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Abstract

Background: The strong invasive and metastatic nature of non-small cell lung cancer (NSCLC) leads to poor
prognosis. Collagen triple helix repeat containing 1 (CTHRC1) is involved in cell migration, motility and invasion. The
object of this study is to investigate the involvement of CTHRCT in NSCLC invasion and metastasis.

Methods: A proteomic analysis was performed to identify the different expression proteins between NSCLC and
normal tissues. Cell lines stably express CTHRC1, MMP7, MMP9 were established. Invasion and migration were
determined by scratch and transwell assays respectively. Clinical correlations of CTHRCT in a cohort of 230 NSCLC

patients were analysed.

Results: CTHRC1 is overexpressed in NSCLC as measured by proteomic analysis. Additionally, CTHRC1 increases
tumour cell migration and invasion in vitro. Furthermore, CTHRC1 expression is significantly correlated with matrix
metalloproteinase (MMP)7 and MMP9 expression in sera and tumour tissues from NSCLC. The invasion ability
mediated by CTHRC1 were mainly MMP7- and MMP9-dependent. MMP7 or MMP9 depletion significantly eradicated
the pro-invasive effects mediated by CTHRC1 on NSCLC cells. Clinically, patients with high CTHRC1 expression had

poor survival.

Conclusions: CTHRC1 serves as a pro-metastatic gene that contributes to NSCLC invasion and metastasis, which
are mediated by upregulated MMP7 and MMP9 expression. Targeting CTHRC1 may be beneficial for inhibiting

NSCLC metastasis.

Keywords: Lung cancer, CTHRC1, MMP7, MMP9, Invasion/metastasis

Background

Lung cancer is one of the most common malignant tu-
mours and remains the leading cause of cancer-related
death in China and around the world [1]. Among all the
lung cancers, non-small cell lung cancer (NSCLC) is the
most common and aggressive type, accounting for ~ 85%
of cases [2, 3]. Surgical resection remains the preferred
clinical treatment for NSCLC patients in the early stages
of disease. Despite advances in radio- and chemotherapy
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and the development of new targeted therapies in the past
few years, 5-year survival rate remains poor in NSCLC pa-
tients due to unresectable advanced or metastatic disease
at diagnosis. The high mortality and low cure rates for
NSCLC are largely attributed to the strong ability of lung
cancer cells to invade surrounding tissue or metastasize to
other remote sites [4-6]. Hence, understanding the
molecular mechanisms underlying NSCLC invasion and
metastasis is essential.

Tumor metastasis is a complex process involving cell
adhesion and proteolytic degradation of the extracellular
matrix (ECM) [7, 8]. Matrix metalloproteinases (MMPs)
are characterized by their ability to degrade extracellular
matrix (ECM) proteins and expose cryptic sites within
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the matrix molecules to facilitate tumour invasion and me-
tastasis [9—-12]. A previous study has shown MMP7 in pro-
moting ovarian cancer cell invasion [13]. Additionally, mice
deficient in MMP9 are resistant to tumour metastasis [14].
MMP9 is highly involved in strengthening the invasion cap-
ability of NSCLC [15]. Clinically, MMP7 and MMP9 expres-
sion correlates with poor prognosis of NSCLC [16-18]. To
further understand MMP modulation mechanisms in
NSCLC to search for new therapeutic targets is thus
imperative.

Collagen triple helix repeat containing 1 (CTHRC1)
was originally identified in balloon-injured rat arteries,
and its overexpression in fibroblasts is associated with
increased cell migration, motility and invasion [19].
CTHRC1 is widely upregulated in several solid
tumours, including melanoma and cancers of the
gastrointestinal tract, breast, thyroid, liver and pan-
creas [20]. Furthermore, recombinant CTHRC1 pro-
tein augments the migration and invasion capacities
of primary gastrointestinal stromal tumours [21].
According to Chen et al. [22], CTHRC1 promotes
tumour invasion and predicts poor prognosis in hepa-
tocellular carcinoma. In our previous study, CTHRC1
overexpression in NSCLC cells was associated with
tumour aggressiveness [23]; however, how CTHRCI1 is
involved in tumour cell migration and metastasis has
yet to be fully elucidated. In a recent study by Park
et al. [24], CTHRCI1 regulated pancreatic cancer
migration and adhesion by inducing Src, MEK and
Racl activation. We previously showed the ability of
CTHRCI to increase the invasive capability of epithe-
lial ovarian cancer cells by provoking constitutive
activation of Wnt/B-catenin signalling [25]. However,
whether CTHRC]1 is involved in cancer cell invasion
and metastasis has not been completely clarified.
Additionally, the mechanisms employed by CTHRC1
to regulate MMPs remain uncharacterized by previous
investigations.

