
Design and Screening of Metal−Organic Frameworks for Ethane/
Ethylene Separation
Seunghee Han and Jihan Kim*

Cite This: ACS Omega 2023, 8, 4278−4284 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Separation of ethane and ethylene is considered to be
industrially important for various chemical processes, but their
similarities make the process expensive. In this study, we integrated
computational screening with machine learning to find optimal
metal−organic frameworks (MOFs) with high ethane/ethylene
selectivity. Using our algorithm, a hypothetical MOF structure with
an ideal adsorption solution theory selectivity of 3.6 at 298 K and 1
bar was discovered. Furthermore, structural analysis was imple-
mented, and the full adsorption isotherm of some of the top
structures was obtained.

■ INTRODUCTION
Separation of ethane and ethylene is industrially important as
power plants produce large amounts of chemicals like olefins
that include ethane and ethylene.1,2 However, the separation of
two molecules is extremely difficult due to their similar
properties. As such, purification of ethane and ethylene is a
very energy-intensive process, which to this date, relies on
conventional repeated cryogenic distillation.3−5 Therefore,
demand for more efficient and less-energy separation method
is increasing.
To remedy this situation, adsorption through porous

materials has been suggested as an alternative method for
separation. In particular, metal−organic frameworks (MOFs)
are a class of porous materials consisting of metal clusters
coordinated to organic linkers, which combines the character-
istics of both organic and inorganic materials. MOFs are used
for various functionalities, such as chemical species separation,
gas storage, catalyst, drug delivery, and chemical sensors.6−9

So far, both ethane-selective MOFs and ethylene-selective
MOFs have been reported.10 MOFs that selectively adsorb
ethylene usually involve distinct characteristics like open metal
sites or polar elements.11−13 However, the ethylene-selective
structures can be vulnerable to water given that these strong
binding metal sites attract water molecules.14 In addition,
strategies that adsorb ethylene needs further purification
because the remaining ethane can contaminate the ethylene
product during the desorption stages, and ethane-selective
MOFs can also be helpful in this process.15−17 From this point
of view, resorting to selective adsorption for ethane might be
an important strategy. Nevertheless, since ethane has relatively
low polarity, the reported selectivity of ethane-selective MOFs

is low.18 As far as we know, the highest reported ethane-
selective MOF is 4.3 [Fe2(dobdc) by Li et al.,

19 whereas most
MOFs range between 1 to 3 for ethane/ethylene selectivity.
To expedite the search for high-performance ethane-

selective MOFs, various screening studies have been
conducted using database of MOFs, such as the CoRe MOF
database20 and the h-MOF database.21 Tang and Jiang
identified 16 MOFs with C2H6/C2H4 > 2.16 and ethane
uptake > 0.54 mol/kg in the CoRe MOF database,22 and
Halder and Singh discovered four MOFs with C2H6/C2H4 >
2.7 in h-MOF database.23 Unfortunately, these studies are
limited by the structures populating the existing database, and
as such, it is difficult to go beyond what is reported within
these relatively small number of materials. To remedy this
issue, Lee et al. adopted an inverse-design approach and
constructed a top-down generator called the PORMAKE, to
integrate deep learning and genetic algorithm and to explore
trillions of MOFs.24 In this work, we used PORMAKE and its
workflow to design MOFs with the user-desired high ethane/
ethylene selectivity to expand the search space for high-
performance ethane-selective MOFs.
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■ RESULTS AND DISCUSSION
Screening of High Selectivity MOFs. Initially, 4984

hypothetical MOFs were constructed randomly using POR-
MAKE. The Henry coefficient of ethane K( )H,C H2 6

and
ethylene K( )H,C H2 4

was computed using RASPA25 software to
obtain the selectivity =S K K( / )H,C H H,C H2 6 2 4

for each of these
MOFs. With these data, the model to predict the selectivity
was trained using a regression deep learning model called the
MOF-NET.24 Finally, the optimal structures predicted to have
high ethane selectivity were extracted using the genetic
algorithm and generated by PORMAKE. The overall process
is illustrated in Figure 1, and this procedure was repeated many
times until performance saturation.
For each generation, about 500 to 1000 hypothetical

structures were constructed, resulting in the improved mean
performance for ethane/ethene selectivity (see Figure 2a) as
well as discovery of high selective (i.e., S > 3) MOFs, as shown
in Figure 2b (Supporting Information, S1). This process was
repeated six times, and a total of 8676 MOFs were generated.
At the end, the MOF with the highest selectivity was 5.26, and

its structural information is described in Supporting
Information, S3 (Figure S4). Using our algorithm, 16
structures with S > 4 and 401 structures with S > 3 were
discovered. The process of filtering these generated structures
into the final candidates is shown in Figure 3.
From the reduced set of 401 structures, multicomponent

grand-canonical Monte Carlo (m-GCMC) adsorption simu-
lations were performed for more detailed analysis. In most of

