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Targeting iNOS to increase efficacy of immunotherapies
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ABSTRACT
Inducible NO synthase (iNOS/NOS2) protein expression is a well-studied predictor of poor outcome in
multiple cancers, and it has also been associated with inflammatory and immunosuppressive processes in
the tumor microenvironment. Immunotherapies are becoming increasingly key components in cancer
treatment, and iNOS is receiving more attention as a potential regulator of treatment resistance. As we
have reported in pancreatic cancer, by modulation of effector T-cell activity, iNOS overexpression may
allow the tumor to escape the immune response through creating a microenvironment which causes
recalcitrance to immunotherapy. Based on studies describing its role in the immune environment of
multiple cancers, strategies that include iNOS inhibitors as combination partners may enhance
immunotherapy approaches. The expression and the function of iNOS both depend on the tumor type
and microenvironment, as well as on the patient’s treatment history. Thus, enhancing immunotherapies,
including adoptive T-cell therapies and checkpoint blockade, will require tailored cancer-specific
approaches and additional levels of microenvironment regulation.
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Introduction

Cancer immunotherapy has emerged as one of the most prom-
ising treatment modalities and made remarkable progress in
the last decade. The main strategies to exploit the patient’s
immune system to fight cancer include cytokines, immune
checkpoint blockade (e.g. CTLA-4, PD-1, PD-L1), cancer vac-
cines, and adoptive T-cell therapy approaches.1 Although
immunotherapies have shown impressive results in the clinic,
most cancer patients are not cured completely, and many ques-
tions remain unanswered including how to select the patients
who would benefit from these treatments. Combinations of
immune and targeted therapies also show promise, especially
when targeted therapies help modulate the immune system by
increasing immune infiltration or immunogenicity of the
tumor.2 Immunogenic neoantigens arise from both mutated
and non-mutated but tumor-specific proteins, and these are the
main targets of currently available personalized cancer vaccine
and T-cell immunotherapies.3 Low mutation load often limits
the availability of targetable neoepitopes, and loss of human
leukocyte antigen (HLA) expression and/or active immunosup-
pressive mechanisms (e.g., inhibitory cytokines like TGF-b and
IL-10; regulatory T cells - Tregs, myeloid-derived suppressor
cells - MDSCs, and tumor-associated macrophages - TAMs)
also help cancer cells to evade the immune response. We
hypothesize that combination therapies may need to eliminate
mediators of immune suppression to be able to evoke robust T-
cell responses. We have recently identified inducible nitric
oxide synthase (iNOS/NOS2) as a potential mediator of

immune suppression in pancreatic ductal adenocarcinoma
(PDAC).4 Aberrant expression of iNOS/NOS2 has also been
observed in several other tumor types, such as breast, colon
and melanoma,5-8 and its role in tumor progression appears to
depend on the activity and localization of NOS isoforms, con-
centration and duration of nitric oxide (NO) exposure, and cel-
lular sensitivity to NO. Although the role of NO and the
protein iNOS, which is one of the enzymes that synthesize NO
from L-arginine, in cancer development has been extensively
studied in the last decades, we envisage that the need for effec-
tive combination (immuno-) therapeutics will renew interest in
targeting this protein in clinical practice.

The dual role of iNOS in host defense and cancer
development

It was first discovered that NO plays a critical role in various
physiological processes including host defense by controlling
replication or killing of intracellular microbial pathogens.9

Increased expression of NO in response to cytokines or patho-
gen-derived molecules is an important component of host
defense against a wide variety of intracellular microorganisms.
In multiple tumor types, iNOS expression, which catalyzes the
production of NO, is also high and has been reported to be
expressed by various cell types, including M2 macrophages,
MDSCs, dendritic cells, NK cells, tumor cells, endothelial cells,
neuronal cells, and neutrophils; all of which are involved in
inflammation and cancer. However, the role of iNOS in tumor
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development is complex, and it can promote tumor develop-
ment and also inhibit immune response.10 Among the
numerous effects of NO in cancer, it is now evident that NO
plays important roles in various stages of carcinogenesis such
as DNA damage, oncogene activation, inhibition of DNA repair
enzymes and tumor suppressor genes, and modulation of apo-
ptosis.10 Furthermore, augmented NO production promotes
tumor progression and metastasis by increasing proliferation,
migration, and angiogenesis.10 Thus, we propose that inhibition
of NO production may have a significant therapeutic potential
to improve immunotherapies. It is postulated that the role of
iNOS depends on the tumor type and the tumor microenviron-
ment, therefore it is critical to identify exactly how and when
targeting iNOS could be effective to treat cancer or increase
efficacy of immunotherapies. It was recently shown that iNOS
enhances disease aggressiveness in pancreatic cancer,11 which,
together with its potential in enhancing PDAC immunothera-
pies,4 suggests that iNOS could be an effective target in this
malignancy. In addition to PDAC, multiple studies point to
that inhibiting iNOS could increase efficacy of immunotherapy
of other cancers as well.

