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Tuberculosis (TB) remains the leading cause of death by an infectious pathogen worldwide, and drug-resistant TB is a critical 
and rising obstacle to global control efforts. Most scientific studies and global TB efforts have focused on multidrug-resistant 
TB (MDR-TB), meaning isolates resistant to both isoniazid (INH) and rifampicin (RIF). Newer diagnostic tests are resulting 
in an increasing awareness of RIF-resistant TB in addition to MDR disease. To date, RIF resistance has been assumed to be 
synonymous with MDR-TB, but this approach may expose TB patients with RIF mono-resistance disease to unnecessarily long 
and toxic treatment regimens. We review what is currently known about RIF mono-resistant TB, its history and epidemiology, 
mechanisms of RIF resistance, available diagnostic techniques, treatment outcomes reported globally, and future directions for 
combatting this disease.
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INTRODUCTION

Despite almost 30  years of global public health efforts, tu-
berculosis (TB) remains the leading cause of death by an in-
fectious pathogen worldwide [1]. Global TB control efforts 
have been stymied in part by the emergence of drug-resistant 
TB; managing this patient population is more complex, 
challenging, and costly than treating individuals with drug-
sensitive TB. Much of the research on drug-resistant TB to 
date has focused on multidrug-resistant TB (MDR-TB), de-
fined as Mycobacterium tuberculosis isolates resistant to at 
least isoniazid (INH) and rifampicin (RIF). MDR-TB patients 
require longer treatments with more costly therapies than pa-
tients with drug-sensitive disease and have higher treatment 
failure and mortality rates [2–6]. Recent work has demon-
strated that INH resistance is also associated with poorer 
treatment outcomes than drug-sensitive TB [7–11]. Although 
RIF and INH resistance often occur concurrently such as in 

MDR-TB strains, resistance to each of these agents arises in-
dependently from each other, and resistance to 1 agent can 
occur without resistance to the other.

In December 2010, the World Health Organization 
(WHO) recommended the Xpert MTB/RIF assay as a 
first-line diagnostic test for TB [12]. The expansion of di-
agnostic tests that enable the rapid recognition of RIF re-
sistance has raised awareness of the existence of patients 
with rifampicin mono-resistant TB (RR-TB), which previ-
ously had been considered uncommon. In 2014, only 1.1% 
of TB patients worldwide were believed to harbor RIF re-
sistance without concomitant INH resistance [13]. Of the 
~558 000 incident MDR/RR-TB patients in 2017, just over 
100 000 had RR-TB [1]. Limited evidence suggests that the 
prevalence of RR-TB is increasing and is associated with 
increased morbidity and poorer outcomes compared with 
drug-sensitive TB [9, 14, 15].

International guidelines generally recommend using in-
dividualized MDR-TB treatment regimens for patients with 
RR-TB [16–18]. However, MDR-TB treatment regimens may 
expose rifampin mono-resistant TB patients to unnecessarily 
long and toxic therapies while excluding the possible benefits of 
an INH-containing regimen [19]. We review the available epi-
demiology and treatment outcome data associated with RR-TB 
to inform the current state of knowledge and to highlight key 
needs for further research in the optimal management of pa-
tients with RR-TB.
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HISTORY & EPIDEMIOLOGY

Mycobacterium tuberculosis has long been recognized as a 
human pathogen, with evidence of its emergence dating as far 
back as 70 000 years [20]. After the initial use of streptomycin 
as anti-TB therapy, resistance during monotherapy was quickly 
recognized, and a subsequent trial demonstrated the benefits of 
combination antimicrobial therapy for TB treatment outcomes 
and the prevention of drug resistance emerging during treat-
ment [21]. It was not until the 1950s and 1960s that INH and 
RIF became recognized as anti-TB therapies, respectively [22], 
with the latter transforming the future of tuberculosis treat-
ment. The addition of RIF to treatment regimens formed the 
basis for the modern-day, short-course oral treatment still in 
use today [23].

Epidemiologic estimates of RR-TB prevalence are difficult 
to discern, as until recently widespread testing for RIF resist-
ance was not available. The introduction of the Xpert MTB/RIF 
assay as a first-line diagnostic test for TB has substantially ex-
panded testing for RIF resistance. However, early generations of 
the Xpert assay did not include INH resistance testing, making 
it impossible to distinguish RR- from MDR-TB without addi-
tional laboratory testing. Therefore, few studies have been pub-
lished demonstrating the prevalence of rifampicin-resistant, 
isoniazid-susceptible M. tuberculosis [9, 14, 24–28].

