that the
fundamental biology of, e.g., that encompassing developmental
programs, response to stimuli, reproduction, energy homeosta-
sis, and many other systems shows considerable conservation
of components and processes across species [17, 19, 22].

In the current research, we developed the Human Projec-
tion of Regulatory Regions (HPRS) method to utilize results from
thousands of biochemical assays in human samples to compu-
tationally predict equivalent information in other mammalian
species. Themethod exploits the conservation of regulatory ele-
ments at the DNA sequence and genome organizational levels to
map these elements to other mammalian species. It then uses
species-specific data to filter these mapped sequences, which
are enriched for regulatory sequence features, to predict a set
of high-confidence regulatory regions. We selected cattle as the
target species to build the HPRS pipeline and then used the pig
as a test species to validate the pipeline. The 2 species are im-
portant agricultural ruminant andnonruminant species, respec-
tively,with genomes sequenced butwith little information avail-
able about genomic regulatory regions [12]. We also applied the
method to the genomes of 8 additional mammals. We demon-
strated that the predicted regulatory dataset produced by the
HPRS pipeline is useful for selecting more likely functional SNPs
before (e.g., for SNP chip design) and after (e.g., for prioritiz-
ing significant SNPs) GWAS analysis, genomic prediction mod-
els, and the understanding of biologicalmechanisms underlying
noncoding genomic variant effects to potentially identify regu-
latory targets for genome editing.

Results and Discussion
A pipeline for the projection of human genomic
features to other mammals

The 4 key elements of the HPRS pipeline (Fig. 1) include (1) se-
lection of suitable regulatory datatypes (biochemical assays) and
tissues in humans; (2) mapping the selected features to the tar-
get species by utilizing conservation of genome organization
and sequence identity to maximize coverage without compro-
mising specificity; (3) first round filtering of the mapped regions
to retain high-confidence mapped features, which had strict 1-
to-1 forward and reciprocal mapping and where human fea-
tures have multiple mappings to the target genome, keeping
only those with high sequence identity; and (4) second round
filtering by applying a pipeline to utilize available (often limited
in scale and coverage) species-specific data to prioritize regions
likely to be functional in the target species.

Optimizing parameters for mapping sequence features
across genomes

To identify regions that were likely to be orthologous between
genomes, we deployed the liftOver tool [23] and the precom-
puted alignment files available from UCSC to map regulatory
regions in the human genome to the cattle genome based on
sequence similarity and genome location. First, we optimized
the minMatch mapping threshold of the liftOver tool, which is
the minimum proportion of bases to the total length of a region
mappable to contiguous aligned segments in the target genome.
The minMatch parameter was thoroughly tested with a range
from high stringency 0.95 down to 0.1 (Fig. 2). The minMatch
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Figure 1: A streamlined workflow for the prediction of regulatory regions. Four key steps include mapping human regulatory regions to a target genome (creating

a universal dataset), filtering the mapped regions by 7 epigenomic, transcriptomic, and genomic criteria to keep only regions with potential regulatory functions,
validating the predicted regions by comparing with the known reference dataset, and translating the findings to potential applications in genomic technology.

parameter values were assessed using 7 diverse datasets (Fig.
2, Table 1).

The percentage of regions mappable to the target genome
was compared with the total number of elements in the hu-
man regulatory databases (Fig. 2A). For cattle, mappable regions
were defined as: (1) a small sequence segment (SSS) that can be
mapped from the human to the bovine genome; (2) the resulting
SSS can be mapped back (reciprocally mapped) from the bovine
to the human genome; and (3) the boundaries of the reciprocally

mapped SSS were within 25 bp of the boundaries of the original
SSS in the human genome.

In all 5 enhancer datasets tested as shown in Fig. 2A, the ra-
tio of mapped regions increased steadily when the minMatch
parameter was reduced from 0.95 to 0.55, with a much slower
increase when the minMatch was reduced from 0.55 to 0.10
(Fig. 2A). The accuracy of the sequence projection was assessed
as the percentage of mapped regions that overlapped with a
feature present in a reference cattle liver enhancer dataset,
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Figure 2: Optimization of mapping parameters using 7 input databases. The input databases included 5 human enhancer databases (ENSEMBL, ENCODE, ROADMAP
liver tissue, Vista, and FANTOM enhancers), 1 human promoter database (FANTOM promoters), and 1 annotated human exon database (UCSC hg19) [6, 18, 21, 56, 57].
The numbers of regions from each dataset used to optimize parameters are shown in Table S4. We used the UCSC pair-wise whole-genome alignment chain files
between the human genome (hg19) and the bovine genome (UMD3.1) and performed mapping from the human genome to the bovine genome (minMatch 0.1 to 0.95

as shown in the x-axis) and then reciprocal mapping from the bovine genome back to the human genome [52, 58–60]. A, Recovered rate, defined as the percentage of
the number of mapped regions with exact reciprocal mapping to the total number of original regions in humans. B, Confirmation rate, defined as the percentage of
reference regions covered by predicted regions to the total number in reference regions (Villar reference enhancers, Villar reference promoters, and cattle GENCODE

genes V19). C, Specificity, defined as the percentage of matched reference (true positive for the reference dataset) compared with the total number of predicted regions.

Table 1: Summary information for the optimized set of human regulatory datasets used for HPRS mappinga

Dataset Tissues/cell lines
Total No. of
regions Region types

Mean
length, bp

ENCODE Distal TFs [19, 26] 0/91 1 122 364 Binding sites
for 163 TFs

151.2

ENCODE Proximal TFs [19, 26] 0/91 384 343 Binding sites
for 163 TFs

151.4

ROADMAPb [21] 24 primary cells (e.g., blood cells, immune cells, and breast
myoepithelial cells), 14 primary culture (e.g., skin, muscle
satellite, neurosphere, bone marrow), and 50 primary
tissues (e.g., thymus, spleen, lung, fetal stomach)

9 102 278 Enhancers 970.8

FANTOM Enhancers [6, 25] 135/673 43 011 Enhancers 289

FANTOM Promoters [20, 25] 152/823 201 802 Promoters 21.5

aInformation on data types and models is described in Table S3.
bSeeTable S5 for sample source details.

identified experimentally by histone 3 lysine 27 acetylation
(H3K27Ac—a marker for active enhancers) and histone 3 lysine
4 trimethylation (H3K4me3—amarker for active promoters near
transcription start sites) assays (hereafter referred to as the Vil-
lar reference datasets) (Fig. 2B) [22]. The coverage of the rele-
vant reference datasets (Villar reference promoters, Villar ref-
erence enhancers, and UCSC exons) also increased when the
minMatch was reduced for some, but not all databases (Fig. 2B).
Importantly, the reduction in mapping threshold did not lead
to a loss of specificity, which is defined as the percentage of
predicted enhancers that matched Villar reference enhancers
(true positive for the reference dataset) compared with the to-
tal number of enhancers predicted using the particular input
dataset (Fig. 2C). The combined results shown in Fig. 2A and
Fig. 2B suggest that reducing minMatch to lower than 0.55 still
increases (at a slower rate) the number of mapped regions (for
the ROADMAP, ENSEMBL, FANTOM, and ENCODE datasets) (Fig.
2B) and increases the chance of detecting more reference en-
hancers (for the ROADMAP, ENSEMBL, and ENCODE datasets (Fig.
2A). No significant difference was observed when lowering the
minMatch from 0.2 to 0.1, but a slight gain in the percentage of

mappable regions was obtained when decreasing the minMatch
from 0.3 to 0.2. Therefore, the parameter testing indicated that
the optimal minMatch threshold was 0.2.

