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Background: This study proposes a quantitative 2-stage procedure to detect potential

drug-induced liver injury (DILI) signals in pediatric inpatients using an data warehouse of

electronic health records (EHRs).

Methods: Eight years of medical data from a constructed database were used. A

two-stage procedure was adopted: (i) stage 1: the drugs suspected of inducing DILI were

selected and (ii) stage 2: the associations between the drugs and DILI were identified in

a retrospective cohort study.

Results: 1,196 drugs were filtered initially and 12 drugs were further potentially

identified as suspect drugs inducing DILI. Eleven drugs (fluconazole, omeprazole,

sulfamethoxazole, vancomycin, granulocyte colony-stimulating factor (G-CSF),

acetaminophen, nifedipine, fusidine, oseltamivir, nystatin and meropenem) were

showed to be associated with DILI. Of these, two drugs, nystatin [odds ratio[OR]=1.39,

95%CI:1.10–1.75] and G-CSF (OR = 1.91, 95%CI:1.55–2.35), were found to be

new potential signals in adults and children. Three drugs [nifedipine [OR = 1.77,

95%CI:1.26–2.46], fusidine [OR= 1.43, 95%CI:1.08–1.86], and oseltamivi r [OR= 1.64,

95%CI:1.23–2.18]] were demonstrated to be new signals in pediatrics. The other

drug-DILI associations had been confirmed in previous studies.

Conclusions: A quantitative algorithm to detect potential signals of DILI has been

described. Our work promotes the application of EHR data in pharmacovigilance and

provides candidate drugs for further causality assessment studies.

Keywords: post-marketing surveillance, drug safety, drug-induced liver injury, electronic health records, pediatrics

INTRODUCTION

Drug-induced liver injury (DILI) is a serious public health issue and potentially serious adverse
reaction that can acute liver failure. The incidence of DILI in developed countries is estimated to be
19/100,000 in the general population (1). Rates of DILI in inpatient wards are higher, ranging from
0.12 to 1.4 per 100 admissions (2). It accounts for 4–10% of all adverse drug reactions (ADR) and up
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to 13–15% of liver failure, with 29% of the liver failure cases had
liver transplantation in American adults (3, 4). Recently, DILI has
become the most important cause of post-marketing warnings
and drug withdrawals (5). Moreover, children and adolescents,
with a lack of clinical trials and immature liver and kidney
function, are more prone to DILI than adults (6, 7). Thus, the
detection of DILI signals is very important for post-marketing
surveillance, especially in pediatric patients.

Traditionally, spontaneous reporting systems (SRSs), as the
passive systems collecting reports of adverse drug events (ADEs),
are the most common resources for monitoring DILI signals.
However, these passive surveillance methods are limited by
under-reporting, poor report quality, reporting bias, and unable
to calculate the frequency of ADEs (8). A previous study
showed that <6% of hepatic adverse reactions were reported
(9). The expanding use of electronic health records (EHRs)
during these years provides another potentially abundant source
for pharmacovigilance and allows the use of larger populations,
including children and adolescents, in population-based studies.
These data are more practical and contribute to a more precise
benefit-risk assessment.

Several studies have explored the signals of DILI in routinely
collected data from EHRs, such as laboratory results and
diagnosis codes (10–13). However, few studies focused on the
drugs suspected of inducing DILI in children and adolescents.
The study aims to conduct a two-stage algorithm with
retrospective cohort designs to explore and evaluate potential
DILI signals from large dataset of EHR. Thus, it can offer suspect
drugs for pharmacovigilance and causality assessment researches
of ADRs.

MATERIALS AND METHODS

Dataset
A database containing the inpatients of Beijing Children’s
Hospital (BCH) was established previously, which including
detailed visits, medications, clinical diagnosis as well as
laboratory tests from January 1, 2010 to December 31, 2017. The
database used in this study contained 379,160 hospital records
from 247,136 patients aged 28 days to 18 years old, involving a
total of 49,685,862 laboratory tests and 8,927,894 prescriptions.
A hospitalization record represented one hospitalization, so there
were multiple records if the same patients was hospitalized more
than one time. In this study, all the data we used for eligible
patients were exported from the data warehouse and deidentified
to protect patients’ privacy and confidentiality.

