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Abstract: As one of the highest mobility semiconductor materials, carbon nanotubes (CNTs) have
been extensively studied for use in field effect transistors (FETs). To fabricate surround-gate FETs—
which offer the best switching performance—deposition of conformal, weakly-interacting dielectric
layers is necessary. This is challenging due to the chemically inert surface of CNTs and a lack of
nucleation sites—especially for defect-free CNTs. As a result, a technique that enables integration of
uniform high-k dielectrics, while preserving the CNT’s exceptional properties is required. In this
work, we show a method that enables conformal atomic layer deposition (ALD) of high-k dielectrics
on defect-free CNTs. By depositing a thin Ti metal film, followed by oxidation to TiO2 under ambient
conditions, a nucleation layer is formed for subsequent ALD deposition of Al2O3. The technique is
easy to implement and is VLSI-compatible. We show that the ALD coatings are uniform, continuous
and conformal, and Raman spectroscopy reveals that the technique does not induce defects in the
CNT. The resulting bilayer TiO2/Al2O3 thin-film shows an improved dielectric constant of 21.7 and an
equivalent oxide thickness of 2.7 nm. The electrical properties of back-gated and top-gated devices
fabricated using this method are presented.
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1. Introduction

Atomic layer deposition (ALD) is a technique predominantly used for the deposition of high-quality
dielectrics. The ALD process occurs via a self-limiting reaction where the substrate is sequentially
exposed to alternating pulses of two gas-phase precursors. This technique enables the deposition of
thin films with excellent step coverage, angstrom-level precision and robust mechanical properties [1],
making it an ideal choice for conformal coating of suspended and high aspect ratio structures.
However, growth of the first few ALD layers on suspended single-walled CNTs is challenging due to
the hydrophobic and inert nature of the nanotube’s surface. Usually, ALD deposition on suspended
low-defect single-walled CNTs results in the formation of nanospheres, originating on nanotube surface
defects [2,3]. The same problem exists for graphene [4,5] and 2D transition metal dichalcogenides [6,7],
such as MoS2, WS2 and others. These materials do not have dangling bonds or surface groups on their
basal planes and therefore no nucleation sites are available for the reaction of ALD precursors.

Currently, several surface functionalization techniques exist to promote ALD thin film growth on
the surface of single-walled CNTs. Tubes can be chemically treated [8] with oxidizing agents, acids,
bases, or annealed in plasma [9], which results in a chemical bond formation between functional
groups and CNTs. Such covalent functionalization strategies generally create defects and additional
scattering sites, as well as changing the carbon hybridization from sp2 to sp3. As a result of these surface
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modifications, the nanotube’s exceptional electronic and optoelectronic properties may degrade [10,11].
Another approach is to non-covalently attach different materials, such as DNA [12,13], surfactants [14],
and polymers [15–17]. They do not distort the CNT lattice and do not influence the carbon hybridization.
However, adsorbed molecules can change the local potential at the tube surface, creating scattering
centers and inducing doping effects. These phenomena also influence CNT electronic and optoelectronic
properties and may alter—but not necessarily degrade—device performance. For instance, NO2

functionalization can be used to prepare nanotube [18] or graphene [19,20] surfaces for ALD deposition
of Al2O3; one of the first CNT gate-all-around transistors [21] was fabricated using this strategy.
However, this method requires a NO2 source inside the ALD reactor, otherwise the physisorbed NO2

layer will desorb during sample transfer. It was also shown that the NO2 layer can strongly degrade
CNT and graphene mobility due to the charged impurity scattering of the functionalization layer [19,21],
which can be improved to some extent by annealing [22]. Although the above-mentioned non-covalent
approaches solve the nucleation problem and promote ALD growth for electronics applications, the
utilized materials should not reduce the overall dielectric permittivity of the gate oxide stack.