We also developed the method to detect regions possi-
bly from gene duplication events (Supplementary Methods). To
identify regions possibly resulting from duplication events (Fig.
S1A), the HPRS mapping pipeline pooled unmapped regions in
the human datasets (with minMatch = 0.2) and mapped re-
gions with no exact reciprocal matches for a second roundmap-
pingwith different parameters (allowingmultiplemappings and
keeping only results with similarity higher than 80%) to rescue
regions with multiple map targets.

Optimized use of human regulatory datasets

Regulatory regions can be active or quiescent, depending on the
cell type and the biological state, and therefore prediction us-
ing a single tissue/cell line, or a single assay type, is unlikely
to produce a high coverage of all possible regulatory sequences
of a species [24]. Therefore, we investigated the effect of us-
ing different databases on the predictive capacity of HPRS. First,
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Figure 3: Effects of combining databases. A, Application of the HPRS mapping method to the genomes of 10 mammalian species. The input for the HPRS mapping was
1 of the 42 ROADMAP human datasets (38 adult tissues and 4 cell lines as shown in the x-axis) [22] to 10 mammalian species. The Villar reference enhancer datasets
determined by H3K27Ac and H3K4me3 assays for liver tissue in each species were used to estimate the coverage of experimental enhancers by the predicted dataset
(shown in the y-axis as species-specific enhancer dataset). For each species, the coverage was the percentage of the Villar reference enhancer dataset that overlapped

with the HRPS prefiltered enhancers. B, The combination of all 40 tissues in each species was used. C and D, The optimal combination of 5 databases for enhancers
and promoters, respectively. The reference datasets include ROADMAP enhancers (42 tissues), ENCODE distal TFs, ENCODE proximal TFs, FANTOM enhancers, and
FANTOMpromoters. The numbers shown in the intersections are the number of common regulatory regions between the HPRSmapped regions and the Villar reference
datasets.

we compared the mapping coverage of enhancers from 42 hu-
man ROADMAP datasets [21] with the reference liver enhancer
datasets, which were experimentally identified (by H3K27Ac as-
say for liver tissues) for 10 mammalian species reported in Vil-
lar et al. (Fig. 3A and B, Tables 1 and 5) [22]. Fig. 3A shows the
percentage of Villar reference enhancers (e.g., enhancers de-
tected in liver tissues in cats) that overlap with HPRS-predicted
regions by mapping each of the original 42 human tissues to
the targeted species (e.g., to the cat genome). Fig. 3B shows the
percentage overlapping with the results from using the com-
bined 42 tissues. Comparing results from each tissue, or from
combined tissues in each species, enabled assessment of vari-
ation due to evolutionary distance or tissue specificity. Second,
we evaluated the predictions from human to bovine based on
different datatypes, including promoter databases (FANTOM),
enhancer databases (FANTOM and ROADMAP), and transcrip-
tion factor binding site databases (ENCODE proximal and distal
TFs) (Fig. 3C and D). Each of the datatypes has unique sequence

features that define different types of regulatory regions, e.g.,
those that are specific to promoters or enhancers. In general,
species with closer evolutionary distance to humans had more
HPRS-predicted enhancers matching the relevant Villar refer-
ence liver datasets (Fig. 3A). For each tissue, the relative map-
ping rates were similar between species. Between different tis-
sues across the 42 ROADMAP datasets, thymus enhancers had
the lowest mapping rate and liver enhancers the highest map-
ping rate in most species (Fig. 3B). Notably, the tissue specificity
effect, exemplified by the higher mapping rate for ROADMAP
liver datasets to the relevant species Villar reference datasets
than for other ROADMAP tissues (Fig. 3B), was reduced substan-
tially if the 2 primates that were more evolutionarily related
to humans (macaque and marmoset) were removed from the
comparison.

As the coverage of the reference cattle liver enhancer dataset
was not significantly higher with human liver enhancers than
with enhancers from many of the other human ROADMAP
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Table 2: Summary of promoter predictions

Dataset
Total regions in cattle
(MB, %)a

Overlap with Villarb

dataset (%)
Fold enrichment of
Villar dataset

No. within
200 bp of TSS
(%)c

Fold
enrichment
of TSS

Total No. of CAGE regions 154 377 (3.68, 0.138) 11 606 (84.1) 609 13 676 (51.0) 370
Filtered set CAGE regions 145 912 (3.46, 0.129) 11 203 (81.2) 629 13 011 (48.7) 377
Total all regulatory regions
(Universal Dataset)

542 756 (937.39, 35.11) 13 329 (96.6) 3 20 759 (77.6) 2

Filtered regulatory regions
(Filtered Dataset)

245 384 (356.1, 13.33) 13 104 (95.0) 7 17 715 (66.2) 5

Villar reference promoters 13 796 (32.90, 1.23) 13 796 (100) NA 10 212 (38.2) 31
ROADMAP promoters 81 892 (135.6, 5.08) 12 677 (91.9) 18 14 388 (53.8) 11

aThe total number of regions with liftOver at minMatch 0.2 and exact reciprocal matches, combined with regions that had multiple matches (no 1-to-1 relationship)
but had high conservation (80% identity). The original human regions are from the FANTOM promoter dataset. The percentage was calculated for total genome size.
bVillar promoter dataset for cattle [22].
cPromoter count within 200 bp of the Ensembl annotated UMD3.1 TSS Ensembl build 85 (total 26 740).

tissue enhancer datasets [21], we asked whether combining tis-
sues would increase coverage. By combining the predictions
from the 42 ROADMAPdatasets, 2- to 4-fold higher coverage than
from 1 tissue alone (at least 60% total coverage) could be ob-
tained across a variety of species, with coverage being lowest for
the rat and highest for macaque (Fig. 3A and B). Furthermore,
we found that separate databases constructed using different
models and biochemical assays were complementary, and com-
bining them significantly increased coverage compared with a
single database alone (Fig. 3C andD). For example, prediction us-
ing the ENCODE distal TF dataset and the ROADMAP enhancer
dataset covered the highest number of Villar cattle reference
enhancers, while prediction using the FANTOM promoter and
the ENCODE proximal TFBS databases covered more Villar cat-
tle reference promoters, and each dataset could add a num-
ber of unique regulatory regions not found in other datasets
(Fig. 3C and D). The combination of 88 ROADMAP datasets [21],
the FANTOM enhancer and promoter datasets [25], and the EN-
CODE distal and proximal TF datasets [26] generated a maxi-
mum enhancer coverage of 95% (for macaque) and promoter
coverage of 98% (for marmoset). Therefore, we selected an op-
timal combination of human input databases for the HPRS
pipeline on the basis that they represent promoters, enhancers,
and TFBS from a large combination of human tissues and pri-
mary cells and were generated by different methods (Table 1).

Predicting promoters

One of the most comprehensive human promoter datasets is
the FANTOM5 promoter atlas generated experimentally by CAGE
data from almost 1000 tissues and cell lines [20]. CAGE is a sen-
sitive methodology for the detection of transcription start sites
(TSS) and hence defines core promoter regions where there is
binding of the transcriptional machinery [27]. Promoters gener-
ally have a high concentration of TFBS, typically within 300 bp
upstream and 100 bp downstream of the TSS [20]. Promoter se-
quences are more evolutionarily conserved than enhancer se-
quences, and therefore a larger proportion can be mapped from
human to other mammal genomes [22].