Identification of Potentially DILI
Potentially DILI is mainly identified by temporary changes in
laboratory chemical indicators related to drug use. According to
the Guidelines for Medical Nomenclature Use of Adverse Drug
Reactions, which was issued by the National Center for ADR
Monitoring of the China Food andDrug Administration (CFDA)
in 2016 (14), DILI was defined when the drug was administered
within the therapeutic dose range, and the following events
occurred within 90 days of initial administration: (1) any
elevation of alanine aminotransferase (ALT) or total bilirubin

(TB) greater than the upper limit of normal range (>ULN) in
two successive tests; or (2) any elevation of ALT or TB greater
than two times the ULN (>2 × ULN) in one test. The ULNs for
the laboratory tests at the BCHwere 40 IU/L and 20.5mmol/L for
ALT and TB, respectively. Alkaline phosphomonoesterase (ALP)
was not chosen because increases in ALP activities in pediatric
patients are mostly due to bones or other organs rather than liver
disease (15).

Stage 1: Screening Drugs Potentially Causing DILI
The purpose of stage 1 was to identify potentially offending
medications that deserved further research regarding their
associations with DILI (shown in Figure 1). Only chemical
medicine was involved in this study. When a patient used two
or more drugs in one record, the record will be included in
each drug’s signal exploration, respectively. The main steps were
as follows:

(1) The hospital records that obtained at least two laboratory
tests (ALT or TB) from admission to discharge
were included;

(2) The hospital records that obtained an initial ALT/TB results
under the ULN and its report time (T1) were retained;

(3) The hospital records containing a diagnosis of hepatobiliary
disease (16) (shown in Table S1) that influenced the ALT
or TB levels were excluded. The rest hospital records were
defined as Group 1. This step was executed because the
changes in ALT/TB levels of patients with hepatobiliary
disease might be largely due to the progression of
hepatobiliary disease itself, rather than DILI.

(4) The hospital records of patients with DILI according to ALT
and TB levels from Group 1 were included in Group 2.

(5) The time of the first abnormal ALT/TB test were considered
as T2. All drug prescriptions during the period from T1 to
T2 in every record were collected. Duplicate prescription
information was deleted.

(6) The hospital records in Group 2 and Group1 was considered
to be the number of drug adverse events (a) and the total
number of drug users (b), respectively. Then ratio (a/b) for
each drug was calculated.

(7) The suspect drug that met following criteria were selected
after expert consultation: (1) ratio (a/b)>0.15; (2) total users
(b) >1,000. The a/b values of adjuvant drugs, such as normal
saline and glucose injection, ranged from 0.09 to 0.11, which
can be regarded as the value of background. And if b is
too small, there may be a greater risk of bias when doing
subsequent statistical analysis.

Procedure Development
Stage 2: Identifying DILI Signals Based on

Retrospective Cohort Designs
The overall framework of stage 2 was displayed in Figure 2.
The purpose of this step was to study the associations between
drugs and DILI by comparing differences in DILI event rates
between the exposed and unexposed group after adjusting for
four confounders. According to retrospective cohort designs,
every suspect drug filtered out in stage 1 was analyzed as follows:

Frontiers in Pediatrics | www.frontiersin.org 2 April 2020 | Volume 8 | Article 171

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Yu et al. Signal Detection of Adverse Drug Events

FIGURE 1 | The workflow of stage 1 for screening drugs potentially causing DILI. ALT, alanine aminotransferase; ULN, upper limit of normal range; DILI, drug-induced

liver injury; TB, total bilirubin.
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FIGURE 2 | The overall design of stage 2 for the detection of DILI signals based on retrospective cohort designs. ALT, alanine aminotransferase; ULN, upper limit of

normal range; DILI, drug-induced liver injury; OR, odds ratio; TB, total bilirubin.
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(1) Exposed group:

1) The hospital records with the suspect drugs were included.
2) The hospital records that obtained at least two ALT

or TB results before and after taking the suspect drug
were included.

3) The hospital records that obtained the latest ALT or TB
results within the ULNs before the first dose of medication
were retained.

4) The hospital records that obtain diagnosed hepatobiliary
diseases were also excluded (shown in Table S1).

5) For the rest records that obtained abnormal ALT or
TB levels, the records which used the hepatoprotectants
before the first report time of abnormal test were excluded
(shown in Table S2). And for the rest records that did not
obtained abnormal ALT or TB levels, the records which
used the hepatoprotectants during the entire hospitalization
were excluded.