Another way to non-covalently prepare the surface of CNTs for subsequent ALD deposition
is to first grow metal or metal-oxide seed layers. If a metal layer is used, it can later be oxidized
in air at room temperature [23] or at elevated temperatures [24]. TEM measurements have shown
that among commonly available metals, only Ti, Y, Ni and Pd show good wetting behavior on CNTs
and result in continuous layers [25]. It was also shown that yttria, deposited by physical vapor
deposition, can be used as both nucleation layer and high-k dielectric, delivering high transistor on/off

ratio and an ideal subthreshold slope of 60 mV/dec [23,24]. The same strategy was used to prepare
graphene [19,26–28] and MoS2 [29–31] surfaces. For graphene, it was also shown that TiO2 can be
used as a buffer layer, improving the carrier mobility of the nanomaterial [28], whereas Al2O3 buffer
layer may have an inverse effect [32]. It is also important to mention that non-covalent and covalent
pretreatment strategies developed for graphene or other 2D materials cannot always be extended to
CNTs, since the former represent planar structures with grain boundaries and edges—which makes
both pretreatment and ALD deposition an easier task.

In this work, we present a method that enables the uniform and conformal coating of high-k
dielectrics on defect-free single-walled CNTs by ALD. The method utilizes a Ti metal seed layer that is
deposited by physical vapor deposition and oxidized to TiO2. The seed layer, attached to the defect-free
CNTs enables subsequent conformal deposition by ALD. The ALD deposited Al2O3 dielectric coating
on top of titania buffer layer, which is a high-k dielectric itself [33], results in a high-quality pure-oxide
insulator. The study of the resulting thin film, as well as its influence on the CNT electronic and
phonon properties are presented. The process is easy to implement, very large scale integration (VLSI)
compatible, and results in deposition of high quality continuous ALD layers.

2. Results and Discussion

To enable ALD deposition of Al2O3 on defect-free CNTs, a TiO2 nucleation layer was formed
by deposition of Ti metal, which was oxidized to TiO2 under ambient conditions. To determine the
effectiveness of the TiO2 pretreatment in promoting continuous, conformal coating by ALD, samples
were prepared with and without the pretreatment and analyzed by SEM and TEM. Figure 1a shows SEM
images of CNTs coated with 10 nm of Al2O3 by ALD without (left) and with (right) TiO2 pretreatment.
Without the pretreatment, the CNTs were inconsistently and discontinuously coated, while with the
TiO2 pretreatment, CNTs were consistently and continuously coated along their entire length. TEM
analysis was carried out to further investigate the detailed structure of the coatings. Figure 1b shows a
TEM image of a single-walled carbon nanotube (SWCNT) nominally coated with 10 nm Al2O3 by ALD
without any surface pretreatment. As expected, the resulting thin film was discontinuous, with the
deposited material most likely formed around rare surface defects or starting from the substrate and
extended along the nanotube. When a titanium seed layer was deposited at a nominal thickness of
3 nm and oxidized, the TiO2 coating provided sufficient nucleation sites for subsequent ALD of 10 nm
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of Al2O3 (Figure 1c). The resulting coverage was continuous, but not uniform. To increase uniformity,
a 5 nm Ti seed layer was deposited and oxidized. When coated with 10 nm of alumina by ALD, the
coating was continuous, conformal, and the texture was smooth (Figure 1d).

To gain further insight into the morphology and uniformity of the pretreatment layer, further TEM
analysis was carried out on CNTs coated with just Ti converted to TiO2. For the Ti layer, deposited
by thermal evaporation in high vacuum, the mean free path (i.e., distance, which the evaporated
material travels inside the chamber without colliding with gas molecules) is much larger than the
metal target to substrate distance, making it a highly directional technique. This directionality results
in the carbon nanotube shadowing itself and growth of thicker films on the part of the wall facing the
evaporation front. As a result, a TiO2 layer with non-uniform thickness is formed and varies from
about a nanometer on the shadowed side to a few nanometers. The sample with an initial 3 nm thick Ti
layer (Figure 1e) resulted in a higher variation of film thickness in the longitudinal direction (pearling
along the nanotube) when oxidized. However, slightly increasing the buffer layer thickness to 5 nm,
resulted in higher TiO2 uniformity and continuous coverage of the nanotubes, although the resulting
thin film still shows some thickness irregularities (Figure 1e). Figure 1g,h show the same Al2O3-coated
nanotubes from Figure 1c,d, respectively—rotated ~60◦ along the nanotube’s longitudinal axis, which
confirms that the CNTs are conformally coated. A high-magnification image of the CNT in Figure 1h is
shown in Figure 1i, showing the uniform, amorphous ALD coating.
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Figure 1. Morphology and coverage of CNT dielectric coatings. (a) SEM images of CNTs without TiO2

