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Abstract

Protein design remains an important problem in computational structural biology. Current

computational protein design methods largely use physics-based methods, which make use

of information from a single protein structure. This is despite the fact that multiple structures

of many protein folds are now readily available in the PDB. While ensemble protein design

methods can use multiple protein structures, they treat each structure independently. Here,

we introduce a flexible backbone strategy, FlexiBaL-GP, which learns global protein back-

bone movements directly from multiple protein structures. FlexiBaL-GP uses the machine

learning method of Gaussian Process Latent Variable Models to learn a lower dimensional

representation of the protein coordinates that best represent backbone movements. These

learned backbone movements are used to explore alternative protein backbones, while

engineering a protein within a parallel tempered MCMC framework. Using the human ubiqui-

tin–USP21 complex as a model we demonstrate that our design strategy outperforms cur-

rent strategies for the interface design task of identifying tight binding ubiquitin variants for

USP21.

Author summary

To engineer proteins that bind a target protein, computational protein design methods

have been employed to reduce the set of candidate protein variants that are then experi-

mentally validated. Current protein design methods use protein backbone information

from a single protein structure. In order to use alternative protein backbones, the single

input protein structure is perturbed in either a random manner or restricted to a prede-

fined set of protein backbone movements. Here, we introduce the FlexiBaL-GP protein

design strategy, which incorporates information from multiple protein backbones to

guide the search for new alternative high quality protein backbones. These large multi-

atom movements of a protein system are learned via the non-linear dimensionality reduc-

tion method provided by Gaussian Process Latent Variable Models (GP-LVM). Using

the GP-LVM approach, our strategy jointly searches for new protein backbones and new

protein variants. We demonstrate on the ubiquitin–USP21 system that the FlexiBaL-GP

design strategy outperforms current protein design approaches.
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Introduction

Protein engineering has created new proteins as therapeutics [1–3], modulators of protein

interactions [4,5] or to enhance enzymatic activity [6–9]. Experimental directed evolution

approaches have been quite successful at identifying tight binding protein variants from a

large pool of randomized variants [10–12]. On the other hand, computational approaches

search over the large space of possible amino acid combinations to identify a short list of pro-

tein variants likely to exhibit the function of interest. While they can search many more vari-

ants than experimental approaches, often only a small proportion of the short- listed protein

variants are experimentally found to tightly bind the target of interest. This difficulty can be

attributed 1) to approximations made by the scoring functions used to rank different protein

variants and 2) by the search methods used to explore the rugged energy landscape of a protein

fold [13].

Computational protein design strategies typically attempt to identify the optimal sequence

for a protein fold, by searching over alternative residue side chains and protein backbones.

Two general protein design approaches exist, ensemble backbone design and flexible backbone

design, which differ in how the protein backbone is explored. Ensemble backbone design strat-

egies employ a two-phase approach, where multiple protein backbones composed of the same

sequence are first created. The optimal sequence is subsequently identified independently for

each protein backbone within the ensemble using a simulated annealing or dead-end elimina-

tion approach [14,15]. Flexible backbone design methods explore different protein backbones

and amino acid combinations within the same procedure. In this manner, alternative protein

backbones composed of different amino acid combinations can be explored. By considering

alternative backbone configurations, ensemble and flexible backbone strategies are able to

identify protein variants that would otherwise be omitted if a single backbone template were

used. Together, these methods have successfully identified protein variants with enhanced

binding affinity for a target or better thermostability, in addition to capturing a protein’s bind-

ing specificity [14–19]. Recent advances have led to methods that link such computational

design methods with high throughput screening methods leading to improved designs [20].

Exploring alternative protein backbones is currently achieved by applying perturbation

operations on a single protein structure. Protein backbone perturbation operations have

included the random displacement of backbone torsion angles [21], sampling from a prede-

fined set of short structural configurations, sampling from a predefined set of previously

observed backbone movements such as shearing and the “backrub” rotation movement

[17,22,23], or sampling along movement trajectories defined by normal mode analysis [24].

None of these approaches take advantage of the fact that, increasingly, there are multiple struc-

tures of the same protein fold (or, indeed, the same protein) available at the protein data bank

(PDB). Here we sought to incorporate information from multiple protein structures using

machine learning. This is achieved by performing a non-linear dimensionality reduction pro-

cedure over the atomic coordinates of multiple protein structures. In doing so, we directly

learn complex protein backbone movements. We incorporate these learned backbone move-

ments in a parallel tempering sampling scheme to identify tight binding protein variants. This

protein design strategy is called Flexible Backbone Learning by Gaussian Processes (Flexi-

BaL-GP) design (Fig 1).