In our present study, we detected CTHRC1 overexpres-
sion in NSCLC tissues by performing a proteomic analysis
and further confirmed the results through western blot-
ting and in IHC assays at the tissue and cell levels.
Furthermore, IHC analysis revealed a close relationship
between CTHRC1 overexpression and lymph node metas-
tasis, clinical stage and overall survival. Moreover, we
demonstrated that CTHRC1 promoted tumour invasion
by regulating MMP7 and MMP9 expression, which is me-
diated by the AP-1/c-Jun and NF-kB pathways, respect-
ively. Additionally, serum concentration of CTHRCI1
correlates with metastasis, clinical stage and circulating
tumour cell (CTC) number and functions as an important
prognostic factor for NSCLC patients. In summary, our
findings represent an important step forward in under-
standing the role of CTHRC1 in NSCLC metastasis.
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Methods

Patient and tissue information

Sera and primary tumour tissues were collected from a
total of 230 cases of clinically and immunohistologically
verified NSCLC (obtained from 2006 to 2011) identified
in the pathology archives of the Affiliated First Hospital,
Sun Yat-sen University, and the Central Hospital of
Wuhan. NSCLC was verified by performing haematoxylin
and eosin (HE) staining and immunohistochemistry as
shown in Additional file 1: Figure S1A. Patients’ clinical
characteristics are listed in Additional file 1: Table S1.

Proteomic analysis

Proteomic analysis was performed. NSCLC tissues
(n=20) and adjacent non-tumour tissues (n=20)
were used to extract proteins for analysis. Tumour tissues
were homogenized in lysis buffer via sonication on ice. A
2-D CleanQ2-Up Kit (Amersham Biosciences, UK) and a
2-D Quant Kit (GE Healthcare, London, UK) were used
for protein purification and concentration qualification,
respectively, according to the manufacturers’ instructions.
Two-dimensional gel electrophoresis was performed using
an immobilized pH gradient (IPG) strip (24 c¢cm, pH 3-10
NL; GE Healthcare), in which proteins were separated ac-
cording to their isoelectric point (pI) and molecular
weight. Visualized stained proteins were selected using an
Ettan Spot Handling Workstation (GE Healthcare), and
spots of interest were digested with trypsin. Peptide mass
mapping was performed via matrix-assisted laser desorp-
tion time-of-flight mass spectrometry (MALDI-TOF MS)
using an ABI Voyager DE-STR mass spectrometer. The
MASCOT  Database  (http://www.matrixscience.com/
search_form_selecthtml) was employed to identify the
original proteins. The search criteria were as follows:
Homo sapiens, trypsin cleavage, and no constraints on ei-
ther the molecular weight or the isoelectric point of the
protein.

Western blot

After electrophoresis, Membranes were incubated with
primary antibodies in 5% milk/TBST at 4 °C overnight.
The membranes were then washed with TBST and sub-
sequently incubated with HRP-conjugated anti-rabbit
IgG at room temperature for 60 min. Membranes were
washed with TBST, and signals were detected via en-
hanced chemiluminescence (ECL). Cell nucleoprotein
was extracted using EpiQuik Nuclear Extraction Kit
(Epigentek, Farmingdale, NY) according to the manufac-
turer’s instructions.

Reverse dot hybridization

All assays were performed as previously described [26]
and in strict accordance with the instructions provided
with the kit (Roche, USA). Specific probes targeting
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MMP genes were designed and listed in Additional file 1:
Table S2. siRNA sequences and RT-PCR primers are
listed in Additional file 1: Tables S3 and S4 respectively.

Luciferase reporter gene assay

NCI-H1975 cells were seeded in 24-well plates in tripli-
cate and allowed to adhere for 24 h. Luciferase reporter
plasmids (200 ng) containing different fragments of the
MMP7 or MM9 promoters were transfected into cells
using Lipofectamine 2000 with 1 ng of pRL-SV40 Renilla
luciferase as an internal control. Cell extracts were pre-
pared 24 h after transfection, and luciferase signals were
measured using the Dual-Luciferase Reporter Assay Sys-
tem (Promega, USA) according to the manufacturer’s
instructions.

Chromatin immunoprecipitation (ChIP)

ChIP was performed using a Chromatin Immunoprecipi-
tation Kit (Upstate) according to the manufacturer’s in-
structions. Briefly, NCI-H1975 cells were treated with
1% formaldehyde to cross-link proteins to DNA in a
100-mm culture dish. Sonication was applied to the cell
debris to shear DNA into 300-1000-bp fragments. Equal
amounts of chromatin supernatants, containing an anti-
body against CTHRCI1 (1 pg) or an equal amount of
control IgG, were incubated overnight at 4 °C with shak-
ing. PCR was performed after the reverse cross-linking
of protein/DNA complexes to release DNA.