Enhancing immunotherapies by targeting iNOS

Expression of iNOS protein by tumor cells deleteriously influ-
ences the anti-tumor immune response primarily by mediation
of immune suppression. Functional roles of iNOS in anti-
tumor immunity include recruitment and/or activation of
MDSCs, Tregs, tumor-associated macrophages, and Th2 lym-
phocytes.12 Activated MDSCs also continuously produce NO
in the tumor microenvironment, and this further increases the
inhibition of anti-tumor T-cell activity.13 Targeting NO pro-
duction reverses MDSC-mediated immunosuppression by
blocking MDSC recruitment to the tumor.14 Similarly, in a
lung metastatic model where IFN-g production was stimulated
using a-garactosylceramide, inhibition of iNOS expression
enhanced therapeutic efficacy via suppression of MDSCs.15

Although the beneficial effect of iNOS inhibition by suppress-
ing MDSCs is clear, other immunosuppressive factors also
need to be considered. MDSCs can deplete L-cysteine from the
tumor microenvironment, resulting in decreased proliferation
and activation of T cells.16 In addition, L-arginine depletion by
MDSCs may contribute to Treg expansion.17 In a melanoma
mouse model, MDSC levels were suppressed by iNOS inhibi-
tion, but FOXP3C Treg levels were increased, and a combina-
tion treatment of iNOS inhibition and Treg depletion was
necessary to control tumor growth.18 A recent study also
showed that the presence of N-AcetyL-cysteine (NAC) during
ex vivo T-cell expansion improves the persistence of adoptively
transferred cells, reduces tumor growth, and increases survival
in a mouse model of melanoma.19 NAC is a sulfhydryl donor
molecule with antioxidant and anti-inflammatory effects. It
attenuates NO generation by modulating iNOS expression, and
it also inhibits NF-kB activity.20 Thus, the addition of NAC to
current therapeutic T-cell expansion protocols could improve
adoptive T-cell therapies by directly inhibiting iNOS and NO
production at the tumor site.

Although originally macrophages were identified as myeloid
cells that infiltrate tissues to combat and eradicate invading

pathogens and tumor cells, in recent years multiple studies
have shown that subclasses exist and they may support tumor
progression, growth, and metastasis as they produce growth
factors, cytokines and chemokines which are necessary for
these processes.21,22 Accumulating evidence suggests that these
tumor-associated macrophages actively promote all aspects of
tumor initiation, growth, and development of a polarized M2
phenotype (alternatively activated type) instead of the M1 phe-
notype (classical activated type). It has been shown that iNOS-
derived NO mediates nitration of tyrosine residues in multiple
regulatory proteins, leading to the suppression of the M1 mac-
rophage signature gene activation23 and a pro-tumorigenic
environment. TAM-infiltrated tumors are associated with
worse clinical outcome and increased angiogenesis, local tumor
progression, and metastasis. Through iNOS-expressing
immune and inflammatory cells, cancer cells may acquire an
additional immunosuppressed state, which may increase the
barrier to effective cancer immunotherapies. Inhibition of
iNOS also enhances the efficacy of Toll-like receptor (TLR)
agonists by increasing Th1 immune response, and a combina-
tion of a TLR7 agonist and an iNOS inhibitor effectively inhib-
ited tumor growth.24 Increasing activity of Th1 immune cells
may synergize with suppression of polarized M2 macrophages,
therefore approaches that target iNOS in the tumor microenvi-
ronment could potentially strengthen anti-tumor immune
responses.

iNOS and checkpoint blockade

Inhibition of iNOS may also enhance immune therapies that
are based on checkpoint blockade. For instance, in a checkpoint
blockade study of neuroblastoma, immunosuppression medi-
ated by myeloid Gr1C cells was rescued by blocking enzymatic
activity of iNOS.25 Furthermore, targeting the gamma isoform
of phosphoinositide 3-kinase (PI3Kg) in myeloid cells restored
sensitivity to checkpoint blockade, however, expression of
iNOS was also elevated after treatment.26

Similarly, CSF1/CSF1R blockade in a pancreatic ductal ade-
nocarcinoma model improved response to checkpoint block-
ade-based immunotherapy (anti-CTLA4 and anti-PD1) by
reprogramming tumor-associated macrophages, however,
CSF1 blockade also upregulated NOS2/iNOS27. Another recent
study has also shown that the checkpoint regulator VISTA is
involved in suppression of B-cell response, and a combination
of iNOS and VISTA inhibition was necessary to completely
eliminate the MDSC-mediated suppression.28 Although the lit-
erature on the role of iNOS in checkpoint blockade-related
immunosuppressive mechanisms is new and sparse, we believe
that further research in this area is warranted and may lead to
effective iNOS-based interventions that enhance immune
checkpoint therapies.

Conclusions

The multifaceted role of iNOS has been recognized in cancer,
including potentially important functions in immune suppres-
sion. Evidence suggests that abrogation of immune suppression
mediated by iNOS-produced NO may result in major improve-
ments and combination therapies that include iNOS inhibition
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could overcome some of the limitations of currently available T
cell-based therapies. Furthermore, local production of NO
alters the tumor microenvironment and may lead to resistance
to checkpoint blockade, implying potentially effective iNOS-
based therapeutic interventions. However, further research is
needed to determine when and how iNOS inhibition can be
applied to increase efficacy of immunotherapies.
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