Figure 1. Schematics of the screening process with high selectivity. MOF-NET is trained from the simulation results, and a new candidate MOF set
is predicted through a genetic algorithm.

Figure 2. Distribution results of the structures for each generation. (a) Box plot for each generation’s Henry selectivity. (b) Data distribution of the
structures with high selectivity (empty: Henry selectivity > 3 and filled green: selectivity > 4).

Figure 3. Detailed process of filtering the structures with appropriate
criteria after generation of MOFs.
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the experiments, the selectivity of ethane/ethylene is
determined by the ideal adsorption solution theory (IAST)
selectivity at an equimolar ratio (1:1) of 1 bar and 298 K. The
values of the IAST selectivity computed from the simulations
and the selectivity computed by multicomponent GCMC
simulation were very similar, which can be shown in Figure S3.
Therefore, ethane/ethylene selectivity was additionally com-
puted with the multicomponent GCMC simulations. While
some structures showed selectivity values similar to their
Henry coefficient selectivity values, in most cases the selectivity
decreased compared to that from the Henry coefficient
calculations (Figure 4). As a result, 41 structures with the S
> 2.5 remained after the multi-component GCMC simulations
with the highest being MOFs with IAST selectivity of 5.30 and
4.07 (Figure S5).

Next, the geometrical properties [i.e., void fraction (VF) and
pore limiting diameter (PLD)] of the 401 structures were
obtained using Zeo++ software.26 The relationship between
selectivity, VF, and PLD is illustrated in Figure 5. The data

here show a similar pattern with previous papers that focused
on the roles of VF and PLD in ethane/ethylene selectivity for
MOFs.23 The general pattern here implies that there is a trade-
off between ethane adsorption (due to the low VF) and ethane
selectivity.

Refined Analysis on Top Structures. In all of the
previous results, simulations were conducted under the rigid

MOF assumption. However, given that some of these MOFs
can showcase flexibility, we decided to consider flexibility on a
selective set of the top 41 structures with S > 2.5. To account
for flexibility, molecular dynamics (MD) simulations were
conducted using LAMMPS software27 on these top 41
structures. The NVT simulations were conducted for 1.2 ns
(0.2 ns for equilibrium steps and 1 ns for production steps) at
T = 298 K, and five snapshots were taken for every 200 ps
(where the selectivity values were averaged from these
snapshot configurations, see the Methods section for more
detail). Removing structures with structural errors and
LAMMPS interface issues, 30 structures remained for analysis.
The overall results show that selectivity generally tends to
decrease slightly (Figure 6). It was observed that 16 structures

have S > 2.5 after incorporating flexibility while some
structures even changed to being ethylene-selective (S < 1).
The ethylene-selective structures have linkers which can affect
the pores of the frameworks when rotating around the
connection axis (Figure S6).
In this study, the hypothetical structures were generated

based on topology, which allowed multiple polymorphs to be
formed using the same MOF components. Therefore, to obtain
synthesizable feasibilities for each of the polymorphs, the total
energies were compared. In our analysis, structures with high
energy among polymorphs (i.e., energy rank > 10) were
excluded as they were deemed to be unsynthesizable. Using
these criteria, a total of nine MOFs with high selectivity
survived in the analysis. The final selectivity and ethane uptake
for these nine MOFs are shown in Figure 7. Specific
information about these structures can be found in Supporting
Information, S3 (Table S3).
In the end, the two final structures with S > 3 are illustrated

in Figure 8a,b. The MOF with the highest selectivity of 3.6 and
the lowest energy among the polymorphs was identified to be
comprising Co node building block (NBB) and barrelene edge
building block (EBB) (Figure 8a). The metal node is the same
one used in MUF-1514 (with different linker), which has
reported an experimental selectivity of 2.0. The MOF with the
second highest selectivity (S = 3.4) was composed of Cu NBB
and cyclohexane EBB (Figure 8b). These two MOFs have the
small and rotational invariant EBB compared to other linkers
in common, and as such flexibility made little difference in the
shape of the pores, which kept the selectivity high in the
flexible simulations.