Of 201 802 CAGE transcription initiation peaks in the FAN-
TOM5 human promoter atlas [20], 154 377 (76.5% of the to-
tal) were mappable to the bovine genome (Table 2). The HPRS
using CAGE predicted new TSS not present within the exist-
ing bovine genome annotation (Ensembl Build 85). Although
a promoter dataset for cattle can be inferred by defining up-
stream sequences of genes with annotated TSS, this indirect

inference results in a small number of promoters. Approxi-
mately 26 740 cattle genes (coding, lncRNAs, miRNAs, etc.) in
the reference dataset used (Ensembl Build 85) have annotated
TSS. This dataset is far from comprehensive because of the ex-
pected underrepresentation of noncoding genes and of alter-
native promoters (APs). The 1 gene-one promoter and 1 gene-
one protein concepts are no longer appropriate to describe the
diverse transcriptome [28]. APs are common and are function-
ally important. A number of APs were found associated with
complex traits [29]. While 51% of the Ensembl cattle TSS are
covered by mapped human CAGE transcription initiation peaks
(3.7 Mb), only 38.4% are covered by the experimentally defined
promoters (32.9 Mb) in Villar et al. [22], suggesting that HPRS
predictions based on human CAGE data could enrich promoter
coverage in the cow by more than 12 times compared with
the standard promoter assay (H3K4me3 ChIP-Seq) (Table 2). Ac-
tive TSS regions from 88 human tissues in the ROADMAP were
mapped to 81 892 putative promoters in cattle [21], with a total
length of 135.6 Mb. Noticeably, the average number of Ensembl
reference TSS that overlapped every 1Mb of predicted promoters
based on the ROADMAP database was 37-fold lower than those
based on the CAGE database (Table 2).

HPRS using the CAGE dataset can predict many TSS at single-
nucleotide resolution and can accurately predict transcriptional
orientation. TSS are presented in the Ensembl database as single
nucleotide genomic positions. HPRS-predicted promoters based
on CAGE had exact overlap to the 7191 Ensembl TSS for cat-
tle. While promoter prediction by using histone marks (such as
those used by ROADMAP) cannot directly define transcriptional
orientation, this information, predicted by HPRS using human
CAGE data, is highly accurate [20]. Consistently, we found that of
13 676 genes that have TSSwithin 500 bp ofmapped CAGE peaks,
96.9% (13 257) of genes had the same transcriptional orientation
in the Ensembl annotation and predicted by human CAGE data.
We therefore assigned promoter orientation using the predic-
tions from the CAGE dataset.

Mapping enhancer datasets

Prediction of enhancers is likely to be more challenging than
predicting promoters because (1) enhancers are less conserved
in DNA sequence; (2) enhancer locations evolve faster [19, 22];
and (3) enhancer effects are usually independent of the distance,
orientation, and relative location (upstream or downstream) of
gene targets [14]. To predict a broad set of sequences in a species
that are active in 1 or more tissues or conditions, we expanded
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Table 3: Summary of mapped and filtered regulatory sequences

No. of mapped regions (%) Genome coverage, Mb (%)

Datasets Human Cow Pig Human Cow Pig

Total genome size, Mb NAa NA NA 3137.2 (100) 2670.4 (100) 2808.5 (100)
ROADMAP enhancers, % mapped
to target species

9 102 278 (100) 5 917 129 (65) 5 620 417 (62) 8836.6b (NA) 6142.4b (NA) 5809.5b (NA)

ROADMAP enhancers (overlapping
regions were merged)

494 583 (100) 371 295 (75) 361 682 (73) 1123.2 (35.8) 885.6 (33.2) 826.2 (29.4)

FANTOM CAGE enhancers 43 011 (100) 34 303 (80) 27 558 (64) 12.4 (0.40) 12.2 (4.6) 9.6 (0.34)
ENCODE distal TFs 1 122 364 (100) 749 572 (67) 716 515 (64) 169.7 (5.4) 132.0 (4.9) 124.4 (4.4)
FANTOM CAGE promoter peaks 201 802 (100) 154 377 (76) 153 893 (76) 4.3 (0.14) 3.7 (0.14) 3.7 (0.13)
ENCODE proximal TFs 384 343 (100) 298 554 (78) 279 774 (73) 58.2 (1.9) 48.0 (1.8) 48.9 (1.7)
Merged ROADMAP, ENCODE, and
FANTOM datasets (Universal
Dataset)c

760 702 542 756 (86.1
and 96.6)d

519 913 (89.2
and 97.1)d

1165.7 (37.2) 919.5 (34.4) 857.8 (30.5)

Filtered Dataset NA 245 384 (73.5
and 95.0)d

151 523 (69.8
and 95.6)d

NA 356.1 (13.3) 311.5 (11.1)

aNA, not applicable. The percentage was not calculated for these 3 values because overlapping regions are present in the different enhancer datasets.
bThe total size is bigger than the genome size because overlapping regions are included.
cTotal size of nonoverlapping regions in the Universal Dataset (before filtering); the percent overlapping Villar reference enhancers (the former) and promoters (the
later) in the targeted species.
dPercent overlap Villar reference liver enhancers and promoters in the filtered datasets.

the human enhancer datasets to include 88 tissues, primary
cell lines, and primary cell cultures generated by the ROADMAP
project (Table 1) [21]; all human active enhancers defined by
CAGE data from hundreds of tissues and cell lines in the FAN-
TOM project [6]; and all the Villar experimentally defined refer-
ence cattle liver enhancers (Table 1) [22]. Cumulatively, the HPRS
pipeline mapped more than 9.1 million human enhancer se-
quences to more than 5.9 million regions in the bovine genome,
which were then merged into 542 756 nonoverlapping regions
(Table 3). The merged dataset (Universal Dataset) covered 86%
(excluding merged regions resulting from the original Villar ref-
erence enhancers) of the Villar enhancer reference dataset (Ta-
ble 3). The term “Universal” reflects the initial pooling of all rel-
evant human regulatory datatypes and datasets to form a large
collection of genomic regions to bemapped to the target species.
Regulatory sequences are often active in certain conditions, and
remain inactive in most other cases. Therefore, pooling active
regulatory regions from a large number of datasets can likely
cover most active and inactive regulatory sequences, thus en-
abling the prediction of a Universal Dataset.

TheHPRSmapping of the enhancer datasets predicted a large
set of homologous regions that are potentially regulatory regions
in cattle (the Universal Dataset).We noted that the alignability of
DNA sequence does not automatically imply functionality [22],
and therefore we applied a filtering pipeline to incorporate other
types of cattle-specific data to prioritize regions more likely to
have transcription regulation functions. The filtering pipeline
used a combination of sequence features and epigenetics marks
to enrich for likely regulatory enhancers and promoters, as dis-
cussed in the filtering section.