Immunohistochemistry

Paraffin-embedded tissues were sectioned (4 um) and
incubated with anti-CTHRC-1 (Abcam, Cambridge,
UK), anti-MMP7 (Abcam, Cambridge, UK) and anti-
MMP9 (Abcam, Cambridge, UK) primary antibodies
at 4 °C overnight. After washing with PBS, sections
were then incubated with an HRP-conjugated goat
anti-rabbit secondary antibody for 1 h at room
temperature. Peroxidase was visualized with 3,3"-di-
aminobenzidine, and haematoxylin was used as a
counterstain.

CTC enrichment using the NanoVelcro system

CTC were detected by NanoVelcro system as we previ-
ously described [27]. Blood specimens were collected in
EDTA tubes. Blood samples were processed within 24 h.
NH,Cl was added to whole blood at a ratio of 10:1 v/v
and incubated for 20 min at room temperature to lyse
the red blood cells. Samples were centrifuged at 200 g
for 5 min, and the supernatants were removed. Cell
pellets were re-suspended. Immunocytochemistry was
applied to visualize cells captured on the SiNW sub-
strate. The microchannels were loaded with 100 ul of
fluorophore-labelled antibody solution (20 pl/1 ml of the
initial concentration) and incubated at 4 °C overnight.

Page 3 of 14

CTCs were identified based on positive staining for cyto-
keratin (PE) and negative staining for CD45 (FITC). An
experienced pathologist characterized the phenotypes
and morphologies of tumour cells.

Enzyme-linked immunosorbent assay (ELISA)

Sera were collected from NSCLC patients or healthy
controls. The concentrations of CTHRC1 in the sera
were measured by ELISA as previous described [28].

Statistical analysis

All above experiments were performed at least three
times. Statistical analysis was carried out using SPSS
software (version 16.0; SPSS, Chicago, IL, USA). The x2
test was applied to analyse the relationships between
CTHRC1, MMP7, and MMP9 expression and clinico-
pathologic parameters. An unpaired, two-tailed Student’s
t-test was used to determine the between- group signifi-
cance. Bivariate correlation analysis was calculated as
Spearman’s rank correlation coefficient. Survival curves
were plotted using the Kaplan-Meier method and com-
pared with the log-rank test. ROC curve analysis was
carried out to determine the CTHRC1 cut-off points for
metastasis and recurrence status. P values < 0.05 were
considered significant.

Results

CTHRC1 overexpression in NSCLC tissues correlates with
clinical metastasis status in NSCLC

Comparative proteomic analysis simultaneously revealed
34 differential spots in NSCLC tissues compared with
corresponding adjacent non-tumour tissues (ANTs). All
protein spots of interest on silver-stain gels (Fig. 1la)
were identified by MALDI-TOF/MS and further
confirmed via a comparative sequence search in the
MASCOT database. The identified proteins are summa-
rized in Additional file 1: Table S5. In general, CTHRC1
was upregulated in all 20 NSCLC individuals. Representa-
tive peptide mass fingerprinting (PMF) of CTHRC1 is
shown in Fig. 1b. We also confirmed that CTHRCI is
overexpressed in all the NSCLC cell lines (Additional file 1:
Figure S1B).

CTHRC1 overexpression is reportedly associated with
tumour invasion and metastasis [20, 29]. To investigate
whether NSCLC also exhibits strong CTHRC1 expres-
sion compared to ANTs, we first measured CTHRCI ex-
pression in twenty paired NSCLC and ANT samples by
performing western blotting. Compared to individual
corresponding ANTs, CTHRC1 expression was signifi-
cantly higher in NSCLC tissues (Fig. 1c), which was fur-
ther confirmed at the RNA level by RT-PCR
(Additional file 1: Figure S1C). Consistent with the west-
ern blot and RT-PCR results, IHC data further verified
the upregulation of CTHRC]1 in primary NSCLC tissues
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Fig. 1 Differential protein expression in NSCLC and corresponding adjacent nontumor tissues (ANTs) samples and the correlation with tumor
metastasis. Thirty-four differential protein spots were identified from NSCLC (a, right) and ANT (a, left) samples in the representative silver-stained
2D gel image, and the outlined areas show CTHRC1 upregulation in NSCLC tissues (n = 20). b MS identification analysis of CTHRC1. The red arrow
marks the specific peak corresponding to the CTHRC1 protein. ¢, d Comparative CTHRC1 protein quantification in paired primary NSCLC tissues
(T) and their corresponding ANTs in the left panel (n = 20) as measured by western blotting and IHC (**p < 0.01). @ CTHRC1 levels increase as
tumour grade (I-1V) progresses, as determined by IHC staining (n = 230). Representative western blot bands and IHC images are presented. Three
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(Fig. 1d). Next, we investigated the correlation between
CTHRC]1 expression and NSCLC metastasis. Pathologic-
ally verified NSCLC tumour tissues and ANTs were col-
lected. According to the IHC results, CTHRC1 was
expressed at very low levels in normal lung tissue. In
contrast, CTHRCI expression was very high in 55.2% of
primary NSCLC tissues, and furthermore, CTHRC1 ex-
pression in NSCLC tissues was associated with tumour
metastasis (Additional file 1: Table S1). Additionally,
compared to early stages, advanced stages characterized