Evidence from South Africa suggests that rates of RR-TB may 
be higher than previously estimated and increasing. One ret-
rospective study in Cape Town noted that the total number of 
RR-TB cases more than tripled between 2004 and 2008, from 31 
to 98 cases [24]. Another study performed in the Western Cape 
Province found that RR-TB was becoming increasingly encoun-
tered, more so in HIV-infected and HIV-exposed, noninfected 
children in the region (50% of RR-TB patients were HIV in-
fected, and another 22% were HIV exposed) [25]. A  retro-
spective review of MTB-positive sputum cultures from 16 748 
patients in KwaZulu-Natal between 2007 and 2009 found that 
the proportion of RR-TB ranged from a low of 7.3% to a high 
of 10.0% (overall estimate 8.8%) using culture-based phenotype 
drug susceptibility testing (DST) [27]. Most recently, among 
88 559 M.  tuberculosis cultures with DST results in KwaZulu-
Natal between 2011 and 2014, 18 352 (20.7%) were RIF re-
sistant and 19 190 (21.7%) were INH resistant. The proportion 
of RR-TB cases increased from 15.3% in 2011 to 21.4% in 2014, 
similar to increases seen for INH mono-resistant and MDR dis-
ease [26].

Estimates of RR-TB prevalence in other parts of the world 
are highly varied. Among TB cases reported to the US Centers 
for Disease Control and Prevention between 1998 and 2014 
and excluding cases from California, 359/126 431 (0.28%) had 
primary RR-TB [15]. A study by Bai et al. [28] in Korea found 
that among 8840 new TB cases diagnosed between 1994 and 
2004, 266 cases (3.0%) had RIF resistance, with approximately 

one-fifth of these having mono-resistance only. A retrospective 
cohort analysis in France found 39 patients with RR TB be-
tween 2005 and 2010, ~0.12% of all TB cases identified [14]. In 
a study of 11 467 new cases of TB in Shandong, China, the pres-
ence of RIF resistance increased from 1.97% in 2004 to 5.77% in 
2018. INH resistance declined during this same period [29]. In 
Germany, RIF resistance without INH resistance accounted for 
only 0.3% (87/26 228) of all TB cases with DST results between 
2008 and 2017, with no increase over time. Among the 3324 
TB isolates with resistance to any first-line antimycobacterial 
agent, 634 (19.3%) were RIF resistant alone or in combination 
with other agents [30]. In a systematic review of 2552 newly 
diagnosed TB cases in Iran, 156 (5.5%) had resistance to RIF. 
Among the RIF-resistant cases, 52 (33.3%) were susceptible to 
INH [31].

MECHANISMS OF RESISTANCE

RIF halts DNA-directed RNA synthesis by interacting with the 
β-subunit of RNA polymerase [32, 33]. Several mechanisms 
of resistance to rifampicin have been demonstrated, with mu-
tations in the rpoB gene being the most common in M. tuber-
culosis isolates. In 95% of strains, this mutation is located in 
an 81-base-pair region named the RIF resistance-determining 
region (RRDR) [34, 35]. Within this 81-bp region, mutations 
specifically within codons 516, 526, and 531 are responsible for 
up to 90% of RIF-resistant strains [36, 37].

An efflux pump mechanism is thought to be responsible for 
the ~5% of RIF-resistant M. tuberculosis strains with no muta-
tions in the RRDR [38]. A study conducted by Pang et al. (2013) 
of M.  tuberculosis strains without rpoB gene mutations found 
that efflux pumps contribute to RIF resistance in RIF-mono-
resistant isolates. Through transcription-level analysis, the au-
thors showed 3 efflux pumps to be involved in exporting RIF 
from the cell: Rv0783, Rv2936, and Rv0933 [39].