We demonstrate our FlexiBaL-GP design strategy in the ubiquitin system, which uses post

translational modifications to regulate protein abundance in the cell [25]. It is implicated in

many cellular processes and diseases such as cancer [26]. As a proof of concept we sought to

first recapitulate the natural conformational ensemble of ubiquitin. Second, we modulate the
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ubiquitin system by inhibiting ubiquitinase specific protease 21 (USP21), a deubiquitinating

enzyme known to regulate cancer associated pathways [27]. Here we use the ubiquitin–USP21

complex as our model and evaluate the FlexiBaL-GP design method by its ability to identify

ubiquitin variants that tightly binds USP21. For this purpose, a short contiguous 18 amino

acid region on the ubiquitin interface was engineered (positions 54–71). FlexiBaL-GP design is

implemented within the Rosetta protein design framework and we demonstrate its ability to

identify more ubiquitin variants that tightly bind USP21 than existing ensemble and flexible

backbone strategies.

Results

Learning flexible protein backbone movements

To account for protein flexibility, current flexible backbone design methods predefine rigid

protein movements that can be utilized during the design procedure. Rather than applying

general backbone movements, system specific global backbone movements can be directly

learned from multiple structures of the same protein. In an ideal scenario, many different

structures with all possible conformations would be available, but as we show below, even

using only a few structures leads to marked improvements. To do so, we first note that protein

backbone atoms are highly constrained by intramolecular and intermolecular forces (often

expressed as molecular forcefields). These local restrictions couple the movements of neigh-

boring and spatially close atoms, limiting the number of feasible movements that a protein sys-

tem can undergo. If all N atoms of a protein system were to move independently, the system

would exhibit 6N degrees of freedom, considering translation and rotation operations in Car-

tesian space, whereas a rigid protein would only have 6 degrees of freedom. Since protein

atoms are unlikely to move fully independently, the true number of degrees of freedom is likely

Fig 1. Schematic of incorporating multiple protein structures for protein design. A) Multiple structures are aligned and a non-linear dimensionality

reduction method maps the atomic coordinates into a 2 dimension latent space. B) Traversals in a latent space, designated by points 1, 2, and 3, corresponds

to complex multi-atom movements, where x denotes the location of an input structure.

https://doi.org/10.1371/journal.pcbi.1005722.g001
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much smaller than 6N and we can employ a non-linear dimensionality reduction approach to

learn these hidden dimensions, representing protein movements involving correlated atomic

movements. In doing so, global atomic movements required to transform one input structure

into another can be directly learned from multiple protein structures.

Our FlexiBaL-GP method uses a Gaussian process latent variable model (GP-LVM) to per-

form a non-linear dimensionality reduction over protein backbone coordinates. The GP-LVM

uses a similarity function k(�,�), called a kernel, to specify the relationship between the input

protein structures within the lower dimensional space defined by the reduced number of

degrees of freedom (Fig 1A). Parameters to be learned within the GP-LVM framework are

the locations of the N protein backbones in this reduced space of L dimensions or latent space

(X 2 RN×L) and the kernel parameters. If a linear kernel is chosen, the resulting GP-LVM can

be thought of as performing probabilistic principal component analysis on the protein back-

bone atomic coordinates and selecting the first L principal components to represent the pro-

tein backbones. Specifically, the GP-LVM relates a latent space (X 2 RN×L) to a data space

(Y 2 RN×D) via the mapping ynd = fd(xn) + �n, for the n’th data point and d’th feature with a

Gaussian noise error term, �n * N(0,β) with a precision β [28,29]. The GPLVM joint probabil-

ity model can then be defined as follows after marginalizing the mappings to give

pðY ;Xjy; bÞ ¼ pðYjX; y; bÞpðXÞ

¼
YD

d¼1

Nðydj0;K þ bIÞ
YN

n¼1

Nðxnj0; IÞ:

For this study, we used the composite kernel constructed from the radial basis function

(RBF) and bias kernels, such that

k xs; xtð Þ ¼ y0exp �
1

2

XL

l¼1

yljjxs � xtjj
2

 !