by localized invasion or distant metastasis had signifi-
cantly higher levels of CTHRCI (Fig. 1e).

CTHRC1 promotes NSCLC cell migration and invasion

Based on the above data, CTHRC1 was overexpressed and
associated with disease invasion and metastasis in NSCLC.
To provide direct evidence supporting the contribution of
CTHRCI1 to NSCLC invasion and migration, we first se-
lected NCI-H1975 and NCI-H2122 to establish cell lines
in which CTHRC1 was stably overexpressed or knocked
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down. Overexpression or depletion efficiencies were
confirmed by performing western blot as shown in
Additional file 1: Figure S2. An adhesion assay demon-
strated decreased tumour cell adhesion accompanying the
ectopic overexpression of CTHRC1, while depletion of
CTHRCI increased tumour cell adhesion (Fig. 2a, d).
Additionally, CTHRC1 overexpression increased the
ability of tumour cells to invade through a Transwell
gel, and CTHRCI1 depletion suppressed tumour cell
invasion (Fig. 2b, ¢, e, f). Furthermore, tumour cell
migration speed increased with CTHRCI1 overexpression
but was inhibited with CTHRCI1 depletion (Fig. 2g-j).

CTHRC1 regulates MMP7 and MMP9 expression in vitro
and in vivo

Based on our data, CTHRC1 regulated the invasion and me-
tastasis of NSCLC in vitro and in vivo. To further under-
stand the underlying mechanisms through which CTHRC1
promotes tumour invasion and metastasis, we performed
ELISAs to detect CTHRCI in 92 clinical NSCLC serum
samples. Several MMPs correlated with CTHRC1 expres-
sion. Among them, MMP7 and MMP9, were the two MMPs
that were highly correlated with CTHRC1 (Fig. 3a, c,
Additional file 1: Figure S3A). To further study the
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correlation between CTHRC1 and MMP7 as well as
MMP9 in fresh primary tumour tissues, we measured
the expression of CTHRC1 and MMPs by performing
reverse dot blot hybridization. Consistent with the
ELISA data, CTHRC1 expression was significantly
correlated with MMP7 and MMP9 expression in
primary tumour tissues (Fig. 3b, d, Additional file 1:
Figure S3B). The correlation between CTHRC1 and
MMP7 and MMP9 expression was further confirmed
by IHC results obtained from 230 clinical NSCLC
tumour samples. Among 127 cases with CTHRC1
high expression, 114 and 115 cases exhibited high
MMP7 and MMP9 expression, respectively. Simultan-
eously, 92 and 85 cases exhibited low MMP7 and
MMP9 expression, respectively, out of a total of 103
cases with low CTHRC1 expression (Additional file 1:
Figure S3C, 3D).

We next examined the CTHRC1-mediated regulation of
MMP7 and MMP9 in in vitro experiments. Both MMP7
and MMP9 were upregulated when CTHRCI was overex-
pressed in NSCLC cells. In contrast, CTHRC1 knockdown
in NCI-H1975 and NCI-H2122 cells downregulated
MMP7 and MMP9 expression at the protein level, as mea-
sured by western blotting (Fig. 3e-h).
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NSCLC invasion and migration mediated by CTHRC1 are
MMP7- and MMP9-dependent