(2) Unexposed group:

1) The hospital records without the suspect drugs were selected.
2) The hospital records that obtained at least two ALT or TB

results from admission to discharge were identified.
3) The hospital records that obtained initial ALT or TB results

within the ULNs were included.
4) The hospital records that obtained diagnosed hepatobiliary

diseases were also excluded.
5) For the rest records that obtained abnormal ALT or TB levels,

the records with hepatoprotectants before the time of the
first abnormal ALT or TB levels were excluded. For the rest
records that did not obtained abnormal ALT or TB levels, the
records with the hepatoprotectants during hospitalization
were excluded.

(3) DILI signal detection

1) Each exposed record was paired to four unexposed records
randomly after adjusting age, gender, admission time, and
major diagnosis (based on the classification in ICD-10).

2) The odds ratio (OR) and its 95% confidence interval (CI) was
calculated using the unconditional logistic regression.

3) An OR>1.0 indicated a positive signal, otherwise a negative
signals (OR≤ 1).

Evaluation of the DILI Signals
The available knowledge from literature search as well as
summary of product characteristics (SPCs) was used to
evaluate the novelty of the DILI signals. The SPCs reviewed
from micromedex (https://www.ibm.com/watson-health/learn/
micromedex), FDA website (https://www.fda.gov) or drug
instructions. Literature reviewed through PUBMED (https://
pubmed.ncbi.nlm.nih.gov), Wanfang (http://www.wanfangdata.
com.cn/index.html) as well as CNKI (http://www.cnki.net/).

Software Tools Used and Statistics
Data management was performed by MySQL (Version 14.14).
Statistical analysis was performed using R3.5.1 software. The
GraphPad Prism 8.0.1 software was used to produce figures.

The possible confounding factors in exposed groups and
unexposed groups were matched by propensity score matching
(PSM) approach. Logistic regression model was used to calculate

TABLE 1 | Information on the 12 suspect drugs.

Drug

ID

Suspect drugs Number of

DILI events (a)

Total number

of drug

usersa(b)

Ratio

(a/b)

1 Fluconazole 904 3,405 0.27

2 Omeprazole 828 4673 0.18

3 Sulfamethoxazole 1478 6,499 0.23

4 Vancomycin 707 2,809 0.25

5 Phenobarbital 270 1,313 0.21

6 G-CSF 440 1,907 0.23

7 Acetaminophen 432 1,865 0.23

8 Nifedipine 327 1,411 0.23

9 Fusidine 286 1,183 0.24

10 Oseltamivir 270 1,070 0.25

11 Nystatin 459 1,722 0.27

12 Meropenem 795 2,712 0.29

G-CSF, granu1ocyte colony-stimulating factor; DILI, drug-induced liver injury.
aTotal number of drug users: we counted it only once although there was multiple

administrations from admission to discharge.

propensity scores, with drug exposure or not as dependent
variables and four confounding factors (age, gender, admission
time, and main diagnosis) as covariates. The nearest neighbor
matching principle was used and matching ratio was set to 1: 4
in this process. The balance of covariates across the two groups
in the matched sample was finally verified.

All P-values were reported two-sided. P<0.05 represented
statistical significance. The missing data was processed
by the listwise deletion approach due to the low missing
probabilities (<5%).

RESULTS

Selection of Suspect Drugs
In stage 1, 1,196 drugs were filtered initially. After combining
the same ingredient drugs with different dosages, specifications
or manufacturers, 171 drugs remained. After excluding
hepatoprotectants and adjuvant drugs, such as normal saline,
53 drugs were left. Among them, 12 drugs (fluconazole,
omeprazole, sulfamethoxazole, vancomycin, phenobarbital,
granulocyte colony-stimulating factor (G-CSF), acetaminophen,
nifedipine, fusidine, oseltamivir, nystatin, and meropenem) met
the inclusion criteria (b>1,000 and a/b>0.15). These twelve
drugs were considered as suspect drugs and chosen for stage 2
with regard to DILI signals detection. More information was
shown in Table 1.