Mapping transcription factor binding site datasets

To include potential regulatory regions beyond typical promoter
and enhancer classifications, we performed HPRS mapping of
human experimentally defined ENCODE TFBS (ENCODE anno-
tation version 2) to the bovine genome. The ENCODE TFBS
database contains binding sites for 163 key TFs, some of which
represent additional types of regulatory regions other than en-

hancers and promoters (Table 1) [30]. The use of these TFBS
datasets not only supported predictions from using the en-
hancer and promoter datasets, but more importantly, added
other regulatory categories into the combined prediction of reg-
ulatory regions. For example, the binding targets of the CCCTC-
binding factor (CTCF) are likely insulator regions [31], while en-
hancer of zeste homolog 2 (EZH2) binding sites may mark poly-
comb repressor complex 2 (PRC2) regions [32]. These ENCODE
TFBS were identified as binding regions of TFs to nucleosome-
free regions (∼151 bp per region), which are more biologi-
cally relevant than de novo scanning of genome sequence for
TFBS based on short position weight matrices (PWMs; typically
6–12 bp) because the later method only uses DNA sequence
and does not take into account the biological chromatin con-
text, which is essential for transcription factor binding [33, 34].
In total, from the ENCODE TFBS dataset [26, 34], 298 554 proxi-
mal TFBS (total 47.97 Mb) and 749 572 distal TFBS (total 132.04
Mb) were projected by HPRS onto the bovine genome. We also
show that the HPRS prediction using ENCODE transcription fac-
tor datasets was supported by 2 other independent prediction
approaches (Supplementary Methods).

The filtering pipeline for a high-confidence regulatory
region dataset

The predictions produced by HPRS were optimized so that they
occupied a relatively small part of the whole genome, but can
universally predict regulatory regions in different cell types and
tissues. Applying HPRS for selected datasets (Fig. 3, Table 1),
we first produced a preliminary Universal Dataset and then
refined it to generate a Filtered Dataset (Table 3). To remove
redundancies, overlapping mapped ROADMAP enhancers (ini-
tially mapped separately for each of the 88 ROADMAP datasets)
were merged (Table 3). Similarly, all mapped regions for pro-
moters, merged enhancers, and TFBS with overlapping coordi-
nates weremerged into larger regions to form the final Universal
Dataset (UD), containing 542 756 nonoverlapping regions. These
regions covered 937.4Mb (35.1%) of the bovine genome. The high
coverage (35.1%) of the UD was due to the large collection of
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Figure 4. Enrichment of the enhancers and promoters by the filters in the HPRS filtering process. A, A pipeline to filter predicted regulatory regions from the Universal

Dataset with 542 756 regions, covering 937.4Mb of the genome (35.1%). The initial number of experimentally defined Villar reference datasets included 31 971 enhancers
(E) and 12 257 promoters (P). The number of reference E and P, total number of predicted regulatory regions, and total length (in Mb) for all promoters and enhancers
passing each filtering layer are shown. The RatioE (total enhancers overlapping Villar reference enhancers/total length) and RatioP (total promoters overlapping Villar
reference promoters/total length) were used as criteria to assess enrichment for each filter. The 7 filters are described in Table 4 and in the Supplementary Methods.

B, Two bar graphs showing enrichment results (using the same starting set) of using each of the 7 filtering steps in comparison with the baseline (whole genome)
as shown in the dashed lines, and the Universal Dataset (mapped regions, not filtered). The y-axis shows the average number of reference promoters or enhancers
in every 1 MB of the genome. The density of regulatory regions predicted is an indicator of the prediction coverage and accuracy. The higher values indicate more
experimentally validated enhancers and promoters are enriched after filtering, suggestive of a more efficient filter. Each filter was tested independently, using the

same Universal Dataset as the input, to compare the enrichment levels that resulted from each of the 7 filters.

human datasets used as inputs for mapping to bovine (37.2% of
the human genome) so that the UD covered almost all possible
promoters, enhancers, and TFBS (Table 3). Importantly, the HPRS
pipeline improves the specificity of the UD by applying a filter-
ing step, which incorporates the power of cattle-specific data to

predict a small set of potential transcription regulatory genomic
regions in the bovine genome (Fig. 4, Table 4).

The filtering pipeline reduced the UD to the much smaller
Filtered Dataset (FD; the same as filtered UD), which covered
a smaller part of the whole genome, but which still predicted
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most active enhancers and promoters (Table 4, Fig. 4). De-
tailed discussion on rationale for selecting each filter is in the
Supplementary Materials and Methods. Briefly, the pipeline uti-
lized both biological data in the target species (86 RNA-Seq
datasets representing 79 cattle tissues [35], cattle H3K27Ac sig-
nal [22], and DNA sequence conservation scores) and computa-
tionally estimated criteria (gapped k-mers support vector ma-
chine (gkm-SVM) scores, number of overlapping annotations,
and number of CB-predicted TFBS) (Fig. 4A).

Before filtering, the Universal Dataset had approximately
2.84 times higher RatioE (number of Villar reference enhancers
by predicted regions divided by the length in Mb of predicted
regions) and 2.82 times higher RatioP (similar to RatioE, but for
promoters) than the total genome baseline, and each filtering
step in the pipeline increased RatioE and RatioP compared with
the baseline (Fig. 4B, Table 4). At the end of the pipeline, a set of
high-confidence regulatory regions (the FD), containing 245 384
sequences (with a total length of 356.1 Mb, equivalent to 13.3%
of the whole genome) was obtained. The filtering reduced the
number of regions by 2.2 times and the genome coverage by 2.6
times (Table 3, Fig. 4A), while still including most of the cattle
liver reference enhancers and promoters (73.5% and 95.0%, re-
spectively) (Table 4, Fig. 3A). Importantly, the filtered dataset had
a 5.5 and 7.1 times higher RatioE and RatioP, respectively, than
the genome baseline (Fig. 4). The size and coverage of the bovine
genome (356.1 Mb, 13.3%) by HPRS predicted regulatory regions
were comparable to the published Fig. 1 for the mouse, which
is 12.6% of the mouse genome, as predicted by ENCODE DNAse
I accessibility data and transcription factor ChIP-Seq (using an-
tibodies for 37 TFs on 33 tissues/cell lines) and histone modifi-
cation ChIP-Seq data [2]. Similarly, applying the HPRS pipeline
to the mouse genome, without using mouse-specific datasets
from ENCODE or other sources (except for the reference Vil-
lar dataset), predicted potential regulatory regions that occupy
11.3% of the whole mouse genome.

Validating and extending the HPRS pipeline in 9 other
mammalian species

The performance of the HPRS pipeline was evaluated using the
porcine (pig) genome (susScr3) [36]. HPRS had been developed
based on the bovine genome, and the pig was then selected as a
species for step-by-step comparison throughout the pipeline be-
cause of the availability of experimentally defined porcine pro-
moter and enhancer reference datasets [22] and because the
pig is an evolutionarily divergent nonruminant production an-
imal. We obtained similar results in the pig compared with
cattle on numbers of putative regulatory regions, percentage to
total genome length, and coverage of the reference datasets (Ta-
bles 3 and 4). Importantly, we extended the application of the
HPRSmapping data from the human to 8 additionalmammalian
species, which had reference promoter and enhancer datasets
from the Villar et al. study. We generated HPRS mapped unfil-
tered UDs and observed consistently high coverage of the refer-
ence enhancer and promoter datasets, and the coverages were
comparable between all 10 mammalian species (Table 5). Thus,
the pipeline appears to have general utility, not just for livestock
species, but also for mammals in general.