Based on our data, MMP7 and MMP9 were modu-
lated by CTHRC1 in NSCLC cells. We then sought
to determine whether NSCLC invasion and metasta-
sis mediated by CTHRC1 requires MMP7 or MMP9.
siRNA was applied to NCI-H1975-CTHRC1 and
NCI-H2122-CTHRC1 cells to achieve MMP7 or
MMP9 downregulation. Knockdown efficiency was
confirmed by RT-PCR, the results of which are shown as a
bar graph (Additional file 1: Figure S4A, 4B). CTHRC1
overexpression decreased NSCLC cell adhesion ability, and
the adhesion index was significantly increased by either
MMP7 or MMP9 downregulation (Fig. 4a). According to
our Transwell results, CTHRC1 overexpression increased

tumour invasion. However, when MMP7 or MMP9 was
knocked down in CTHRC1-overexpressing cells, respect-
ively, they exhibited significant difference in invasion ability
compared to those CTHRC1-overexpressing cells without
MMP7 or MMP9 knock-down (Fig. 4b, c). Additionally,
significant difference was observed in a scratch assay be-
tween CTHRCI1-overexpressing cells with and without
MMP7 or MMP9 knocked-down, respectively (Fig. 4d-f).
More significant difference was observed in a adhesion,
Transwell and scratch assay in CTHRC1-overexpressing
cells with both MMP7 and MMP9 knocked-down, com-
pared with those with MMP7 or MMP9 knocked-down, re-
spectively. Furthermore, we did not observe the changed
expression of MMP7 or MMP9 when MMP9 or MMP7
was knocked down (Additional file 1: Figure S4C, 4D).



He et al. BMC Cancer (2018) 18:400

Page 7 of 14

a
—e Vector --#- CTHRC1 ~ —«— MMP9 siRNA
—a— MMP7 siRNA —— MMP7+9 siRNA
g100 100
g & — 1% 80
£ 60 A e
S 40 b
8
£ o, e
2 oY /
o 1 2 3 % 71 2

3 (day)

NCI-H1975 -CTHRC1 NCI-H2122-CTHRC1

c [ Vector B CTHRCA1 M MMP9 siRNA
£ MMPT7 siRNA B MMP7+9 siRNA
3
E3
700 *
. 2600
S 8 500
@ >400
£ £ 300
2 5200
£ 100
0
NCI- H1975 NCI-H2122
e NCI-H1975-CTHRC1

MMP7  MMP9 MMP7+9
Vector CTHRC1 siRNA siRNA siRNA

A RERE
3 T
s

CTHRC1. *p < 0.05 and **p < 0.01

f NCI-H2122-CTHRC1

Fig. 4 The regulation of CTHRC1 on adhesion, migration, invasion and metastasis of tumor cells was mediated by MMP7 and MMP9. a Tumour
cell adhesion ability decreased in CTHRC1-overexpressing cells. This decreased adhesion ability was elevated when either MMP7 or MMP9 was
knocked down. b, ¢ HE staining of cells invading through the Transwell gel demonstrated increased tumour cell invasion accompanying the ec-
topic overexpression of CTHRC1, which was inhibited by knocking down either MMP7 or MMP9. d-f A wound assay showing increased migration
distance accompanying CTHRC1 overexpression. Knocking down either MMP7 or MMP9 inhibited the increased migration distance mediated by

NCI-H1975 -CTHRC1

MMP7 MMP9
siRNA _siRNA

CTHRCA1 MMP7+9

Vector

NCI-H2122-CTHRC1

MMP7 MMPS  MMP7+9
siRNA siRNA siRNA

RO N
il PR

[ Vector Il CTHRCH1 D MMP9 siRNA
£3 MMP7 siRNA MMP7+9 siRNA

Vector

CTH RC1

o

NCI-H1975 NCI-H2122

MMP7 MMP9 MMP7+9
Vector CTHRC1siRNA siRNA  siRNA

: %---

CTHRC1 enhances MMP7 promoter activity through
AP-1/c-Jun pathway

To further characterize how CTHRC1 upregulates
MMP7 expression, a luciferase reporter gene assay was
carried out after the nuclear localization of CTHRC1
was confirmed by western blot in NCI-H1975 and NCI-
H2122 cells (Additional file 1: Figure S5). NCI-H1975
and NCI-H2122 cells were co-transfected with the
MMP7 promoter-luciferase construct pGL3 together
with pcDNA3.1-CTHRC]1 or a control vector, or CTHRC1
siRNA or scrambled RNA. As shown in Fig. 5, MMP7
promoter-mediated luciferase activity was enhanced
by the co-transfection of pcDNA3.1-CTHRC1 in a
dose-dependent manner. In contrast, luciferase activ-
ity driven by the MMP7 promoter declined in both
NCI-H1975 and NCI-H2122 cells transfected with
CTHRCI-RNAi (Fig. 5b). Additionally, serial nucleo-
tide sequences, specifically — 120 to +50 (P1) and -
534 to +50 (P2) in the MMP7 promoter region, were
cloned into pGL3 (Fig. 5c¢). Compared to vector-