þ y3:

Learning the location of the data points in latent space (X), the kernel parameters (θ), and

noise parameter (β) can be achieved by optimizing the GPLVM joint distribution by minimiz-

ing the negative log posterior

L X; θ; bð Þ ¼
DN
2

log2pþ
D
2

logjKj þ
1

2
Tr K� 1YYTð Þ þ

1

2

XN

n¼1

xT
nxn:

Importantly, once the L dimensional protein backbones representations are learned, new

protein backbones sampled from this L dimensional space can be reconstructed in Cartesian

space by means of the mapping provided by the GP-LVM (Fig 1B). Of course, because the

latent space is of much lower dimensionality, this will be computationally much more efficient

than deciding a protein’s movement in Cartesian space. Thus a MCMC sampling strategy can

be employed to sample new protein backbones from this L dimensional space, rather than

directly perturbing protein backbones in Cartesian space with rigid movement operations.

Due to the non-linearity introduced by the described composite kernel, linear traversals in

latent space correspond to concerted multi-atom protein backbone movements. In this man-

ner, complex protein backbone can be explored, while searching for alternative amino acid

combinations over the designed protein positions (Fig 1B). Reconstructing the atomic coordi-

nates of a new protein backbone, y�, associated with a latent point, x�, is made possible by

computing the predictive mean of the conditional Gaussian distribution,

pðy�jx�;Y;X; θ; bÞ � NðE½y��; covðy�ÞÞ;
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where

E½y�� ¼ E½μx� � þ kx� ;X½KX;X þ bI�� 1yd ð1Þ

covðy�dÞ ¼ kx� ;x� � kx� ;X½KX;X þ bI�� 1kX;x� :

Here, we have used KX,X and kx�,X to respectively indicate the kernel matrix from the N

input structures and the row vector arising from applying the kernel function between x� and

every N input structures.

Sampling the energy landscape

The energy landscape of a protein fold is thought to be rugged, containing multiple local

minima, which may partly be reflected in latent space. If a single MCMC trajectory were uti-

lized at a low temperature to explore alternative protein backbone configurations and protein

sequences, the trajectory would get trapped in one of the many local minima. This is akin to

executing a single Rosetta Backrub procedure at a very low temperature. Alternatively, if a

high temperature were used for the MCMC trajectory, undesirable high-energy solutions may

be proposed. We overcome the aforementioned problems while searching for alternative pro-

tein backbone configurations and protein sequences, by employing a parallel tempering or

replica exchange MCMC sampling strategy. Here, multiple MCMC chains are executed inde-

pendently at predefined temperatures following a temperature ladder. At each iteration, a state

swap between a random chain and a neighbouring chain occurs with a probability determined

by the Metropolis-Hastings acceptance criteria. Specifically, protein structures associated with

chain i and j respectively having energies Ei and Ej and temperatures Ti and Tj, are swapped

with probability:

p i; jð Þ ¼ min 1; exp Ei � Ej

� � 1

Ti
�

1

Tj

 !" # !

:

Here, we employed 24 MCMC trajectories spanning a temperature ladder defined by a geo-

metric series with a multiplying ratio of 1.1. The lower and upper temperature bounds were

respectively set to 0.1 and 0.5.

A global flexible backbone strategy

Our proposed flexible backbone protein design strategy, FlexiBaL-GP, incorporates learned

protein backbone movements within a parallel tempering framework. As input, D atomic

coordinates of heavy atoms (2{N, Cα, C, and O}) from N structurally aligned protein back-

bones is provided to construct the data space (Y 2 RN×D). First, the GP-LVM parameters are

learned using the GPy framework [30], which includes the location of the N input protein

structure in latent space (X 2 RN×L), where L is the dimension of the reduced space (L = 2 in

this study). Second, a parallel tempering strategy is used to explore alternative amino acid

combinations and protein backbones. At each iteration, a new amino acid side chain rotamer

or a new protein backbone is respectively chosen 95% and 5% of the time. Amino acid side

chains are sampled from the Dunbrack 2010 rotamer library, where each amino acid is consid-

ered equiprobably. Proline rotamers are omitted due the Rosetta protein design framework’s

representation of amino acid side chains. New protein backbones are sampled from the 2

dimensional latent space defined by the GP-LVM, using a zero-mean univariate Gaussian to

determine the latent space step. The Gaussian variance is set to 0.001 times the maximum dif-

ference between the N input structures in the latent space for each latent dimension. The new
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sampled protein backbone space is subsequently reconstructed in Cartesian space using Eq 1.