pretreatment (left) and with TiO2 pretreatment (right); (b–i) TEM images of CNTs with (b) 10 nm of
Al2O3 only; (c) 3 nm of Ti converted to TiO2 and covered with 10 nm of Al2O3; (d) 5 nm of Ti converted
to TiO2 and covered with 10 nm of Al2O3; (e) 3 nm Ti converted to TiO2 only; (f) 5 nm Ti converted to
TiO2 only; (g) 3 nm of Ti converted to TiO2 with 10 nm of Al2O3, rotated over 60◦ along the nanotube
axis; (h) 5 nm Ti converted to TiO2 with 10 nm of Al2O3, three different projections of the CNT rotated
over 59◦ along the nanotube axis; (i) a corresponding high-resolution image of the CNT shown in (h).

Although the cause for the increased uniformity of the pretreatment layer from 3 to 5 nm is not
completely understood, both nucleation layers showed complete coverage when coated with ALD
deposited alumina. Continuous coating with TiO2 and later with Al2O3 can be explained as follows:
due to a high binding energy, the initially deposited Ti layer has good wetting behavior on the nanotube
surface [34], forming continuous (but not always uniform) layers. When oxidized, it grows significantly
in size due to a high Pilling-Bedworth ratio (PBRTi = 1.6) [35]. As a result, enough nucleation sites for
subsequent ALD reaction are provided to cover the entire nanotube. Some theoretical calculations show
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strong interaction between titanium and carbon, resulting in covalent bond formation between Ti and
CNTs or graphene [36–38], which contradicts the idea of minimizing interaction between nanotubes
and coatings. However, according to Density Functional Theory calculations, Ti is very reactive with
O2 and oxidizes rapidly in its presence, significantly weakening Ti–C interaction upon oxidation [39,40].
Such theoretical considerations allow us to speculate that after oxidation, TiO2 only weakly interacts
with the nanotubes. This is supported by Raman and the electrical measurements presented below,
which do not show any degradation of the CNTs, although some changes are observed.

Raman spectroscopy was used to determine the effect of the coating on the phonon properties of
the nanotube. Figure 2a shows Raman spectra obtained from the same nanotube after each step of the
coating process: pristine CNT, after TiO2 deposition, and after Al2O3 coating. Raman spectroscopy
shows no D-mode (or at the noise level) for all three experiments. This shows that initial nanotubes
are low defect, as no defects were created during the pretreatment or ALD processes, and suggests
that the technique does not degrade the quality of the CNTs. However, the G mode, responsible for
carbon atom vibrations in circumferential (G− mode) or parallel to nanotube (G+ mode) directions,
underwent noticeable changes. Figure 2 shows that the peak of the G+ mode shifts toward the blue,
relative to the pristine nanotube, for the TiO2 and TiO2/Al2O3 coated samples. The extent of the
peak shift, determined by a Lorentzian fitting to the data, is shown in Figure 2c and summarized in
the table in Figure 2d. This shift can be attributed to charge transfer and doping [41] or mechanical
stress [42] induced as a result of TiO2 deposition. Subsequent coating with alumina showed a further
small G-mode shift toward the blue. It is important to mention that such G peak position changes,
with regard to pristine tubes, had a very large spread with both blue and red shifts across 20 tubes
measured (results not shown here). We hypothesize that this can be attributed to mechanical stress
induction, as nanotubes with different chirality show different Raman response at the same mechanical
stress, demonstrating both blue (e.g., for uniaxial strain) and red (e.g., for torsional strain) shifts [43].
More research needs to be done to study deposition induced Raman modes shifts, which will help to
understand the underlying phenomena and decouple different effects.
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shapes for G− and G+ modes, separately shown in (c) for each spectrum; (d) A table showing G− and
G+ modes’ peak positions and shift values (in parentheses) extracted from Lorentzian fits for each
processing step. A Residual Sum of Squares of less than χ2 = 0.03 was obtained for all Lorentzian fits.