treated cells, the corresponding effects of these serial nu-
cleotide sequences on luciferase activity were significantly
increased by the ectopic overexpression of CTHRC1 or
decreased by CTHRC1 knockdown. However, the MMP7
promoter fragment spanning — 534 to — 120 (P3) on the
luciferase activity appeared to exert no differential effects
when combined with either CTHRC1 overexpression or
knockdown, compared to matched controls (Fig. 5d,
Additional file 1: Figure S6A). Thus, CTHRC1 expression
may be involved in the regulation of MMP7 promoter ac-
tivity through the P1 and P2 regions (nucleotides — 120 to
+ 50 and - 534 to + 50).

According to the PCR results obtained from the ChIP
assay, the physical interaction site between CTHRC1
and the MMP7 gene may be located in region 2 (nucleo-
tides — 176 to + 50) of the MMP7 promoter (Fig. 5e, f).
Because CTHRCI itself does not contain DNA-binding
sites, thus, there may be other transcription factors that
cooperate with CTHRC1 to enhance promoter activity.
Next, the MMP7 promoter region was screened for
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transcriptional binding sites using prediction tools. A
potential binding site in region 2, specifically nucleotides
- 176 to + 50 within the MMP7 promoter, was identified
as an activator protein (AP)-1-binding element (ABE),
as indicated in Fig. 5e. Furthermore, silencing AP-1/c-
Jun using siRNA significantly inhibited the binding
efficiency of CTHRC1 to the MMP7 promoter (Fig. 5f),
implying that AP-1 served as a “bridge protein” between
CTHRC1 and MMP7 promoter. Moreover, according to
our western blot and RT-PCR results, MMP7 expression

was significantly increased in NCI-H1975-CTHRCI cells
compared to NCI-H1975 cells. However, the increased
expression of MMP7 in NCI-H1975-CTHRC]1 cells was
abolished when c-Jun siRNA was introduced (Fig. 5g, h),
and MMP7 concentrations in the culture supernatants,
as measured by ELISA, significantly decreased when c-
Jun was depleted (Additional file 1: Figure S7A, C).
Taken together, these findings confirm the involvement
of the AP-1 pathway in the CTHRCI1-mediated regula-
tion of MMP?7.
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CTHRC1 enhances MMP9 promoter activity through the
NF-kB and AP-1 pathways

Employing the same assay described above, we observed
the dose-dependent effects of both CTHRC1 and CTHRC-
RNAi on MMP9 promoter luciferase activity, similar to
those observed for the MMP7 promoter (Fig. 6a, b). We
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also tested the luciferase activity driven by serial nucleotide
fragments within the MMP9 promoter region, specifically
-102 to + 31 (P1), - 312 to + 31 (P2), - 510 to + 31 (P3), -
810 to +31 (P4), - 810 to - 510 (P5), — 510 to — 312 (P6)
and - 312 to - 102 (P7), as shown in Fig. 6¢ and d. CTHRC1
overexpression increased MMP9 promoter activity but
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decreased when CTHRC1 was knocked down (Fig. 6¢, d and
Additional file 1: Figure S6B). Potential binding sites
within the MMP9 promoter region were identified in
region 1 for NF-kB and Ap-1 (nucleotides - 690 to -
483) and within region 4 for Ap-1 (nucleotides — 164
to —3) (Fig. 6e). Additionally, the binding efficiencies
of CTHRC1 to MMP9 promoter regions 1 and 4 were
reduced by the application of AP-1/c-Jun siRNA. NF-
KB p65 siRNA significantly suppressed the binding
capacity of CTHRC1 for region 1 within the MMP9
promoter (Fig. 6f). Moreover, western blot and ELISA
results further verified the upregulation of MMP9
expression by CTHRC1 through NF-kB and AP-1 path-
ways at both the protein and mRNA levels (Fig. 6g, h,
Additional file 1: Figure S7B, D).