Detection of DILI Signals
Table 2 listed the data extraction workflow of the above 12
suspect drugs. According to the design of stage 2, there were
2,004 cases in which fluconazole was used, along with 2,295
cases with omeprazole, 878 cases with sulfamethoxazole, 1,970
cases with vancomycin, 982 cases with phenobarbital, 2,051 cases
with G-CSF, 1,609 cases with acetaminophen, 714 cases with
nifedipine, 712 cases with fusidine, 957 cases with oseltamivir,
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1,105 cases with nystatin, and 1,687 cases with meropenem in
exposed groups. The exposed group and unexposed group were
matched by gender, age, admission time, and major diagnosis
with the ratio 1:4. The basic clinical information between two
groups was described in Table S3.

Out of the 12 suspect drugs, fluconazole (OR = 2.04, 95%CI:
1.71–2.42, P<0.0001), omeprazole (OR = 1.56, 95%CI: 1.30–
1.87, P<0.0001), sulfamethoxazole (OR = 2.97, 95%CI: 2.28–
3.87, P<0.0001), vancomycin (OR = 1.73, 95%CI: 1.44–2.07,
P<0.0001), G-CSF (OR = 1.91, 95%CI: 1.55–2.35, P<0.0001),
acetaminophen (OR = 2.28, 95%CI: 1.89–2.75, P<0.0001),
nifedipine (OR = 1.77, 95%CI: 1.26–2.46, P<0.001), fusidine
(OR = 1.43, 95%CI: 1.08–1.86, P = 0.01), oseltamivir (OR =

1.64, 95%CI: 1.23, 2.18, P<0.001), nystatin (OR = 1.39, 95%CI:
1.10–1.75, P = 0.01), and meropenem (OR = 2.37, 95%CI:
1.99–2.82, P<0.0001) were found to be associated with DILI
as positive signals (shown in Figure 3). Although phenobarbital
tended toward being a positive signal with regard to DILI, it did
not reach statistically significance (OR = 1.25, 95%CI:0.98, 1.59,
P = 0.068). Table 3 described the results of 12 drugs with regard
to their associations with DILI.

Evaluation of Observed DILI Signals
According to available knowledge at present, the novelty of
11 positive DILI signals observed in stage 2 were further
evaluated (shown in Table 4). Two drugs, namely, nystatin
and G-CSF, were found to be possible new DILI signals as
they had not been previously documented in researches in
pediatric population and adults. In addition, three other drugs,
namely, nifedipine, fusidine and oseltamivir, have not been
reported as being associated with liver injury in pediatric
patients, although these associations have been found in
adults. The remaining drugs have been reported as being
associated with liver injury in both adults and pediatric
individuals. In addition, for all drugs except nystatin, there
were currently details regarding DILI as potentially ADEs in
the SPCs.

DISCUSSION

We conducted a study on the development and application of
a quantitative pharmacovigilance algorithm to identify signals
of DILI from routine EHR data. This study used a two-stage
designed algorithm with selecting offending medications firstly
and then determining the associations between DILI and drugs.
Two new DILI signals that have never been documented in
pediatric population were found using the real world data from
EHR. These may become candidate drugs for pharmacovigilance
and causality assessment studies.

The association of nystatin with DILI was found to be a
possible new signal. As far as we know, this has not previously
been reported in published documents for patients of any age
and was also not labeled in the SPCs. Nystatin is an antifungal
agent widely used to treat oropharyngeal candidiasis, candidiasis
of the skin, and cutaneous and mucocutaneous infections in
pediatrics. The adverse effects listed in its SPCs include diarrhea,
nausea, vomiting, abdominal pain, hypersensitivity reaction, and
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FIGURE 3 | The forest plot for the 12 suspect drugs-DILI associations. DILI, drug-induced liver injury; OR, odds ratio; G-CSF, granulocyte colony-stimulating factor;

CI, confidence interval.

Stevens-Johnson syndrome. Unlike in the United States, nystatin
tablets are still marketed for Chinese children and adolescents
(>5 years old). Although liver injury has never been specifically
mentioned in association with nystatin, it has been reported
as an undesirable side effect of the use of other systemic
antifungal agents. An in vitro study found that nystatin may
decrease P-gp activity, indicating the possible mechanism of
hepatotoxicity (17). A recent case report showed elevated liver
enzymes after combining the cyclosporine and nystatin, due to
drug interactions (18). Further investigations about the potential
association between nystatin and hepatotoxicity are needed.