For the protein backbone movement, the newly reconstructed protein retains the same side

chain rotamers as the one before the backbone movement operation. Since all protein back-

bone heavy atoms may have moved, the backbone hydrogen atoms are rebuilt into the new

protein backbone configuration. Once either a rotamer or backbone change has been formed,

the new change is accepted with a probability determined by the Metropolis-Hastings accep-

tance criteria. Note that reconstructing the protein backbone with a Gaussian process is rela-

tively fast, due to the small number of required matrix operations; however, hydrogen and side

chain placements over the reconstructed backbone are computationally more expensive opera-

tions. Thus we use a partial structure, defined by an 8Å distance threshold around the engi-

neered positions, which reduces the computational time required to perform these flexible

backbone movements. Together, the described procedures form the FlexiBaL-GP protein

design strategy, which we implement in C++ within the Rosetta protein design framework.

OpenMP is used to take advantage of the MCMC trajectories that are independently executed

with the parallel tempering framework. Since parallel tempering methods sample from the tar-

get distribution after equilibration, the scores of multiple poses associated with the same

amino acid sequence are merged following the Boltzmann distribution function,
PN

p e� Ep ,

where Ep is the Rosetta energy score for pose p of a given sequence.

Recapitulating the natural ubiquitin ensemble

We first assessed the FlexiBaL-GP method by its ability to capture the natural conformations

of ubiquitin. Using 28 X-ray crystal structures as input, we asked if the FlexiBaL-GP method

could recapitulate the ubiquitin backbone conformation variation observed amongst the NMR

models (PDB id 2LJ5) [31]. The majority of low energy models derived from the FlexiBaL-GP

method are within 0.50–0.65 Å RMSD of the 1UBQ reference structure. The 25 randomly

selected NMR models were found to have a greater diversity, spanning 0.509–0.949 Å RMSD

to the reference structure, with 44% of the NMR models located within the range spanned by

the FlexiBaL-GP models (Fig 2A). Visual inspection of 3 randomly selected FlexiBaL-GP mod-

els derived from the lowest temperature trajectory and 3 random selected NMR models illus-

trates that the FlexiBaL-GP method can partially capture the natural ubiquitin conformational

ensemble. More interestingly, it demonstrates that just 2 latent dimensions are sufficient for

the construction of natural ubiquitin structures (Fig 2B).

Designing ubiquitin variants for tight binding towards USP21

Next, the FlexiBaL-GP method is assessed by its ability to design the ubiquitin interface (posi-

tions 54–71) for tight binding towards USP21. We and others have previously redesigned ubi-

quitin for binding to USP21 [20,32] and have thus obtained 215 experimentally validated tight

ubiquitin variants. We have previously shown that a random forest regression model trained

on these can accurately predict affinity for any ubiquitin variants [20]. We used this regression

model to determine which variants identified by the FlexiBaL-GP approach are likely to tightly

bind USP21 and to compare FlexiBaL-GP to other design methods. To evaluate the impact of

varying the number of protein backbone structures from different sources, we apply the Flexi-

BaL-GP strategy to three input scenarios: 1) two wild type complexes (PDB id 3I3T and 2Y5B),

2) two wild type complexes augmented with molecular dynamic models, and 3) two wild type

complexes and a complex of a variant previously found to tightly bind USP21 (PDB id 3MTN)

[32,33]. For scenario 2, 20 structures in total are used as input, composed of 2 wild type crystal

structures (PDB id 3I3T and 2Y5B) and 18 models derived from 100ns molecular dynamic si-

mulations initialized using the 3I3T and 2Y5B structures (9 models each). Molecular dynamic
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models were employed to expand upon the space of possible protein backbones of the ubiqui-

tin–USP21 system. For the following comparisons, the FlexiBaL-GP method was executed 5

times for each scenario to ensure stability of the employed sampling scheme.

We compared the FlexiBaL-GP approach to conventional protein design strategies of

ensemble and flexible backbone design to engineer the ubiquitin interface for tight binding

towards USP21. Two ensemble approaches were used for the creation of ubiquitin–USP21

complex ensembles, 1) molecular dynamics [34,35] and 2) CONCOORD, a distance constraint

approach [36]. The multi-cooling Rosetta simulated annealing procedure was used to design

the ubiquitin interface for USP21 binding for each structure within the ensemble. The Rosetta

Backrub method was chosen as a representative flexible backbone design method. Variants

arising from the described ensemble and flexible backbone design methods were retrieved

from our previous study that all used the 3I3T structure as input [20]. For all design strategies,

the talaris2013 Rosetta scoring function was used and the top 2000 scoring variants were

extracted for the comparisons. In this manner, differences in the ubiquitin variants generated

from each design strategy can be attributed to the search strategy employed by a design

method for the discovery of alternative side-chain and backbone configurations.