Increased expression of CTHRC1 was correlated with CTC
and predicts progression and poor prognosis of NSCLC
Further investigation is required to understand the rela-
tionship between CTHRC1 and clinical metastasis in
NSCLC. Tumour cells are detectable in the circulating
blood of cancer patients but not in that of healthy individ-
uals or patients with non-malignant diseases. The
increased numbers of CTCs indicate a higher chance for
tumour metastasis. In the present study, we detected CTC
numbers using a NanoVelcro system and measured serum
CTHRCI concentrations by ELISA (n =143) in the same
NSCLC patients. Compared to normal controls, serum
levels of CTHRC1 were significantly higher in NSCLC
patients (n =40). CTHRC1 concentrations in NSCLC pa-
tients correlated with metastasis. Advanced disease stages
characterized by local invasion or distant metastasis exhib-
ited much higher serum CTHRC]1 levels (Additional file 1:
Figure S8A-C). Furthermore, CTHRC1 concentration
significantly correlated with CTC counts (Fig. 7a, b).
Additionally, the CTHRC1 cut-off had optimal sensitivity
and specificity for metastasis with an area under the curve
of 0.97 (95% CIL: 0.941-1.000; p <0.001). The CTHRC1
cut-off also had optimal sensitivity and specificity for
recurrence with an area under the curve of 0.691 (95% CI:
0.604-0.788; p < 0.001) (Fig. 7c, d).

Given the role of CTHRCI in the tumor invasion
and metastasis, we made further efforts to identify
the clinical significance of CTHRC1 for prognosis
prediction in NSCLC patients. Patients with high
CTHRCI expression had significant lower 5-year sur-
vival rate (2.4%) than those with low CTHRCI1 ex-
pression (51.5%) (Fig. 7e). Moreover, early stage
(stages I and II) and late stage (stages III and IV)
patients with high CTHRC1 expression had shorter
survival durations than those with low CTHRC1 ex-
pression (Fig. 7f-h). In the early and advanced stages,
5-year survival rates for low CTHRC1 expression
were 55.1% and 21.4%, respectively. All the advanced
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stage patients with high CTHRC1 expression died
within 5 years.

In a univariate analysis, CTHRC1 levels were corre-
lated with overall survival (Additional file 1: Table S6).
Further, a multivariate analysis performed using the
COX proportional hazard regression model indicated
CTHRC1 overexpression was an independent prognosis-
related marker for NSCLC (Additional file 1: Table S7).
We then evaluated how predictive prognostic power was
related to the combined expression of CTHRC1, MMP7
and MMP9 in NSCLC patients. Compared to patients
with a low expression pattern, patients with a high ex-
pression pattern for CTHRC1, MMP7 and MMP9 ap-
peared to have poorer survival (Fig. 7i, j).

Discussion

Cancer invasion and metastasis are among the biological
hallmarks acquired during the multistep development of
human tumours. Underlying these hallmarks is genome
instability, which leads to the genetic diversity that
eventually expedites their acquisition [30, 31]. In this re-
port, CTHRCI upregulation was associated with lymph-
atic metastasis, distant metastasis, and MMP7 and
MMP9 overexpression in NSCLC patients, indicating
CTHRCI1 plays a critical role in promoting cancer inva-
siveness. Consistent with the above findings, we identi-
fied MMP7 and MMP9 as substrates of CTHRC1 and
revealed an unknown function of CTHRCI1 in promoting
strong cell invasion in an MMP7- and MMP9-
dependent manner through the transcriptional upregula-
tion of MMP7 and MMP9 via interactions with their
corresponding promoters.

The most common causes of cancer-associated mor-
tality are the occurrence of local invasion or distant me-
tastasis, rather than the presence of the primary
tumours themselves. Among clinically diagnosed NSCLC
patients, almost half have confirmed distant metastases
[32]. As a candidate tumour marker in this study,
CTHRC1 was identified in NSCLC samples by perform-
ing quantitative assessments involving 2D-PAGE gels
and mass spectrometry in comparison with adjacent
non-tumour tissues. Furthermore, elevated preoperative
serum CTHRCI levels were associated with tumour me-
tastasis. According to previous studies [20, 22, 29], and
our own [23]. CTHRCI1 promotes cancer progression
and activates relevant signalling molecules, which urged
us to determine whether CTHRCI1 plays a similar role in
determining the aggressiveness of NSCLC. Thus, we
evaluated CTHRC1 functions in lung cancer cell migra-
tion and invasion. Consistent with the published effects
of CTHRCI on the invasive phenotype of NSCLC cells,
CTHRC1 knockdown greatly decreased cell invasion and
inhibited cell migration, whereas endogenous CTHRC1
overexpression significantly increased invasive ability.
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Additionally, based on the IHC analysis of 230 clinical Tumour metastasis is initiated by a CTC sub-group that
NSCLC specimens, CTHRC1 overexpression was signifi-  has been observed in patient blood. CTCs are used as a
cantly correlated with clinical stage, indicating CTHRC1  marker to predict disease progression in metastatic pa-
upregulation may facilitate NSCLC metastasis. tients, including breast, colorectal and prostate cancers.
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They are involved in metastatic spread to distant organs,
leading to the formation of secondary sites of lung cancer
[33]. Here, increased plasma levels of CTHRC1 were posi-
tively correlated with the presence of CTCs, suggesting
plasma CTHRCI1 attracts CTCs into circulation. However,
the molecular mechanisms underlying tumour metastasis
mediated by CTHRCI require further investigation.