Figure 4. Relationship between the selectivity by Henry coefficients
and the selectivity by multicomponent GCMC (each point represents
a different MOF).

Figure 5. 401 MOF data points that illustrate the relationship
between selectivity and VF/PLDs.

Figure 6. Comparison between m-GCMC selectivity values obtained
from rigid and flexible simulations.
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The mixture adsorption isotherm curves computed from the
GCMC simulations of the two structures are shown in Figure
8c,d. Ethane and ethylene adsorption in both structures were
saturated at very small pressures; therefore, the selectivity was
maintained when the pressure approaches to 1 bar. This
correlates with the similarity of Henry selectivity and m-
GCMC selectivity of these structures (see Supporting
Information, S4).

The structure of the former adsorbs about 13.2 cm3/g of
ethane for equimolar C2H6/C2H4 mixture at 298 K and 1 bar.
However, the structure of the latter adsorbs about 46.5 cm3/g
under the same condition. Therefore, it can be seen the latter
(pcu + N489 + E151) has slightly smaller selectivity, but it can
be seen that ethane can be adsorbed better.

■ CONCLUSIONS
In this study, MOFs with high selectivity were generated using
an integrated machine learning (ML) and genetic algorithm
model. We computed selectivity with the Henry coefficient for
ML and screening and then recalculated the selectivity through
m-GCMC simulation for both the computational cost and the
accuracy. We generated 41 structures with m-GCMC
selectivity >2.5, then reduced the optimal candidate structures
further by applying several criteria, and identified two
structures with S > 3. In particular, it is meaningful these
selectivity values took MOF flexibility into account, which in
general reduces the selectivity values compared to the rigid
MOF case. The final two structures possess rotational invariant
linkers and are saturated at very low pressure. Through
structural analysis, it can be concluded that a trade-off may
occur between selectivity and adsorption amount in MOFs,
which makes it difficult to obtain high selectivity and large
amount of adsorption at the same time. Finally, we have
demonstrated that our algorithm is helpful and efficient for

Figure 7. Final selectivity and ethane uptake of final nine MOFs (each
point indicates each MOFs).

Figure 8. View and IAST adsorption of the final two structures [for equimolar ratio (1:1) at 298 K]. (a) View of bct + N247 + E43, (b) view of pcu
+ N489 + E151 (cobalt blue: Co, red: O, gray: C, white: H, orange: Cu, blue: N, purple: connection point, green: ethane, and yellow: ethylene),
(c) IAST adsorption of bct + N247 + E43, and (d) IAST adsorption of pcu + N489 + E151.
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designing and generating MOFs with user-desired properties
and can serve as meaningful workflow for other energy and
environmental related applications.

■ METHODS
Generation of Random MOFs. Hypothetical MOFs were

generated by PORMAKE,24 which is top-down method to
construct MOFs with NBBs and EBBs based on topology. The
details of each component and generating MOFs were
explained in a study by Lee et al. In this study, 41 topologies,
756 NBB, and 158 EBB were used to construct MOFs. The
structures were discarded if the number of atoms per cell
exceeds 2500. The structures containing metals in both NBBs
and EBBs were excluded in consideration of the stability. In
addition, the structures not containing metals in both NBBs
and EBBs, which are called covalent−organic frameworks
(COFs), were excluded. The generated MOFs were optimized
by the Forcite Module of Material Studio28 before molecular
simulation.

Machine Learning. The model of ML is based on MOF-
NET,24 the artificial neural network model using the
embedding technique similar to Word2Vec.29 It can map
topologies and building blocks (BBs) to a pre-determined
length vector. Through this technique, these vectors are also
trained in the ML process, and the interaction or importance
of topology and BBs can be turned out. In the MOF-NET, the
data set was composed of target feature (selectivity) and the
names of MOFs (topology + NBBs + EBBs). Using MOF-
NET, the model to predict selectivity by the Henry coefficient
was constructed and used for fitness function of genetic
algorithm.
The genetic algorithm was taken from the multispecies

genetic algorithm with fitness approximation (MSGA-FA) of
Lee et al.24 This algorithm calculates the fitness values
(selectivity predicted from the MOF-NET) of chromosomes
composed of the names of NBBs and EBBs for each topology.
The chromosomes of MOFs with the high fitness value for
each topology were adopted. Then, the selectivity of adopted
MOFs was computed through Henry’s constant through
molecular simulation again, and this process was repeated.