We first assessed the design strategies by their ability to recover variants that were similar

to experimentally identified tight binding ubiquitin variants for USP21 using a high through-

put screening method [32]. As different protein positions were selected for engineering com-

pared to the experimental method, only overlapping ubiquitin positions (62, 63, 64, 66, 68, 70,

and 71) were compared. For each designed sequence, the closest matching experimentally

Fig 2. Unbound ubiquitin ensemble. A) RMSD vs Rosetta energy unit (REU) score for the 10 lowest temperature trajectories of a single

FlexiBaL-GP execution (black), 28 X-ray crystal structures (red), and 25 randomly selected NMR models (cyan). B) Superimposition of 3 randomly

selected FlexiBaL-GP models (black) and 3 randomly selected NMR models (cyan).

https://doi.org/10.1371/journal.pcbi.1005722.g002
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identified variant was found from which the sequence identity was computed. Taking the

mean over the maximum sequence identities for each design strategy, we find that all Flexi-

BaL-GP scenarios, the designed sequences were more similar by sequence identity to the

experimentally identified sequences compared to sequences derived from either ensemble or

flexible protein design strategies. Specifically, FlexiBaL-GP scenarios 1, 2, and 3 respectively

achieved an averaged maximum sequence identity of 53.55%, 57.89%, and 53.52%, while the

MD ensemble, CONCOORD ensemble, and Backrub design methods achieved an averaged

maximum sequence identity of 44.42%, 47.55%, and 44.94%. Focusing on position 68, which

was deemed to be instrumental for tight binding for USP21, 98.35%, 89.95%, and 98.4% of the

variants respectively from FlexiBaL-GP scenarios 1, 2, and 3 contained the phenylalanine or

tyrosine amino acids [32]. This contrast with 36.75%, 51.65%, and 29.10% of the variants

respectively from the MD ensemble, CONCOORD ensemble, and Backrub design methods

that had either a phenylalanine or tyrosine at position 68.

For emerging approaches that link design and screening, accuracy of “the best” designs is

less important (also difficult to achieve) than enrichment of tight binders in a library [20], we

hence evaluated the design approaches using this metric. The FlexiBaL-GP approach was

found to consistently identify a higher proportion of predicted tight binding ubiquitin variants

for USP21 than the ensemble and flexible backbone design methods, as evaluated by our ran-

dom forest model (Fig 3). Here, predicted tight binding ubiquitin variants are determined

with the described random forest regression model. Using just two wild type X-ray crystal

structures (3I3T and 2Y5B) as input for FlexiBaL-GP achieved a mean of 451 predicted tight

binding ubiquitin variants towards USP21 (23% of the designs), whereas the molecular dy-

namics ensemble protein design approach identified 319 predicted tight binding ubiquitin var-

iants (16% of the designs, p-value = 0.003069 by a one sample t-test). Augmenting the two wild

type X-ray crystal input structures with 18 molecular dynamic models resulted in a mean of

Fig 3. Comparison of protein design strategies. The y-axis reports the number of tight binding variants

determined by a random forest regression model. The top scoring ubiquitin variants from each design strategy

are selected at thresholds ranging from 100 to 2000. GP:wt2, GP:wt2+MD18, and GP:wt2+mut respectively

correspond to the FlexiBaL-GP method being initialized with two wild type structures (3I3T and 2Y5B), two

wild type structures and 18 molecular dynamic models, and two wild type structures and a tight binding

ubiquitin variant for USP21 (3MTN). MD, CONCOORD, and Backrub designate current ensemble and flexible

backbone protein design methods that use single protein structures for the design process.

https://doi.org/10.1371/journal.pcbi.1005722.g003
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490 tight binding ubiquitin variants (25% of the designs). Current molecular dynamic, CON-

COORD, or Backrub design strategies respectively identified 319, 168, and 110 predicted tight

binding variants (16.0%, 8.4%, and 5.5% of the designs). Thus, if only wild type information is

available, using the FlexiBaL-GP approach with crystal structures augmented with molecular

dynamic models would result in 1.5, 2.9, and 4.5 times more tight binding variants when

respectively compared to using single template design approaches that incorporate molecular

dynamics, CONCOORD, and Backrub strategies (p-value = 0.01386, 0.00142, and 0.00074 by

a one sample t-test). Similarly, supplementing the wild type X-ray crystal structures with that

of a crystal structure of a tight binding ubiquitin variant for USP21 (3MTN) resulted in a

mean of 1022 (51% of the designs) predicted tight binding variants, which is again significantly

more than that was discovered by the molecular dynamic ensemble design strategy (p-value =

0.0003684 by a one sample t-test).