Proteolytic degradation of the stromal ECM is well
known for its contribution to malignant invasion and
metastasis [34, 35]. MMPs, as a family of zinc-
dependent endopeptidases, are involved in degrading
ECM and facilitating tumour invasion [11, 36, 37]. As
shown in the present study, significantly higher expres-
sion of CTHRC1, MMP-7 and MMP-9 was observed in
a cohort of NSCLC sera and surgically resected tumour
tissues. CTHRC1 was positively correlated with MMP7
and MMP9 expression at both the protein and mRNA
levels. MMP regulation, generally by hormones and
cytokines, occurs primarily at the transcription level [38,
39]. MMPs are also regulated via the initiation of pro-
MMP cleavage and proteolytic activity inhibition by spe-
cific inhibitors [40—42]. Our observations here indicate
MMP7 and MMP9 may serve as the potential target
genes of CTHRC1 in NSCLC, which may explain why
CTHRC1 enhances NSCLC progression in vivo. How-
ever, it remains unclear whether the involvement of
MMP7 and MMP9 in NSCLC progression is mechanis-
tically regulated by CTHRCI.

CTHRCI, generally recognized as a secreted protein
[19], was firstly confirmed in the nuclear localization of
NSCLC cells. This builds the foundation for us to deeply
explore the regulation mechanisms of CTHRC1 on
MMP7 and MMP9. MMP7 and MMP9 expression is gen-
erally regulated via promoter binding sites for multiple
transcription activators, such as AP-1 and B-catenin/TCF4
for MMP7 [43, 44] and AP-1, AP-2, NF-«B, and SP-1 for
MMP9 [45, 46]. Based on previous findings from a
luciferase-based ChIP assay, CTHRC1 binds to the MMP7
promoter (- 120 to + 50 bp) and MMP9 promoter (- 102
to +31 bp and - 810 to - 510 bp). However, CTHRC1
does not contain DNA-binding sites [22].

Thus, CTHRC1 may cooperate with other transcription
factors to bind to the promoters of downstream genes and
initiate to their transcriptional activation. Sequence ana-
lysis revealed a potential binding site for AP-1 in the
MMP7 promoter between nucleotide — 176 to +50 bp.
Two binding sites for NF-kB and AP-1 are also present in
the MMP9 promoter between nucleotides — 164 to — 3 bp
and - 690 to - 506 bp, respectively. Furthermore, AP-1/c-
Jun depletion decreased the binding efficiency of
CTHRC1 to the MMP7 promoter. Simultaneously, the
knockdown of both NF-kB and AP-1/c-Jun suppressed
CTHRCI1 binding to the MMP9 promoter. In agreement
with our hypothesis, c-Jun depletion downregulated
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MMP?7 expression, and knockdown of either NF-kB or c-
Jun decreased MMP9 expression. However, whether the
invasion mediated by CTHRC1 depends on MMP7 and
MMP9 remains unclear.

The metalloproteinases MMP7 and MMP9 are overex-
pressed in NSCLC and other types of cancers and are
strongly associated with poor prognosis [16, 47, 48]. An
inhibitor of MMPs, including MMP7 and MMP9, was
shown to suppress tumour metastasis [49]. Additionally,
the application of MMP7 to colon cancer-bearing nude
mice enhanced tumour metastasis [50] and MMP9-
deficient mice were protected against tumour metastasis
[14]. Consistent with these data, the enhanced tumour
cell migration and invasion mediated by CTHRC1 over-
expression was eradicated when either MMP7 or MMP9
was knocked down. Based on these data, CTHRCI-
mediated invasion is MMP7- and MMP9-dependent.

In conclusion, our current systematic study identified
CTHRC1 as a invasion-driving gene that promotes
NSCLC progression by activating c-Jun/MMP7, c-Jun/
MMP9 and NF-kB/MMP9 signalling; thus, therapeutic
targeting of CTHRC1 may be a promising strategy to en-
hance the therapeutic effects of anticancer drugs against
NSCLC. Additionally, CTHRC1 may serve as a sensitive
predictor of the low 5-year overall survival in NSCLC
and as an effective biomarker for evaluating the poor
clinicopathological characteristics of NSCLC.

Conclusions

CTHRC1 promotes NSCLC invasion by upregulating
MMP7 and MMP9. Targeting CTHRC1 may be benefi-
cial for inhibiting NSCLC progression.
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