More recently in 2015, Li and colleagues studied efflux pump 
gene expression in RIF-mono-resistant M. tuberculosis isolates 
in order to identify specific genes involved in this mechanism. 
PCR amplification and DNA sequencing of the rpoB gene from 
16 RIF-mono-resistant M.  tuberculosis clinical isolates from 
adult pulmonary TB patients was performed; 15 of 16 were 
shown to have mutations within the RRDR of rpoB. Half of the 
RIF-mono-resistant isolates with rpoB mutations overexpressed 
1 or 2 of the following putative efflux pump genes: Rv2333, drrB, 
drrC, Rv0842, bacA, and efpA. The authors noted that the level 
of RIF resistance varied independently of the rpoB gene muta-
tions, indicating that the 6 efflux pump genes may also play a 
role in RIF resistance [40].

Additionally, rpoB gene mutations outside the RRDR that 
confer RIF resistance have been described. An rpoB Ile491Phe 
mutation accounted for 30% of the MDR-TB isolates iden-
tified in a survey of TB drug resistance in eSwatini (formerly 
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known as Swaziland) in 2009 [41]. Of concern, currently avail-
able commercial diagnostic tests for RIF resistance including 
the BACTEC mycobacteria growth indicator tube (MGIT) 960 
automated detection system (BD, Franklin Lakes, NJ, USA) do 
not routinely detect this mechanism, increasing the likelihood 
of inadequate treatment regimens with worse outcomes and 
possible amplified drug resistance [42].

CURRENT DIAGNOSTIC TECHNIQUES

In the past decade, there have been several advances in TB 
diagnostics and drug resistance testing. Molecular diagnostic 
methods for mutations in the rpoB gene region have revolution-
ized TB diagnostics and facilitated rapid molecular detection of 
RIF resistance [43–47].

In 2008, the WHO recommended the line probe assay (LPA) 
based on reverse hybridization of DNA for MDR-TB detec-
tion [48]. LPA-based assays capable of detecting resistance 
to multiple anti-TB agents including RIF, INH, ethambutol, 
fluoroquinolones, and injectable antimicrobials now exist, but 
their use tends to be limited to reference laboratories with the 
necessary technical expertise [49]. In 2010, the WHO endorsed 
the introduction of the Xpert MTB/RIF nucleic acid amplifi-
cation test (NAAT; Cepheid, Inc.) for TB diagnosis. This was 
a particularly historic change in the TB diagnostics world, as 
it provided an automated and rapid point-of-care method to 
detect both active pulmonary TB and RIF resistance. In high-
burden settings, Xpert MTB/RIF assays are used as a surrogate 
marker for multidrug resistance without directly testing for iso-
niazid resistance in the first line of testing [50–52].

Both LPA and Xpert MTB/RIF assays show strong diagnostic 
performance (95%–98% sensitivity) when compared with phe-
notypic DST [53, 54]. Per WHO guidelines, LPA results can 
usually be reported within 2–3  days. In contrast, the Xpert 
MTB/RIF assay can report results within 3 hours, depending 
on the exact timing of receiving a sample and reporting the re-
sult [55]. High sensitivity (98%) of the Xpert MTB/RIF test has 
been reported in smear-positive samples. In smear-negative 
specimens, the detection rate is lower (72.5% to 76.9%) [56], 
and its accuracy for detecting RIF resistance can vary by region, 
depending on the variation of circulating TB strains within that 
area [53, 57].

CURRENT GUIDELINES AND RECOMMENDATIONS

The WHO Global Tuberculosis Programme has published sev-
eral guidelines over the past 2 decades addressing the emer-
gence of drug-resistant TB. The first guidelines, published in 
1996, recognized the dire impact drug-resistant strains could 
have on global TB control, defined MDR-TB as M. tuberculosis 
resistant to at least INH and RIF, and provided treatment re-
commendations [58]. These guidelines described a treatment 
regimen for INH-mono-resistant TB and defined any isolate 

with RIF resistance as “MDR-TB.” Subsequent WHO guidelines 
published in 2014, 2016, and 2018 have specifically mentioned 
RIF-mono-resistant TB; however, treatment recommendations 
remained the same as for MDR-TB, with no deviations [59–61].

The most recent WHO guidelines on drug-resistant tuber-
culosis treatment continue to recommend identical treatment 
regimens for RR- and MDR-TB. These recommendations in-
clude an option for a shorter regimen (9–12  months) in pa-
tients who have not been previously treated for more than 
1 month with second-line medicines used in the regimen. For 
patients requiring a longer duration, a regimen ranging from 
15–20 months is sufficient, unless there is additional resistance 
to second-line agents [62]. This guidance is similar to their re-
commendations in previous recent years.