To ensure that information from multiple protein backbones was utilized during the Flexi-

BaL-GP protein design process, MCMC trajectories associated with the lowest temperature

were inspected. Designing the ubiquitin interface for USP21 binding using two wild type

structures augmented with molecular dynamic models as input (GP:wt2+MD18) resulted in

the designed ubiquitin variants having protein backbones similar to molecular dynamic mod-

els derived from the 3I3T structure (Fig 4). No single input structure was found to determine

protein backbones associated with putative tight binding ubiquitin variants. Similarly, aug-

menting the wild type structures with the 3MTN structure (GP:wt2+mut), a tight binding

ubiquitin variant, didn’t result in variants whose backbones were only similar to the 3MTN

structure. Rather, information from all three input structures was used to engineer ubiquitin

variants for tight binding towards USP21 (Fig 4). These results underline the strength of Flexi-

BaL-GP to synthesize information from multiple structures. Using the 3I3T partial complex as

Fig 4. Latent space FlexiBaL-GP trajectory analysis. Representative MCMC trajectories respectively operating at temperatures T = 0.10 (black lines)

and T = 0.30 (orange lines) are plotted for two different inputs for the FlexiBaL-GP strategy. Input structures are shown in red, green, and blue, respectively

representing structures derived from the 2Y5B, 3I3T, and 3MTN X-ray crystal structures.

https://doi.org/10.1371/journal.pcbi.1005722.g004
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a reference, low energy FlexiBaL-GP models were found to occupy a specific region in back-

bone conformational space (Fig 5), corroborating our previous observations. Considering that

the RMSD between the 3I3T and 2Y5B X-ray partial structures is 0.449 Å and the RMSD

between the 3I3T (wild-type) and 3MTN (mutant) partial structures is 0.421 Å, models associ-

ated with the GP:wt2+mut scenario are similar to the input structures (Fig 5). However, since

the wild-type and mutant structures are highly similar to each other, the discovery of putative

tight binding variants is not reliant on large structural changes but rather on the ability to pro-

pose accurate protein backbones that are amendable to putative tight binding variants. Visual

inspection of 3 randomly select GP:wt2+mut models superimposed on the 3 input X-ray struc-

tures illustrate that the models are highly concordant with the input structures in segments of

low variance, whereas in segments of higher variance, the models occupy a different backbone

configuration (Fig 6).

In order to further understand the performance enhancement of using multiple input struc-

tures, we compared sequence logos of the designed variants to those of the previously experi-

mentally validated variants [20]. Comparing the best 2000 scoring variants, the FlexiBaL-GP

derived variants were found to better recapitulate the tyrosine and phenylalanine at respec-

tively positions 66 and 68 compared to variants from the molecular dynamics protein ensem-

ble design approach (Fig 7). Importantly, the FlexiBaL-GP variants retain the 66T and 68F

mutations such that they resemble variants that were experimentally validated by phage dis-

play, where 68F enables hydrophobic interactions with USP21 (Fig 6). Additionally, unlike the

molecular dynamic ensemble design method, the FlexiBaL-GP approach also identified a tyro-

sine mutation at position 68 as being important for ubiquitin binding towards USP21, which

was previously found in 2 out of 26 variants that were experimentally identified by phage dis-

play using a naïve library [32]. Since the employed random forest model used to predict tight

USP21 binding was not trained on any variants with the tyrosine mutation, the number of

Fig 5. RMSD vs Rosetta energy unit (REU) score for the 10 lowest temperature trajectories of a single FlexiBaL-GP execution for the GP:

wt2+MD18 and GP:wt2+mut scenarios.

https://doi.org/10.1371/journal.pcbi.1005722.g005

Data driven flexible backbone protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005722 August 24, 2017 10 / 17

https://doi.org/10.1371/journal.pcbi.1005722.g005
https://doi.org/10.1371/journal.pcbi.1005722


Data driven flexible backbone protein design

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005722 August 24, 2017 11 / 17

https://doi.org/10.1371/journal.pcbi.1005722


predicted tight binding variants for the FlexiBaL-GP method is likely a lower bound. Further-

more, the amino acid variance across the designed positions for the FlexiBaL-GP variants is

less than that observed from the molecular dynamics protein ensemble designed variants, indi-

cating that the FlexiBaL-GP method samples protein variants that are more similar to each

other, which are likely close to the optimal sequence conditioned on the scoring function

(Fig 7).