SNPs in regulatory regions are enriched for significant
GWAS SNPs

More than 90% of significant GWAS SNPs lie outside gene-coding
regions, and for those within the gene body (from the start to
the termination site of the complete transcript, including in-

Table 5: HPRS predicted regulatory datasets for 10 species

Species
No. of
regions

Total
length,
Mb

Enhancer
coverage,

%a

Promoter
coverage,

%a

Unfiltered datasets
Cattle (bTau6)b 545 748 919.5 86.1 96.6
Pig (susScr3) 519 913 882.4 89.2 97.1
Marmoset (CalJac3) 642 144 1106.4 93.1 98.4
Rhesus Macaque
(RheMac3)

693 312 1158.2 94.5 97.6

Dog (CanFam3) 570 317 877.5 89.4 97.6
Cat (FelCat5) 570 282 903.9 90.8 97.1
Guinea pig (CavPor3) 523 273 761.6 81.1 92.7
Rabbit (OryCun2) 531 109 819.4 86.8 96.8
Mouse (Mm10) 478 974 699.7 79.6 93.2
Rat (Rn5) 453 017 620.5 75.3 89.5

Filtered datasetsc

Cattle (bTau6) 245 358 356.1 73.5 95.0
Pig (susScr3) 151 523 311.5 69.8 95.6
Mouse (mm10) 281 071 308.4 68.9 91.4

The datasets were generated for each species using the same human data

sources, including: 88 ROADMAP tissues/primary cell lines, FANTOM promoters
and enhancers, and ENCODE proximal and distal TFs (Table S2) and combined
with the Villar reference enhancer promoter dataset. The prediction results for
each species are available as part of Additional file 2.
aCoverage of the relevant Villar reference datasets [22].
bReference genomes are from UCSC [61].
cThe relevant Villar reference species enhancer datasets were added prior to fil-
tering.

trons), more than 92% are within intronic regions [3, 5]. To test
the enrichment of potential causal SNPs within predicted regu-
latory regions in cattle, we explored the overlap between SNPs
in regulatory regions and pleiotropic SNPs, which are SNPs sig-
nificantly associated with multiple traits. The pleiotropic SNPs
were identified by an independent GWAS study for 32 cattle feed
intake, growth, body composition, and reproduction traits [37].
The GWAS used 10 191 beef cattle, with data (including imputed
data) for 729 068 SNPs (Fig. 5). We observed a substantial fold en-
richment (∼2–4 times) of SNPs with –log (P-value) from 3 to 20 in
the Filtered Dataset compared with all other sets of commonly
classifying SNPs in different genomic regions, including the set
of SNPs 5 kb upstream of protein coding genes.We also observed
higher counts (for 6 out of 10 traits) of associated SNPs within
regulatory regions in a study on 10 climatic adaptation traits in
2112 Brahman beef cattle (Fig. S1) [38]. Similarly, we found en-
richment of regulatory SNPs in a study of 5 major production
and functional traits in 17 925 Holstein and Jersey dairy cattle (P
< 0.05 for 3 out of 5 traits) (Table S1) [39]. These observations are
consistent with the pipeline identifying regulatory SNPs from
millions of SNPs in the genome and suggest that the predicted
regulatory database is useful for prioritizing SNPs likely to be
contributing to phenotypic variation of complex traits.

The regulatory region datasets can be used to guide
identification of potential causative SNPs and their
gene targets

As examples of the application of our resources to identify likely
causative mutations from a large list of significantly associ-
ated SNPs, we applied the HPRS approach to analyse 2 well-
studied genetic variants in cattle that were known to contribute
to phenotypic variation, but their mechanisms of action were
not known because theywere locatedwithin noncoding regions.
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Figure 5: Enrichment of significant pleiotropic SNPs in regulatory genomic re-

gions. Count of significant pleiotropic GWAS SNPs (P-values are from multi-trait
meta-analysis chi-square test statistic for 32 traits) [37] in a set of ∼729 100 SNPs
genotyped using the Illumina HD Bovine SNP chip or imputed from genotyping
data from smaller Illumina Bovine SNP chips. Legend labels, from top to bottom:

“AllHDchip”: 43 130 SNPs randomly selected (from all 692 529 SNPs on the HD
chip, excluding those from chromosome X); “100kbUpstream”: 43 130 SNPs ran-
domly selected (from 325 227 SNPs within 100 kb of upstream regions of coding
genes); “5kbUpstream”: all 30 384 SNPs within the 5-kb upstream regions of cod-

ing genes (results scaled to 43k SNPs); “Genes”: 43 130 SNPs randomly selected
(from 240 160 SNPs in coding genes); “Exons”: all 10 003 SNPs in exons of cod-
ing genes (results scaled to 43k SNPs); “HPRS regions”: 43 130 SNPs in regulatory
regions.

The bovine Pleomorphic adenoma gene 1 (PLAG1) locus has
been identified in the control of stature (weight and height)
by several independent GWAS studies in cattle [40, 41]. The
study by Karim et al. [40] fine-mapped 14 SNPs associated with
stature. The 14 SNPs are in the vicinity of PLAG1 and the Coiled-
coil-helix-coiled-coil-helix domain containing 7 (CHCHD7) gene,
which are 540 bp apart (Fig. 6A). The 14 candidate SNPs are
shown in Fig. 6A with coordinate locations relative to HPRS-
predicted regulatory regions. The HPRS database suggests a
strategy for further filtering these fine-mapped SNPs in 2 ways,
first to prioritize gene targets and second to prioritize SNPs. The
design of the validation experiment by Karim et al. [40] did not
separate the 2 SNPs (rs209821678 and rs210030313) in the pro-
moter region because both the long and short fragments used
for activity assays in the study contained both SNPs. The HPRS
prediction separates the 2 SNPs into 2 core CAGE peaks (Fig. 6B).
The 2 peaks suggest 2 potentially separate binding sites of the
transcriptionalmachinery. HPRS resolves the shared 540-bp pro-
moter region into separate core promoter regions and suggests a
new validation design inwhich 3 short, directional fragments fo-
cusingmore specifically on core CAGE regions (2 near PLAG1 and
1 near CHCHD7) can be used for functional assays of SNP geno-
type. Measuring promoter activity of these 3 constructs by using
the similar promoter luciferase assay and transcription factor
binding assay employed by Karim et al. [40] may confirm which
of the 2 SNPs is causative and which gene is affected.

Furthermore, by applying a scoringmodel for regulatory vari-
ants, we generated deltaSVM score for each of 97 million known
bovine SNPs (Supplementary Materials and Methods). The SNP
rs209821678 had a deltaSVM score of –5.99. The score was be-
yond the 95th percentile range of SVM scores for 97 million
SNPs, suggesting that it may play an important regulatory role.

Figure 6: Application of the regulatory database to prioritize significant bovine SNPs identified by GWAS studies for functional validation. Overview of 13 significant
SNPs fine-mapped by Karim et al. [40] is shown in the left panel. Among those SNPs, only 3 overlap regulatory regions and promoter regions in the predicted database.
The right panel is a detailed view of the 2 SNPs validated as causative in Karim et al. [40]. Both SNPs are within promoter regions of the PLAG1 gene, but not the CHCHD7

gene. The regulatory (enhancers, promoters, and transcription factor binding sites) and promoter (only promoters) tracks display HPRS-predicted regions.
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Figure 7: A potential model for effect of the Celtic mutation. Using human Hi-C (chromosome conformation capture) data and scanning of transcription factor binding
sites, we generated a hypothesis to predict cattle regulatory targets for polled mutation (HiC target, HiC anchor, and HAND1 tracks). The regulatory (enhancers,

promoters, and transcription factor binding sites) tracks display the HPRS-predicted region. Two common mutations on chromosome 1 in cattle have been associated
with polled cattle. One is a 202-bp indel (“Celtic mutation”). The other is an 80-kb duplication ∼300 kb away. Purple arrows on the top link the Hi-C anchor to multiple
targets mapped from the human genome to the cattle genome. Bottom of figure is a map with locations of the regulatory regions and shows potential effects of two
HAND1 sites on the expression of the lincRNA2.