To verify that Ti is indeed converted to TiO2, X-ray photoemission spectroscopy (XPS)
measurements were performed using a monochromatic Al Kα X-ray (hv = 1486.7 eV) source. To attain
adequate XPS signal, larger samples were required and therefore carried out on a 5 nm Ti thin-film
deposited on Si/SiO2, which was oxidized under the same ambient conditions as the CNT samples.
Complete conversion to the oxide is important for transistor applications to suppress source-to-drain
leakage currents via a metallic conduction pathway. In Figure 3a we see clear peaks at 458.5 and
464.3 eV, that correspond to Ti 2p3/2 (458.66 eV) and Ti 2p1/2 (464.31 eV), respectively [44], which have
been identified as Ti4+ and correspond to stoichiometric TiO2. No peak was observed around 453.86 ±
0.32 eV, which would have been expected for metallic Ti [44], and is strong evidence that complete
titanium oxidation was successful.
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Figure 3. Chemical composition and dielectric properties. (a) XPS spectra of titanium layer oxidized in
air for 24 h, confirming complete oxidation of the seed layer; (b) dielectric constant of pure ALD thin
film (15 nm Al2O3, red curve) and compound dielectric (5 nm TiO2 + 10 nm Al2O3, blue curve) and
their frequency response.

The dielectric quality of titania and alumina layers was also evaluated by fabricating thin-film
metal-insulator-metal capacitors and performing capacitance-frequency measurements in the frequency
range from 1 kHz to 1 MHz. Two capacitors with total oxide thickness of 15 nm were measured: first
with 15 nm ALD Al2O3 and second with 5 nm TiO2 (oxidized Ti) plus 10 nm ALD Al2O3. Figure 3b
shows the resulting capacitance-frequency characteristics. Despite having the same thickness and
electrode area, the titania-alumina stack shows over two times higher capacitance (45.8 ± 0.3 pF)
compared to the pure alumina capacitor (20.3 ± 0.1 pF). From a parallel-plate capacitor geometry, the
alumina and average alumina-titania stack’s dielectric constants of 9.4 and 21.7 (at 1 MHz), respectively,
can be extracted. Such an increase in k value can be explained by a high dielectric permittivity of
TiO2. However, using only TiO2 as an insulator is not favorable, since the material has a relatively
small band gap, which may result in thermionic emission and direct current tunneling [33]. Thus, for
few-nanometers-thick dielectric layers, TiO2 should be used together with another high-k dielectric
and a balance between these materials sought to optimize the overall thickness while maximizing the
dielectric constant, and keeping leakage current low.

Another important metric in electronic device design, is the equivalent (silicon) oxide thickness
(EOT). The EOT of our devices was calculated using the following equation: EOT = ε0εSiO2A/Cox;
where ε0 is a vacuum permittivity, εSiO2 is a dielectric constant of SiO2, and A and Cox are the area
and capacitance of the capacitor, respectively. For 15 nm thick films, an EOT of 6.2 nm was extracted
for the pure-alumina device, whereas an EOT of 2.7 nm was extracted for the titania-alumina device
(lower is better). Such a scale down of the EOT makes the proposed compound dielectric a promising
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candidate for future high-k dielectrics used in CNT- and other nanomaterials-based electronic devices.
The quality of the interface between oxides, ratio of their thickness, as well as a combination of titania
with other high-k dielectrics (e.g., HfO2, ZrO2) are subjects of future studies towards further improved
EOT scaling.

Both back-gated and top-gated CNT field effect transistor (FET) device geometries were employed
to probe the electrical transport properties of the CNTs. Back-gated devices on degenerate Si with SiO2

as the gate dielectric were employed to compare the TiO2/Al2O3 coated CNTs with uncoated-pristine
CNTs, while the top-gated device allowed us to directly evaluate the TiO2/Al2O3 coatings as the gate
dielectric. Back gated FET measurements confirmed that the TiO2 pretreatment technique does not
degrade nanotube properties, nor does the subsequent Al2O3 coating. Figure 4a shows transport
characteristics recorded from a pristine nanotube—a nanotube coated with TiO2—and a nanotube
coated with TiO2 and Al2O3. The electrical measurement of the FET shows an on/off ratio of ~104,
with no degradation in conductance after TiO2 deposition and a slightly improved on/off ratio after
the Al2O3 ALD deposition. The latter can be associated with annealing of the contacts during ALD
processing at 300 ◦C. Device characteristics shift to negative gate voltages, becoming more p-type with
each deposition step.
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devices, uncoated (pristine-green), with TiO2 only (red), and with TiO2 and Al2O3 (blue). A schematic
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transport in top-gated CNT transistor. Insets in shows the leakage current. A schematic illustration of
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The possibility of using titania-alumina compound oxide as a high-k dielectric gate stack was
evaluated by fabricating a top-gated CNT FET device. Figure 4b shows transport characteristics of the
device. The observed differences in the threshold voltage between top and back-gated FETs is due
to the difference in gate oxide thickness and dielectric constant: 15 nm thick TiO2/Al2O3 and 100 nm
thick SiO2, respectively. As expected, both devices behave as p-type transistors due to the use of high
work-function electrodes [45]. The electrical measurements of the top-gated device show an on/off