Principal component analysis was subsequently employed to explore the sequence variabil-

ity observed within the FlexiBaL-GP derived variants. We find that variants derived from

inputs composed of only X-ray crystal structures (Fig 8, GP:wt2 and GP:wt2+mut) were simi-

lar to each other, despite the inclusion of the protein complex of a known ubiquitin variant

bound to USP21. Interestingly, inclusion of the 3MTN structure resulted in the appearance of

a cluster of protein variants similar to the wild type sequence. Additionally, using multiple pro-

tein structures to guide the design process, as is the case for the FlexiBaL-GP method, recov-

ered variants that were distinctly different from variants derived from single protein structure

templates. In particular, using a mixture of X-ray structures and molecular dynamic models

(GP:wt2+MD18) resulted in the identification of a unique set of variants that differed from

other FlexiBaL-GP and single template variants. Furthermore, the designed variants from sin-

gle template approaches such as ensemble and flexible backbone methods were more similar

to the wild type sequence than variants from the FlexiBaL-GP approach (Fig 8).

Discussion

We have described a new flexible backbone protein design strategy, FlexiBaL-GP design,

which leverages information from multiple structures. By learning protein movements directly

from multiple protein structures, the FlexiBaL-GP strategy can incorporate large multi-atom

movements to explore alternative protein backbones specific to the protein system of interest

to identify multiple energetically favourable protein variants. This differs from existing flexible

backbone protein design methods that use local rigid perturbations to maintain rigid bond

lengths or bond angles to restrict a protein’s degrees of freedom while searching for alternative

Fig 6. Superimposition of 3 randomly selected FlexiBaL-GP models (gray) from the GP:wt2+mut scenario and the 3

partial X-ray crystal structures used as input. The ubiquitin and USP21 X-ray crystal component is respectively shown in pink

and cyan, with the design ubiquitin region colored red. Position 68F from one FlexiBaL-GP model is shown in green.

https://doi.org/10.1371/journal.pcbi.1005722.g006

Fig 7. Ubiquitin variant sequence logos. Designed ubiquitin variants using a molecular dynamic (MD) ensemble and validated for USP21

binding by phage display (MD Phage Selected). Variants designed by the FlexiBaL-GP strategy using different input structures: GP:wt2, GP:

wt2+MD18, and GP:wt2+mut.

https://doi.org/10.1371/journal.pcbi.1005722.g007
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protein backbone. Flexible backbone methods that use local movements rely on the accuracy

of a scoring function to assess the quality of protein backbone structures. On the other hand,

structures from FlexiBaL-GP backbone movements are preconditioned to be similar to experi-

mentally determined input protein backbones, minimizing the reliance on a scoring function

for the creation of high quality protein backbones. While many protein design methods focus

on identifying the optimal sequence, the FlexiBaL-GP method samples protein variants from a

target distribution (energy landscape) defined by the scoring function. In this regard it is more

akin to the K� dead-end elimination [37], genetic algorithm [21,38], and Backrub methods

used for flexible backbone design [23]. The parallel tempering search strategy of the Flexi-

BaL-GP approach enables it to jointly sample alternative protein backbones and side-chains to

identify protein variants that may reside in multiple local minima. The smooth representation

of the protein backbone in a lower dimensional space enables the FlexiBaL-GP method to

interpolate between known protein structures. It also enables the FlexiBaL-GP strategy to

avoid the energy minimization step that current design strategies employ to prepare the input

structure for design. While this minimization procedure is used to ensure that the structure is

equilibrated with respect to a scoring function, the minimization is performed using the wild-

type sequence, which may restrict subsequent designs to be similar to the wild type sequence.

Learning the global backbone movements of a protein system requires multiple protein

structures to be provided as input to the FlexiBaL-GP method. Since just a matrix of atomic

coordinates are required, X-ray crystal structures, nuclear magnetic resonance (NMR) models,

or Cryo–electron microscopy (Cryo-EM) structures can be supplied as input, in addition to

computational models. Information from these multiple structures enables the FlexiBaL-GP

method to identify 50% more tight binding ubiquitin variants compared to using a molecular

dynamics ensemble design strategy, when only wild type structural information is available

Fig 8. Principal component analysis of designed ubiquitin variants predicted to tightly bind USP21.

https://doi.org/10.1371/journal.pcbi.1005722.g008
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(Fig 3). If just three X-ray crystal structures are used as input, where one of the structures is a

known tight binding variant, 3.2 times the number of tight binding variants can be identified

(51% of the designs) compared to using a molecular dynamics ensemble design strategy (16%

of the designs). While the large increase in the number of discovered tight binding variants

may be attributed to the 3MTN protein backbone predisposing designs for ubiquitin variants

that tightly bind USP21, the FlexiBaL-GP method was found to use information from all three

X-ray crystal structures (Fig 4). This suggests that the increased performance arises from the

addition of general structural constraints being placed on the space of discoverable protein

backbones during the design process. Thus unlike existing methods, the FlexiBaL-GP

approach can be used to iteratively improve upon existing design solutions by alternating

between computational design and incorporating additional solved protein structures.