Notably, the rs209821678 deletion of the (CCG)x11 to (CCG)x9
trinucleotide repeats lies in a predicted G-quadruplex and may
cause changes in its structure, an event that could alter tran-
scriptional activity [42]. In contrast, the SNPs rs210030313 and
rs109815800 did not have significant deltaSVM scores (0.51 and
3.2, respectively).

We then asked if the regions containing the SNPs interact
with additional genes distant from the PLAG1 locus. We applied
HPRS for mapping interactions defined by chromatin conforma-
tion capture data (5C and Hi-C in the ENCODE human datasets)
to predict distal targets of the promoter regions in the PLAG1
locus [43, 44], and we found that rs209821678 and rs210030313
are within the anchor A 447 043 (chr14: 25 044 319–25 054 287,
UMD3.1), with a predicted target region (chr14: 25 478 861–25
497 096) near the Inositol monophosphatase domain contain-
ing 1 (IMPAD1). Variants within IMPAD1 have been implicated
in short stature and chondrodysplasia (Table S2). Interestingly,
the leading SNP identified in an analysis of pleiotropic genes
affecting carcase traits in Nellore cattle, rs136543212 at chr14:
25 502 915, is slightly closer to IMPAD1 [45]. The rs109815800
SNP, on the other hand, does not lie in any mapped Hi-C region.
Together, the HPRS-predicted results strongly suggest that the
rs209821678 variant is the causative SNP among the 14 candi-
dates fine-mapped by Karim et al. [40].

Another example of applying the HPRS databases for anal-
ysis of noncoding mutations is for the case of the “Celtic
mutation,” which causes the polled phenotype. The mutation

is a 202-bp indel, where the duplication of a 212-bp region
(chr1: 1 705 834–1 706 045) replaces the 10 bp (chr1: 1 706 051–
1 706 060) (Fig. 7) [46–48]. The mechanism for the Celtic mu-
tation is unknown, although it may affect the expression of
OLIGO1, OLIGO2, CH1H21orf62, and 2 long noncoding RNAs (lin-
cRNA1 and lincRNA2) [46, 47]. We found that the whole 10-base
deletion, but not the upstream212-base duplication, iswithin an
HPRS-predicted enhancer sequence (chr1: 1 706 046–1 706 182,
UMD3.1). A detailed transcription factor binding motif analysis
of the polled mutation site suggests that a binding site for the
Heart and neural crest derivatives expressed 1 (TF HAND1) is
lost due to the 10-bp deletion in animals containing the Celtic
mutation (Fig. 7C). The neural crest cells give rise to the cran-
iofacial cartilage and bone [49], suggesting that the loss of the
HAND1 putative binding site is a plausible explanation for the
altered craniofacial development in polled animals. Addition-
ally, using information from Hi-C in the human genome [44], we
found the mutation is within a mapped interaction target of the
regions Hi-C A 264 635 (chr1: 1 706 078–1 714 122, UMD3.1) and
A 264 636 (chr1:1 698 252–1 706 077, UMD3.1) and interacts with
genes hundreds of Kb away (Fig. 7, bottom panel; Table S2). Al-
though the above hypothesis requires experimental validation,
it shows that applying the HPRS approach could lead to a biolog-
ical hypothesis for the underlying effects of causativemutations
within noncoding regions.

Therefore, from the 2 examples described above (and from
the Callipyge example described in the Supplementary Data),
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we found that the HPRS regulatory database can be used to pri-
oritize SNPs and genetic variants that were identified by GWAS
studies and to draw hypotheses about biological mechanisms of
a causative SNP.

Limitations of the methods

The main aim of the HPRS pipeline is to predict as many
regulatory regions and as accurately as possible, so that the
dataset could be applied for functional SNP analysis in the target
species. However, given the uncertain nature of promoter and
enhancer identification, the rate of false positives and negatives
by HPRS is difficult to determine. In our analysis, all of the ref-
erence cattle liver enhancers were included in the initial unfil-
tered datasets, although ∼25%were lost during the filtering pro-
cess. Similarly, 96% of reference cattle liver dataset promoters
were covered by the unfiltered dataset, with less than 3% lost
in the filtering process. A limitation of the HPRS filtering pro-
cess is the requirement to use a species-specific dataset. Nev-
ertheless, compared with the large number of datasets and bio-
chemical assay types that are required to create comprehensive
coverage of regulatory regions, the number of species-specific
datasets needed for HPRS is small. In this paper, for each of
the 3 species (mouse, cattle, and pig), we used data from only
3 biological replicates of the H3K27Ac assay, which was gener-
ated within a scope of 1 project, as reported in Villar et al. [22],
to successfully filter the Universal Dataset. In addition, the ap-
proach cannot predict promoters and enhancers that are unique
to the species, e.g., promoters and enhancers that are present
in the cow but not present in humans. These unique promot-
ers/enhancers are likely to be a small proportion of the total
promoter/enhancer set. Indeed, the lineage-specific promoters
and enhancers across 20 mammalian species were around 5%
of the total promoters and enhancers [22]. Of note, relevant hu-
man input datasets can be integrated depending on the aim of
an analysis. For example, if the focus is to study milk produc-
tion, the HPRS pipeline can be applied for more relevant tissues,
such as the mammary gland. Future cattle-specific datasets can
be incorporated into the HPRS pipeline to address the tissue and
species specificity issues.

In contrast to the HPRS pipeline prediction of regulatory re-
gions, the prediction of causative genetic variation within regu-
latory regions is much more challenging. The current approach
relies on the enrichment of sequence motifs within regulatory
regions relative to nonregulatory regions. At least some of the
motifs are TFBS, but there are likely to be other types of motifs,
such as G-quadraplexes, present in regulatory regions. While
the predicted datasets can be useful for generating relevant hy-
potheses, the identification of causal variants still requires con-
siderable future refinement and validation.

Conclusions

We have developed the HPRS pipeline using a large collection of
existing human genomics data and a limited number of cattle-
specific datasets to predict a database of cattle regulatory re-
gions that covers a large number of active promoters, enhancers,
and TFBS. The database generated here is not a final product be-
cause HPRS is capable of readily integrating new cattle-specific
datasets into its mapping and filtering pipeline to expand, re-
fine, and validate the databases. Moreover, the HPRS pipeline
can be applied to data of other mammalian species and by
scientists without computer programming skills. We anticipate
that the pipeline will be used to integrate large-scale datasets

from the FAANG consortium, when they become available, with
complementary data from human research. The immediate
application of the regulatory database is to complement the cur-
rent species-specific GWAS analysis by (1) discovery of poten-
tial regulatory mechanisms of SNPs lying outside gene coding
regions, (2) prioritizing SNPs that are statistically significant at
a genome-wide level but located within regulatory regions, (3)
prioritizing SNPs that are at low allele frequency but have po-
tential for large effects, and (4) suggesting possible causative
SNPs as targets for precise genome editing or selective breeding
practices.