Selectivity Approximation. The selectivity data were
required to train the ML model, and it can be attained directly
through molecular simulation. In this work, selectivity was
approximated in two ways: Henry coefficient calculation and
m-GCMC calculation.
The selectivity calculated by Henry’s constant was used for

ML and genetic algorithms. This approximation is used to
reduce the computational cost. The Henry selectivity was
calculated for 17 experimental data, and the tendency was
consistent with the experimental selectivity values to some
extent (Figure S2). The discrepancy between the experimental
value and the simulation may be due to the error that comes
from approximating the selectivity with the Henry coefficient.
The equation of calculating the selectivity of ethane/ethylene
by the Henry coefficient is shown in the following equation.

=
K

K

The ethane/ethylene selectivity
the Henry coefficient of ethane ( )

the Henry coefficient of ethylene ( )
H,C H

H,C H

2 6

2 4

The Henry coefficient of each MOF was calculated using the
Widom insertion method30 via RASPA. The atoms of MOFs

were represented by Lennard-Jones (LJ) potential with the
parameters of the universal force field.31 The ethane and
ethylene molecules were assumed the united-atom model with
the parameters of the TraPPE force field.32 The justification for
using these parameters was discussed already by Tang and
Jiang.22 The parameters applied between all the atoms were
calculated using the Lorentz−Berthelot mixing rule. The cutoff
distance was set to 12.8 Å for the LJ interactions. Each
simulation was performed with 50,000 cycles for the error less
than 5%. The temperature was considered at 298 K.
m-GCMC was conducted for 401 structures with the Henry

selectivity S > 3. In the experiment, the selectivity of ethane
and ethylene was usually assumed through IAST at the
condition of equimolar mixture, 298 K and 1 bar. The IAST
selectivity is calculated using the following equation.33

=S
x x

y y

/

/C H /C H
C H C H

C H C H
2 6 2 4

2 6 2 4

2 6 2 4

In the equation, xi is the mole fraction of the adsorbed
phase, and yi is the mole fraction of the bulk phase. We
assumed the equimolar mixtures, so y y/C H C H2 6 2 4

was set to be

1. The relative amounts adsorbed (x x/C H C H2 6 2 4
) can be

calculated through multi-component GCMC in RASPA
simulation. The parameters between all of the atoms are
identical to above simulation. The Monte Carlo adsorption
simulation component information consists of translation
probability, rotation probability, identity change probability,
and swap probability. These probabilities were set to 0.15,
0.15, 0.1, and 0.6 used from the previous studied paper.23 The
mole fraction of ethane is 0.5. The simulation was performed at
298 K and 1 bar.
The program IAST++ was used for IAST calculation and

IAST adsorption isotherm at various pressures.34 GCMC
simulation was performed on each ethane and ethylene at 10,
100, 1000, 10,000, 50,000, and 100,000 Pa. Each adsorption
isotherm graph was drawn using IAST++ from above results.
The isotherm approximation model was selected with the
highest R2 value of the fitting results. Then, IAST calculation
was performed using the isotherm graph.

Analysis of the Structures with High Selectivity. The
structures of MOFs considering flexibility can be figured out by
the method of Gee and Sholl.2,35 This method entails the NVT
simulation to incorporate the flexibility of the structures. The
NVT simulation was conducted for 1.2 ns (0.2 ns for
equilibrium steps and 1 ns for production steps) by
LAMMPS,27 and five snapshots were captured for every 200
ps. Then, m-GCMC simulation to get the selectivity was
implemented for each snapshot, and the averaged values were
calculated.
The polymorph of each MOF was generated for evaluating

the structural stability and synthesizability of the MOF. Here,
the polymorph refers to the structure which has the same
NBBs and EBBs but a different topology (e.g., MIL-88B and
MIL-101) from each MOF. The different topologies of the
same connection point with the MOF were discovered, and the
polymorphs with these topologies were generated. The total
energy was calculated during the optimization of the
polymorph through the Forcite Module of Material Studio.28

Then, the energy was divided by the number of the metal
atoms and compared to each other.
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The VF and PLD were obtained by Zeo++ software.26 The
pore size was analyzed for the structures with the selectivity by
the Henry coefficient above 3.
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