ratio of ~104 and the field effect mobility of the device was calculated using following equation: µFE
= gm × L2/C × 1/Vds, where gm is the transconductance, L and C are device length and capacitance
respectively [46]. Capacitance per unit length was calculated as follows: C/L = 2πε0εoxr/2tox, where ε0 is
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a vacuum permittivity, εox is a dielectric constant of the gate oxide (extracted from C-f measurements),
tox is its thickness, and r is the radius of the nanotube. The obtained field effect mobility of µFE =

226 cm2/Vs is comparable with those reported in literature, but far less than some of the “champions” in
the field [47]. However, it is important to mention that field effect mobility is device-specific and many
other effects have an impact on it, such as contact resistance, surface roughness, the quality of interfaces,
measurement parameters, etc. The inset of Isd-Vg characteristics in Figure 4b shows low gate leakage
current, which was limited by the sensitivity of measurement setup, and was observed at the noise
level—at least an order of magnitude lower than the source-drain current. Such low leakage-current
behavior, together with the extracted dielectric constant and EOT, show that the titania-alumina stack
is a promising all-oxide dielectric. Further, in the top-gated FET, the bottom side of the tube was not
covered with TiO2/Al2O3. In this configuration, the CNT was in contact with the hydrophilic SiO2

substrate, and water molecules on the surface likely interact with the nanotube, adversely impacting
the CNT transistor performance [48]. Therefore, the fabricated transistor does not achieve its full
potential benefit from the TiO2/Al2O3 high-k dielectric, and can be further improved by fabricating a
surround-gate structure

3. Methods

3.1. Synthesis

The single-walled CNTs presented in this work were synthesized by chemical vapor deposition in
a 1” quartz tube Lindberg/Blue M furnace reactor (Thermo Fisher Scientific, Waltham, MA, USA). A 2Å
to 4Å thick Fe layer, was deposited on the substrate by thermal evaporation, then heated from room
temperature to 675 ◦C in 30 min in air to calcinate the iron, followed by 2 min N2 purge to remove
residual oxygen. After the purge, samples were further heated in 50 sccm flow of H2 for 20 min to
reduce the iron and form catalyst nanoparticles. Once the CNT growth temperature of 875 ◦C was
reached, CH4 at flow rate of 500 sccm was introduced. Nanotubes were synthesized for 30 min and
then cooled to room temperature in H2 atmosphere. To verify the effectiveness of various coating
methods and conditions, initial studies were carried on CNTs grown across ~3 µm trenches etched
in Si/SiO2 wafers and analyzed by scanning electron microscopy (SEM). For TEM investigation, the
nanotubes where grown over 1 or 1.5 µm circular holes directly on TEM support films. This process
flow resulted in fabrication of single-walled carbon nanotubes, as evidenced by TEM.

Following the CNT growth, the suspended nanotubes were covered with Al2O3 both with and
without titanium surface pretreatment. The titanium pretreatment consisted of thermal evaporation of
titanium metal at a deposition rate of 0.1 Å/s and a pressure of 5 × 10−6 mbar or better; the titanium
was oxidized to TiO2 by exposing samples to air for 24 h at room temperature. Native oxide is known
to grow on titanium surface quickly—even at low temperatures [49]. Alumina layers were deposited
using trimethylaluminum (TMA) and water precursors (Sigma Aldrich, St. Louis, MO, USA) at 300 ◦C
in Oxford FlexAl ALD system (Oxford Instruments, Oxfordshire, UK).