Methods

The complete HPRS pipeline is divided into 3modules: mapping,
filtering, and SNP analysis. The whole pipeline and documenta-
tion are available from the CSIRO BitBucket [50].

HPRS mapping pipeline

We developed a mapping strategy based on 4 elements: (1) se-
lecting a suitable combination of human databases as HPRS
inputs; (2) finding an optimal sequence identity threshold in
the target genome; (3) finding options to remove less confi-
dent mapped results; and (4) adding multiple mapped regions
that meet a high sequence similarity threshold. Depending on
the species, targeted tissues, or regulatory categories of in-
terest, users can select suitable human databases using the
following suggested criteria: types of regulatory regions (pro-
moters, enhancers, and TFBS), biochemical assays, computa-
tional models for combining data, and data sources (tissues, cell
lines, traits). Second, by applying the UCSC liftOver tool [23],
regions that were aligned at the genome scale (by LastZ pair-
wise genome alignment [52]) were fine-mapped to identify tar-
get regions with proportion of sequence identity to the original
regions (minMatch) higher than a selected cutoff. We recom-
mend an optimal minMatch of 0.20 and not allowing multiple
mapping for this step. Users can vary input parameters (min-
MatchMain and minMatchMulti) in the HPRS mapping script
(Main Mapping Pipeline.py) to optimize the minMatch suitable
to specific datasets that may have different features such as
sequence length and conservation. Third, mapped regions re-
sulting from using a low minMatch cutoff (0.20) were filtered
to retain only regions with exact reciprocal mapping back to
the human genome, with the condition that both the left and
right borders of the reciprocally mapped regions were within
25-bp windows of the original regions. Fourth, to accommo-
date regions possibly resulting from duplication events, the
HPRS mapping pipeline added a step to remap regions that are
unmapped or are not reciprocally mapped by allowing mul-
tiple mapped results to be included while setting a high se-
quence similarity threshold (specified by theminMatchMulti pa-
rameter ≥0.80). Fig. S1A shows some of the expected mapping
scenarios.

In addition to the customized minMatchMain and min-
MatchMulti parameter inputs, the Main Mapping Pipeline.py
script also takes user-specified chain files for target species,
which can be any of the mammalian species with chain files
available from the UCSC databases or generated in-house.
The HPRS mapping pipeline enables fast mapping of as many
databases as necessary. The script PostHPRSMapping Merge
DifferentDatabaseTypes.py (available in the CSIRO BitBucket
[50]) can be used to combine resulting datasets into 1
dataset containing nonoverlapping regions. For example, we
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merged enhancer databases from 88 ROADMAP tissues/primary
cell lines and 5 additional promoter, enhancer, and TFBS
databases. The script also collapses names of overlapping
regions into a comma-separated field that can be used to
count the total number of annotations for each merged
region.

HPRS filtering pipeline

Detailed description of the 7 filters is presented in the Supple-
mentary Materials and Methods section. Briefly, the HPRS fil-
tering pipeline was written in R and contains 7 filtering steps
(Fig. 4, Table 4). The input file is a merged metadata file, in
which each region was calculated for the number of CAGE
peaks mapped, the RNA-Seq signal from 86 cattle RNA-Seq
datasets, the Villar H3K27Ac signal, the SVM enhancer scores
(enhancer activity predicted by a machine learning classifica-
tion method, gkmSVM) [53], the number of overlapping anno-
tations, the conservation score based on the UCSC 100-way
vertebrate alignment [54], and the number of TFBS based on
Cluster-Buster scanning [55]. The main filtering pipeline was
HPRS Filtering pipeline.Rmd. We tested a range of parameters
and recommend using the parameters set in the script. In
addition, prior to running this main script, users can choose
to optimize parameters suitable to specific datasets using
the script HPRS Filtering optimize FilterOrder.Rmd, which cal-
culates RatioP and RatioE (average number of enhancers and pro-
moters per Mb of the total length of all predicted enhancers and
promoters) for each filter and for a range of filter parameters
so that the optimal parameters are used in the main filtering
pipeline. The filtering pipeline was written in a such a way that
it is simple to add or remove filter layers depending on availabil-
ity of species-specific data.

Methods to apply HPRS dataset for regulatory SNP
analysis

The HPRS dataset can be applied for the selection of top can-
didate SNPs in regulatory regions, which are present in exist-
ing genotyping SNP chips. The selected SNPs form a small set
of SNPs that are more likely to be causal or associated to phe-
notypes. Using these SNPs for GWAS analysis may reduce noise
compared with using a large number of SNPs that are noncausal
but in high linkage disequilibrium to causal SNPs. The top can-
didate SNPs can be selected by the identification of SNPs be-
longing or not belonging to the following categories: the Uni-
versal Dataset, the Filtered Dataset, the TFBS of the predicted
regulatory regions, and regulatory regions active in tissues re-
lated to the trait of interest. In addition, deltaSVM scores can
be used as 1 of the indicators for potential SNP effects, as dis-
cussed in the SupplementaryMethods section. Alternatively, the
dataset can be used for post-GWAS analysis, in which signifi-
cant SNPs in noncoding regions that are identified from GWAS
can be assessed for potential effect on gene regulatory activ-
ity. We have discussed examples of applications for the cases
of pleiotropic SNPs, climatic adaptation–associated SNPs, and
associated SNPs’ milk-production traits (Fig. S1, Table S1), and
of post-GWAS analysis for the stature phenotype and Callipyge
phenotype (Fig. 6; Tables S2 and S3).

We developed an implementation pipeline of the gkm-SVM
model to estimate SNP effects on enhancer activities in cattle
by adapting the model to the case where very limited species-
specific ChIP-Seq data are available for model training (Supple-
mentary Materials and Methods).

Data availability

We have made all HPRS Python and R scripts publically avail-
able with usage instruction from the CSIRO BitBucket [50]. These
codes can be used to perform all steps frommapping to filtering
and scoring regulatory SNPs. Supporting data are also available
via the GigaScience database, GigaDB [51].

All human databases used for prediction are publically avail-
able (Table S5). Results of predicted regulatory regions, includ-
ing the Universal Datasets and the Filtered Datasets for cattle
and pig, are available in the Supplementary Data for this arti-
cle. For cattle, we provide deltaSVM scores for ∼97 million SNPs,
which can be used as 1 of the parameters for assessing po-
tential SNP effects. Additionally, we share predicted Universal
Datasets (not yet filtered) for 10 other mammalian species in a
format compatible for uploading to the UCSC genome browser
(Table 5; Fig. S7). These 10 additional datasets can be useful for
exploring potential regulatory effects from noncoding genomic
regions.