The association of G-CSF with liver injury can be considered
another new signal. G-CSF is a blood modifying agent
widely used to treat neutropenia in patients with non-myeloid
malignancies, marrow transplantation, and acute myeloid
leukemia treated with chemotherapy in pediatric patients. It can
be used in children (except premature neonates, newborns and
infants) with close monitoring in China. The adverse effects listed
in the SPCs including rash, anemia, diarrhea, and bone pain.
Although G-CSF has been on the market for many years, its liver
safety in children is still unclear due to insufficient researches
in specific population. Despite no report of such an association
in pediatrics, several case reports have demonstrated that G-CSF
may increase ALT or AST levels in adults (19). Our results are the
first to show that G-CSF might be associated with adverse hepatic
reactions in children, which needs further investigation.

Three other drug-DILI associations (nifedipine, fusidine
and oseltamivir) were identified as potentially new signals in
pediatrics. Nifedipine is a dihydropyridine calcium channel
blocker that remains a commonly prescribed medication for

hypertension in pediatric patients. A very rare but known
drug adverse reaction of nifedipine is hepatotoxicity, which
has been described in the literature in adults (20). Fusidine
is widely used in treating severe staphylococcal infections in
children. The hepatotoxicity of fusidine in adults, manifested as
jaundice and abnormal liver function tests, has been reported
in many adult studies. Oseltamivir is an ethyl ester prodrug
used to prevent and treat infections caused by influenza A
and B viruses. A report launched by Medicines and Healthcare
Products Regulatory Agency (MHRA) showed that oseltamivir
could induce DILI, without clearly indicating the patients’ ages.
In summary, although these drugs have been used worldwide,
there are still some controversies regarding their hepatic safety
in children due to the lack of evidence. Our study may provide
more clues for further research in pediatrics.

Finally, the remaining 6 drug-DILI associations found in this
study have been widely known in both the adult and pediatric
populations based on the available descriptions in the SPCs and
literature. This may suggest to some degree that our method can
produce reliable results. On the other hand, some of the drugs
implicated in DILI that were widely known were not found in our
study, such as rifampicin, isoniazid, atorvastatin and so on. This
result does not mean no such associations, but rather because
the prevalence of drugs exposure was too limited to detect DILI
signals in pediatric or in BCH hospital.

Data-driven analytic methods are a valuable aid to the
detection of ADEs from large EHRs for drug safety monitoring
(21). One of themost valuablemethods is based on the traditional
pharmacoepidemiological approach (22). The basic principle
of these designs is to identify two groups of patients due to
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TABLE 3 | The result of DILI signal detection in a retrospective cohort study.

Drug ID Drugs name Exposed group Unexposed group B P OR (95%CI)

+ – + –

1 Fluconazole 212 1,792 439 7,577 0.71 <0.0001 2.04 (1.71, 2.42)

2 Omeprazole 177 2,118 471 8,709 0.45 <0.0001 1.56 (1.30, 1.87)

3 Sulfamethoxazole 105 773 151 3,361 1.09 <0.0001 2.97 (2.28, 3.87)

4 Vancomycin 187 1,783 444 7,436 0.55 <0.0001 1.73 (1.44, 2.07)

5 Phenobarbital 94 888 306 3,622 0.23 0.068 1.25 (0.98, 1.59)

6 G-CSF 144 1,907 363 7,841 0.65 <0.0001 1.91 (1.55, 2.35)

7 Acetaminophen 187 1,422 352 6,084 0.82 <0.0001 2.28 (1.89, 2.75)

8 Nifedipine 54 660 125 2,731 0.57 <0.001 1.77 (1.26, 2.46)

9 Fusidine 80 632 232 2,616 0.36 0.01 1.43 (1.08, 1.86)

10 Oseltamivir 72 885 179 3,649 0.5 <0.001 1.64 (1.23, 2.18)

11 Nystatin 105 1,000 307 4,113 0.33 0.01 1.39 (1.10, 1.75)

12 Meropenem 218 1,469 402 6,346 0.86 <0.0001 2.37 (1.99, 2.82)

G-CSF, granu1ocyte colony-stimulating factor; OR, odds ratio; CI, confidence interval.

TABLE 4 | The novelty of the positive signals of DILI.