In contrast to the WHO guidelines, the 2019 joint American 
Thoracic Society (ATS), US Centers for Disease Control and 
Prevention (CDC), European Respiratory Society (ERS), and 
Infectious Diseases Society of America (IDSA) Clinical Practice 
Guidelines for drug-resistant TB treatment specifically do not 
address management of RIF resistance in the absence of INH 
resistance [63]. Other institutional bodies, including the United 
Kingdom National Institute for Health and Care Excellence and 
the European Union Standards for Tuberculosis Care, have fol-
lowed the WHO recommendations for treating RR-TB similarly 
to MDR disease.

Previous joint ATS/CDC/IDSA TB guidelines did suggest 
an alternative treatment regimen to MDR-TB for RIF mono-
resistance, outlining a 9-month regimen consisting of INH, 
pyrazinamide, and streptomycin. An all-oral regimen con-
sisting of INH, pyrazinamide, and ethambutol for 12  months 
was recommended if using an injectable agent was not feasible. 
The guidelines also suggested the addition of a fluoroquinolone 
in patients with more extensive disease. In contrast, the recom-
mendations for MDR-TB treatment were a fluoroquinolone, 
pyrazinamide, ethambutol, and an injectable agent, +/- an alter-
native agent, for 18–24 months’ duration [64, 65].

Because of the low incidence of MDR-TB and the availability 
of reliable DST in the United States, the Curry International 
Tuberculosis Center and the California Department of Health 
recommend a tailored RR-TB treatment approach con-
sisting of INH, ethambutol, and a fluoroquinolone daily for 
12–18  months, supplemented with pyrazinamide for a min-
imum of 2 months during the intensive phase [66].

TREATMENT OUTCOMES

Compared with INH mono-resistant TB and MDR-TB pa-
tients, data on RR-TB treatment outcomes are limited. These 
data suggest that patients with RR-TB are more likely to have 
poorer outcomes compared with patients with drug-susceptible 
TB. In a prospective cohort study of 1039 culture-positive TB 
patients in Lima, Peru, 24 (2%) were confirmed as having RIF 
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mono-resistance. RR-TB patients were more likely to have HIV 
co-infection (adjusted odds ratio, 9.43; 95% CI, 1.9–47.8) or die 
(8.3% vs 1.4%; P  =  .004) than patients with drug-susceptible 
TB [9]. A  retrospective cohort analysis of 42 582 cases from 
the California Department of Public Health TB Registry over a 
16-year period (1993–2008) identified 178 (0.4%) RR-TB cases. 
There were 3469 (8.1%) cases with INH mono-resistance, and 
635 patients (1.5%) had MDR-TB. In a multivariate analysis 
controlling for HIV co-infection and other covariates, RR-TB 
cases were twice as likely to die as patients with drug-susceptible 
TB (relative risk, 1.94; 95% CI, 1.40–2.69) [67]. In a retrospec-
tive cohort analysis of 39 patients with RR-TB in France, only 
20 (51%) had documented treatment success (clinical cure). Of 
the 30 cases where treatment outcomes were assessed, 3 RR-TB 
patients died, 3 had relapse of disease, and 4 were lost to fol-
low-up [14].

A retrospective study from South Korea compared treat-
ment outcomes in patients with RR-TB and those with pan-
susceptible TB who did not receive RIF because of an adverse 
event. Forty-four RR-TB patients and 29 pan-susceptible TB pa-
tients intolerant of RIF were identified between 1999 and 2013. 
RR-TB patients were younger, had more alcohol use, more often 
had a history of TB, and had radiologically more severe disease 
compared with the RIF-intolerant TB group. Treatment success 
rates were not significantly different (87.2% and 80.0% in the 
RR-TB and RIF-intolerant TB groups, respectively; P =  .586). 
However, the RR-TB patients had a longer average duration of 
therapy (453 days vs 371 days; P =  .011) compared with RIF-
intolerant pan-susceptible TB patients [68]. In a study of 545 
patients with DR-TB treated in the Netherlands between 2005 
and 2015, MDR disease, but not RIF mono- or poly-resistance, 
was associated with worse treatment outcomes [69].