Here, we have described the application of the GP-LVM dimensionality reduction method

for protein design within our FlexiBaL-GP protein design method. The GP-LVM model can

also be used for the analysis of molecular dynamic trajectories or to infer possible structural

configurations along a reaction pathway. For the purposes of protein design, the GP-LVM

enables the recovery of more tight binding variants than existing protein design methods that

primarily use information from a single structural template to infer new protein backbones.

Thus as more structures are deposited into the PDB, our FlexiBaL-GP flexible backbone strategy

will only continue to improve, as the space of valid protein backbones is refined with additional

structural data. With the introduction of high throughput screening strategies of computational

protein designs for binding [20], our flexible backbone design strategy will enable better utility

of the screening library for the identification of variants possessing the function of interest.

Methods

Ensemble and flexible backbone protein design

Protein design of the ubiquitin interface for USP21 was performed using the Rosetta software

suite version 3.5 (build 2013, week 42). Input for the ensemble and flexible backbone protein

design strategies originated from Human ubiquitin—USP21 complexes (PDB id 3I3T, 2Y5B,

3MTN) retrieved from the PDB. Before design, each chain was minimized with the Rosetta

relax program with the parameters “-relax:constrain_relax_to_start_coords -relax:coord_con-

strain_sidechains -relax:ramp_constraints false -ex1 -ex2 -use_input_sc -flip_HNQ -no_optH

false -dun10 true -score:weights talaris2013”.

Performing ensemble and flexible backbone design with the Rosetta design software for the

ubiquitin–USP21 system has been previously described [20]. Briefly for ensemble design,

ensembles were generated from the CONCOORD distance constraints method [36] and 100ns

molecular dynamics simulations using the GROMACS package [34,35] with the AMBER

forcefield [39]. In order to perform the molecular dynamic simulations, missing loops were

complete by the FALC-Loop method [40]. The Rosetta multi-cooling simulated annealing

approach was used for protein design with the parameters “-score:weights talaris2013 -no_his_

his_pairE -extrachi_cutoff 0 -multi_cool_annealer 10”. Flexible backbone design as imple-

mented by the Rosetta Backrub application was executed with the flags “-ex1 -ex2 -dun10 true

-score:weights talaris2013 -extrachi_cutoff 0 -no_his_his_pairE -backrub:ntrials 10000”.

FlexiBaL-GP protein design

Protein backbone heavy atoms were first extracted and aligned using the Kabsch algorithm

[41] as implemented in the R Project bio3d library [42]. For the input scenario utilizing molec-

ular dynamic simulations, 9 representative models were selected from each 3I3T and 2Y5B tra-

jectory. Representative models were selected by average-link clustering of the molecular
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dynamic models. Models from before the trajectory stabilized were removed and the model

closest to a cluster’s average was chosen as a representative. These 18 representative molecular

dynamic models were combined with the 2 wild type structures to give a total of 20 structures.

In all other cases, atomic coordinates directly from the experimentally determined structure

are used. The GPy framework [30] is subsequently used to learn the GPLVM parameters aris-

ing from using the composite RBF + Bias kernel. For all scenarios in this study, the Flexi-

BaL-GP design process was executed for 2 million iterations, with models being saved to disk

every 200 iterations. The first 20 000 and 600 000 iterations are considered burn-in for the

FlexiBaL-GP trajectories respectively for the ubiquitin ensemble and ubiquitin–USP21 design

scenarios. The size of the latent space step is determined by dividing the distance between the

maximum and minimum values of a latent dimension by 1000. At each iteration, a side chain

is chosen 95% of the time, whereas a protein backbone movement is chosen 5% of the time. In

particular, the Rosetta SidechainMover is used for the side-chain selection process. 24 MCMC

trajectories were used, which were spaced over a temperature ladder defined by a geometric

series with a multiplying ratio of 1.1 between the temperatures 0.1 and 0.5 inclusively.
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