Drug ID Drugs Literature

(PUBMED)a
Literature

(CNKI/Wanfang)

SPCsb

Adults Children Adults Children

1 Fluconazole Yes Yes Yes No Yesc

2 Omeprazole Yes Yes Yes No Yes

3 Sulfamethoxazole Yes Yes Yes Yes Yes

4 Vancomycin Yes Yes Yes Yes Yes

5 G-CSF No No No No Yes

6 Acetaminophen Yes Yes Yes Yes Yes

7 Nifedipine Yes No Yes No Yes

8 Fusidine Yes No Yes No Yes

9 Oseltamivir Yes No Yes No Yes

10 Nystatin No No No No No

11 Meropenem Yes Yes Yes Yes Yes

aLiterature reviewed: (1) PUBMED: https://pubmed.ncbi.nlm.nih.gov; (2) Wanfang: http://

www.wanfangdata.com.cn/index.html); (3) CNKI: https://www.cnki.net.
bSPCs reviewed: (1) Micromedex: https://www.ibm.com/watson-health/learn/

micromedex); (2) FDA website: https://www.fda.gov/; (3) Drug instructions.
cYes = drug–DILI association was documented.

DILI, drug–induced liver injury; G-CSF, granu1ocyte colony-stimulating factor; SPC,

summary of product characteristics.

exposures or events retrospectively or prospectively and calculate
the ratio of the drug-event associations (21). The cohort design
provides more solutions for addressing putative confounders
than the modified disproportionality analysis (DPA), which
was originally developed on SRS (23, 24). Different designs
based on this type of method, such as the new user cohort
design, matched case-control designs and self-controlled designs,
were determined to have the ability to track ADEs linked to
medical products by many agencies. For instance, the Korean
researchers have developed an approach, namely, Comparison of
the Laboratory Extreme Abnormality Ratio (CLEAR), to identify

possible ADE signals from abnormal value of laboratory test
(11, 25, 26).

In the present study, our algorithm is a matched case-control
design pharmacoepidemiological approach. In comparison with
CLEAR, our 2-stage designed approach has certain advantages
with regard to methodology. In the process of selecting the
drugs suspected of causing DILI, we roughly assessed the
potentialities by computing the ratio of ADEs to drug users. This
important additional step increased the efficiency and speed of
subsequent steps. In addition, more complicated confounders,
such as relevant diagnoses with clear competing causes and
medications that may affect the level of relevant laboratory
indicators, were excluded to enhance the reliability and accuracy
of the results. These final results suggest that our method is a
valuable tool to facilitate earlier signal detection using routine
EHR data.

Some limitations of this study should be considered. First, this
study focuses on the detection of DILI signals using routine EHR
database, whereas causality assessment was not involved. Large
retrospective medical datasets have certain inherent difficulties
for performing ADR causality assessments such as its incomplete
data, uncontrollable confounding factors as well as difficulties
in data extraction and algorithm execution. Next step we
will prospectively collect data and use well-known causality
assessment scales, such as Roussel Uclaf Causality Assessment
Method (RUCAM), to verify the potential candidate drugs
found in this study (15, 27). Second, some possible residual
confounders, such as concomitant drugs, dose-related effects and
the time-varying confounding by underlying diseases, were not
excluded and could have led to potential bias or imprecision.
Third, this study included only drugs with a large number of users
for screening their possibility of causing DILI. This may lead a
risk for missing potential drugs. We will mine the DILI signals
for the remaining drugs in our next study.

Regulatory agencies have spared no efforts for facilitating ADE
signal detection through multiple heterogeneous data sources
at present (28–31). Notable progress has been made in China
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in establishing the project “China ADR Sentinel Surveillance
Alliance” (CASSA). At present, we have developed an automated
program based on this algorithm, and adapted to other
ADEs besides DILI, such as drug-induced thrombocytopenia,
neutropenia, anemia, and so on. In the next step, more attention
will be paid to integrate these multiple modules to a drug
safety monitoring platform to afford quick-response tools for
pediatric clinicians and pharmacists. Future research will also
focus on tighter integration of the structured data and clinical
narratives in EHRs to improve the accuracy and scalability of
the method.

CONCLUSIONS

In this work, we demonstrated a pharmacovigilance method
to explore potentially DILI signals using real word data. The
two-stage designed algorithm was performed to select suspect
drugs firstly and then determine the associations between
DILI and drugs, respectively. We found that 11 drugs were
possibly associated with hepatotoxicity, including two previously
undocumented signals, three potentially new signals in children
and six well-known signals. Our work promotes the application
of EHR datasets in pharmacovigilance and offers candidate drugs
for further causality assessment studies.
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