To study the impact of the TiO2 layer or a TiO2/Al2O3 stack on the electronic properties of the
CNTs, field effect transistors with bottom and top gates were fabricated on degenerately doped Si
(p-type, R < 0.001 Ohm*cm) with 100 nm thermal oxide (UniversityWafer Inc, Boston, MA, USA).
Standard UV photolithography was used to pattern device structures. Cr markers were deposited
by thermal evaporation as alignment markers. Fe catalyst was deposited using thermal evaporation
to define CNT growth areas. Nanotubes were grown using the synthesis methods discussed above.
Lithography was again used to define source, drain and gate electrodes. Cr (2 nm) and Pt (60 nm) were
deposited using an electron-beam evaporator. For the top-gated device TiO2/Al2O3 was deposited,
followed by Cr/Pt gate electrode.

Dielectric properties of the TiO2 and TiO2/Al2O3 were evaluated by fabricating metal-insulator-
metal capacitor stacks. This was done by synthesizing oxides, as described above, on a degenerately
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doped prime Si wafer that served as bottom electrode, and fabricating Cr/Au top electrodes using
standard lithography and lift-off process.

3.2. Characterization

To verify the continuity of the dielectric coatings over relatively long tube lengths, SEM was
performed using a Zeiss Ultra 60 SEM (Carl Zeiss AG, Oberkochen, Germany) at an accelerating voltage
of 2 kV. To study the morphology of the titania coating and the interface with the nanotube, TEM
measurements were performed using a JEOL 2100F TEM (JEOL Ltd., Tokyo, Japan) at an accelerating
voltage of 120 or 200 kV. The quality of the CNTs after each fabrication step was verified by Raman
spectroscopy on Horiba Jobin Yvon LabRAM ARAMIS (Horiba Ltd., Kyoto, Japan) confocal microscope,
with 532 nm Nd:YAG laser, focused by a 100× objective of 0.9 numerical aperture. X-ray photoemission
spectroscopy (XPS) measurements were performed on a Thermo Scientific K-Alpha X-ray Photoelectron
Spectrometer System (Thermo Fisher Scientific, Waltham, MA, USA), using a monochromatic Al Kα

X-ray (hv = 1486.7 eV). The spectrum was obtained by integrating the Ti2p region 10 times, with a
spot size of 400 um. A flood gun was used for charge compensation. The C1s carbon peak was used
as an internal reference to compensate for charging effects. Peaks were fit using Avantage software
(Thermo Scientific). The field effect transistor performance measurements were done using an Agilent
4156 Precision Semiconductor Parameter Analyzer (Agilent Technologies, Santa Clara, CA, USA) by
recording the change in Source-Drain current while changing gate voltage at a constant source-drain
voltage. A source-drain voltage of Vds = 50 mV was used to avoid damaging the nanotubes during
electrical measurements. Increasing Vds to higher values resulted in nanotubes being burned in
some devices. With a lower Vds, we were able to increase the probability that the devices survive
the entire process, allowing electrical characterization before and after deposition of the dielectric.
A Keysight E4990A Impedance analyzer (Keysight Technologies, Santa Rosa, CA, USA) was used to
obtain capacitance-frequency characteristics and to study dielectric properties of the oxides in the
frequency range from 1 kHz to 1 MHz at an amplitude of 0.01 V.

4. Conclusions

To summarize, we have demonstrated a method for achieving uniform ALD of high-k dielectric
on low-defect suspended CNTs without degrading their properties. A few nanometer thick Ti layer,
oxidized in ambient conditions to TiO2, was used to prepare the surface of inert single-walled CNTs for
subsequent ALD coating of Al2O3. TEM measurements confirmed that the coatings were continuous
and conformal, and Raman spectroscopy was used to show that the technique does not induce defects.
We show that for thin-film structures, the TiO2/Al2O3 stack has a higher gate oxide dielectric constant
relative to Al2O3 alone and exhibits a low EOT. FET devices were fabricated and showed the TiO2/Al2O3

dielectric stack to be an effective insulating layer with a low leakage current, and that the coatings
do not degrade the properties of the CNTs. The process uses standard synthetic tools and is VLSI
compatible. We believe that this conformal coating methodology will prove to be effective in the
fabrication of surround-gate CNT FETs. This method may also find applications in a variety of difficult
to coat nanoscale materials and devices, and the exploration of other ALD oxide materials could lead
to dielectrics with further improved properties.
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