Additional files

Additional file 1: Figure S1: Assessing mapping results for dif-
ferent human tissues and cell line datasets onto other species.
The counts and percentages are for mapped regions before the
HPRS filtering pipeline. A, Possible cross-species mapping re-
sults, with 3 scenarios: (i) reciprocal mapping with a low iden-
tity threshold (minMatch = 0.20) but that requires exact back
mapping to the human genome; (ii) multiple mapping allowing
multiple targets, but requiring a stringent minMatch = 0.80; and
(iii) features that do not fall into the 2 categories above, such as
species-specific enhancers, are not included in the prediction.
B, Coverage of the cattle Villar enhancer reference dataset by
predicted and random feature datasets. Features were mapped
from 42 human enhancer datasets or 42 random datasets (equal
number of regions and region length distribution) to the bovine
genome and then compared for percent overlap with the cat-
tle Villar reference liver enhancer dataset. For all 42 datasets,
the regulatory datasets produced 5–10 times higher coverage of
the reference bovine liver enhancers than the random datasets.
C, Coverage of predictions by 12 common ENCODE human cell
lines (x-axis). The numbers of recovered regions usingminMatch
= 0.2 and minMatch = 0.95 are shown. D, Percentage of addi-
tional features that had multiple mapped targets but met the
high sequence similarity threshold for reciprocal mapping from
the bovine genome to the human genome (minMatch = 0.80).

Additional file 2: Figure S2: Enrichment of GWAS-associated
SNPs in HPRS filtered regulatory regions. Data are from a GWAS
dataset for 2112 cattle measured for 10 different climatic change
adaptation–related phenotypes [6]. A, Number of GWAS signifi-
cant SNPs, with –log(P-values) ≥7 in any of the 10 separate phe-
notypes. GWAS P-values for each trait ≤10-7 are considered sig-
nificant withmultiple test correction (with Bonferroni-corrected
P ≤0.05, and the number of SNP is ∼500 000 SNPs). SNPs were se-
lected for each of the 10 phenotypes separately and were pooled
into 1 set, and density plots of SNP counts and corresponding –
log(P-values) for each phenotype are shown. The x-axis shows –
log(P-values) values from 0 to 20, and the y-axis shows density of
the SNP counts according to the –logP distribution. B, Significant
SNPS were selected based on combined criteria: –log(P-values)
>2 and abs(effect size) greater than or equal to the third quartile
effect size value for each of the 10 phenotypes. The x-axis shows
the name IDs of the 10 phenotypes.
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Additional file 3: Figure S3: Promoter prediction. A, We se-
lected a random large region of the chromosome to evaluate
promoter prediction.We observed consistent overlapping of pre-
dicted promoters with known transcription start sites (TSS). The
higher and denser numbers of predicted promoters compared
with annotated TSS suggest that the HPRS prediction poten-
tially led to the identification of unannotated promoters, in-
cluding alternative promoters within annotated transcripts and
promoters of unannotated transcripts such as those for long
noncoding RNAs. B, HPRS promoters also predict bidirectional
promoters with high accuracy (- for antisense, + for sense). C,
HPRS-predicted alternative promoters are supported by cattle
expression sequencing tag (EST) data. The predicted promoters
overlap the start sites of EST transcripts within the full-length
ZC3H14 gene.

Additional file 4: Figure S4: Enrichment of TFBS within en-
hancers and promoters. The promoters and enhancers were
mapped from the human FANTOM enhancer [1] and the hu-
man FANTOM promoter databases onto the bovine genome [2].
Mapped regions were compared with the Villar bovine enhancer
and promoter reference datasets for liver tissues [7]. Three cat-
egories of overlapping to the reference datasets were compared
(x-axis): (i) mapped regions overlapping the Villar reference
dataset (LOinLiver); (ii) mapped regions not in the Villar dataset
(LOnotinLiver); and (iii) regions in reference datasets not covered
by mapped regions (LiverNotinLO). The TFBS were derived from
whole–bovine genome scanning using the Cluster Buster pro-
gram [13] and 3 major transcription factor position weight ma-
trix databases (TRANSFAC, JASPAR, and ENCODE) [21–23].

Additional file 5: Figure S5: Tissue specificity of predicted reg-
ulatory regions. A, Counts of HPRS-predicted enhancers (using
88 ROADMAP human enhancer datasets) that overlap with the
Villar cattle reference enhancers. B, We then defined a tissue-
specific enhancer dataset by identifying HPRS regions that over-
lap with Villar reference enhancers for cattle and are unique to
each of the 88 tissues. The datasets that yielded the highest over-
lap are those from the liver cell line (liver hepatocellular cells -
HepG2) and the human liver tissue. C, We mapped 101 RNA se-
quencing datasets, collected from more than 79 tissues (Table
S5), to the predicted regulatory regions. The mapped RNA signal
was used to compare the similarity between different tissues.
Strong enrichment of brain, muscle, and liver tissues was ob-
served.

Additional file 6: Figure S6: Large-scale gapped k-mer sup-
port vector machine (LS-gkm-SVM) scores for enhancers and
deltaSVM scores for SNPs. A, The LS-gkm-SVM model was used
to calculate the gkm-SVM scores for all enhancers in the Vil-
lar dataset. Red, enhancers scored on “enhancers versus back-
ground matrix”; green, random regions (selected by shuffling
through the genomes to sample genomic regions of the same
length as the Villar reference bovine enhancers) scored on “en-
hancers versus background matrix”; blue, enhancers scored
on a “background versus background” matrix. The positive
background was selected from the Villar reference enhancer
dataset, as described in the Supplementary Materials and Meth-
ods section. Training datasets using human (HHb) and cat-
tle (BBb) and liftOver enhancer regions from human to cattle
(LOBHb) yielded consistent and comparable results, which pre-
dicted higher scores for enhancer regions (BBb Enh, HHb Enh,
LOBHb Enh) than the predictions for promoter (pmtr Enh) and
random regions (BBb Neg, HHb Neg, LOBHb Neg, and Pmtr neg).
B, deltaSVM for scoring SNP effects on enhancer activity. The LS-
gkm-SVMmodel was used to score every possible SNP across the
enhancer of the aldolase B fructose bisphosphate (ALDOB) gene

in cattle. Single nucleotide resolution scores within the ALDOB
enhancer are shown. Negative scores indicate loss of function
(or TF binding), while positive scores indicate increases in ac-
tivities. Computational predictions of transcription factor bind-
ing sites (by FIMO [29] and JASPAR position weight matrices) are
shown in the lower panels. Transcription factor IDs and SNP IDs
are shown next to the predicted regions. The ALDOB enhancer
was mapped from humans to cattle. Vertical dashed lines show
the locations of the deltaSVM peaks, where SNPs most likely re-
duce the enhancer activity, compared with the locations of pre-
dicted TFBS. The deltaSVM score prediction was consistent with
luciferase activity measurement (in humans) and prediction of
TFBS (in humans and cattle).

Additional file 7: Figure S7: An example of a simple view of
the datasets generated for 10 mammalian species. The exam-
ple is from the dog (canFam3) genome. Predicted regulatory re-
gions are shown in blue, with annotations (enhancer, promoter,
and transcription factor IDs)marked on the left. For regionswith
multiple annotations, users can display the annotations by se-
lecting the region on the browser. The example shows the ENPP1
gene.

Additional file 8: Table S1: Enrichment of GWAS SNPs in com-
mon phenotypes measured for dairy cattle.

Additional file 9: Table S2: Hi-C targets and gkm-SVM predict
causative SNPs and gene targets.

Additional file 10: Table S3: Predicted Hi-C interaction regions
at the putative Callipyge locus (chr21:67339968:67340027).

Additional file 11: Table S4: Regulatory datasets used for op-
timizing mapping parameters.

Additional file 12: Table S5: Data sources for publically avail-
able human datasets used as inputs for the HPRA pipeline in this
paper.
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