Stagg and colleagues [70] undertook a systematic review and 
meta-analysis of randomized controlled trials to evaluate treat-
ment regimens for RR-TB, but found only 3 studies collectively 
reporting outcomes for only 9 patients with RIF-mono-resistant 
isolates [71–73].

FUTURE DIRECTIONS

There is a clear need for further studies and surveillance systems 
to better estimate the prevalence and incidence of RIF-resistant, 
INH-susceptible TB. While the widespread use of Xpert has 
been a major milestone in TB diagnostics, there are limita-
tions in its utility, specifically in managing RR-TB. Automated 
rapid diagnostic tests for the direct detection of M. tuberculosis 
complex with INH and/or RIF resistance from sputum samples 
have been developed [74]. Their utility and cost-effectiveness 
in routine clinical practice need to be determined, but modal-
ities that identify INH resistance will aid in more rapidly dis-
tinguishing between RR-TB and MDR-TB, with potentially 
significant treatment implications. Additionally, there is a need 

for more routine use of sophisticated diagnostics in order to 
recognize RR-TB strains that do not contain RRDR mutations. 
With the greater usage of next-generation sequencing tech-
nologies in microbiology, the routine use of whole-genome 
sequencing (WGS) for M. tuberculosis isolates has become more 
plausible and, in particular, has been shown to have high sen-
sitivity and specificity specifically for the detection of RIF and 
INH resistance [75, 76]. Further consideration should also be 
given to more rapid and cost-effective ways to perform DST on 
second-line agents once a patient has been identified as having 
RIF-resistant TB. Second-line DST can ensure a more effective 
regimen has been chosen, thereby also reducing further RR-TB 
transmission [77].

Additionally, more robust data from trials regarding the 
most effective treatment regimens (both drugs and duration 
of therapy) for RR-TB remain needed, particularly in high-risk 
areas of RR-TB and MDR-TB endemicity such as South Africa, 
Peru, Korea, and India. As with MDR-TB, effective treatment 
outcomes with shorter, less toxic, and less complex regimens 
are needed for this patient group. Novel laboratory-based ap-
proaches for identifying more effective, shorter TB treatment 
regimens have been developed, and data from mouse models 
suggest that RIF-free regimens could be effective for DS- and 
DR-TB [78].

Finally, as we look to the future of managing these patients, 
other key areas for investigating include optimizing the phar-
macokinetics/pharmacodynamics of existing antituberculous 
agents and the development of new antimicrobials with novel 
mechanisms of action. Using medications such verapamil and 
chlorpromazine, shown to act as efflux pump blockers, may also 
prove clinically useful in treating this disease [40]. Increased at-
tention should be paid to the field of nonantimicrobial inter-
ventions to combat antimicrobial drug resistance, and funding 
for basic and clinical research in these areas is sorely needed.

Though the scope of this review has focused largely on 
studies involving TB-endemic countries, it should be noted 
that in low-incidence TB countries, in particular, rigorous 
data for incidence and treatment outcomes of RR-TB remain 
sparse. This is largely because the incidence of drug-resistant 
TB in such regions is low. However, there is a continued need 
for studies in these regions, and there is an increased need for 
provider awareness. Some drugs becoming part of commonly 
used regimens for MDR-TB treatment in high-incidence coun-
tries, such as bedaquiline, remain more last resort treatment op-
tions in many low-incidence countries. Further exploration of 
using such newer agents in low–TB incidence countries should 
be considered.

CONCLUSIONS

Drug resistance remains a major barrier to winning the global 
fight against TB. For more than 50  years, RIF has been the 
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cornerstone of effective TB treatment. With the spread of 
genomic-based rapid diagnostic tests for TB worldwide, there 
is growing awareness of the magnitude of RIF resistance com-
plicating TB control efforts. Increased research and policy anal-
ysis are needed to understand the magnitude of the problem 
and to develop effective, less toxic, and less costly treatments 
for RR-TB. These include treatments with shorter overall dur-
ations of therapy, reduced pill burdens, and reduced rates of ad-
verse events, to name a few benefits. In addition, and also of 
paramount importance, better identification and treatment of 
RR-TB may reduce the progression of further drug resistance, 
which still greatly contributes to the obstacle of meeting the 
WHO End TB Strategy Goals by 2035 [79].
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