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Abstract

Cellular signaling networks display complex architecture. Defining the design principle of this architecture is crucial for our
understanding of various biological processes. Using a mathematical model for three-node feed-forward loops, we identify
that the organization of motifs in specific manner within the network serves as an important regulator of signal processing.
Further, incorporating a systemic stochastic perturbation to the model we could propose a possible design principle, for
higher-order organization of motifs into larger networks in order to achieve specific biological output. The design principle
was then verified in a large, complex human cancer signaling network. Further analysis permitted us to classify signaling
nodes of the network into robust and vulnerable nodes as a result of higher order motif organization. We show that
distribution of these nodes within the network at strategic locations then provides for the range of features displayed by the
signaling network.
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Introduction

The sensitivity of intracellular signaling systems to variations in

input stimuli is evident from the multiple outputs that are

produced at the level of changes in gene expression and cellular

activities [1–7]. However, such systems must also guard against the

generation of inappropriate and non-specific responses that may

potentially be induced through either noise in the external milieu,

or through stochastic perturbations of the intracellular compo-

nents (e.g. mutations, alterations in protein turn-over rates etc). An

understanding of how this fine balance between robustness and

sensitivity is achieved is, however, currently lacking.

The dynamic properties of signaling networks are defined by the

motifs that are embedded in them [8–11]. A variety of motifs have

been discovered and these collectively constitute the building

blocks of biological networks [12–14]. Recent studies have shown

that the pattern of motif organization defines the information

processing capabilities of the signaling network, influencing the

specificity and plasticity of input/output relationships [12,15].

Thus, for example, a complex motif organization is associated

even with a simple three-tiered cascade such as the MAP kinase

pathway [16]. This motif organization is critical for defining

signaling responses of the pathway to variations in both the nature

and strength of the input signal. Importantly, this motif

organization also explains the tissue-specific variations in the

ERK response to input stimuli [16]. A more integrated perspective

was provided by studies in hippocampal CA1 neurons, which

revealed that a variety of regulatory motifs were formed

downstream to signaling cascades and described that key

regulators of plasticity were highly connected nodes required for

the formation of regulatory motifs [17]. These and other such

related findings, therefore, led us to speculate whether the pattern

of motif organization in a signaling network also contributes

towards defining its robustness versus adaptability/sensitivity

threshold.

Of the various signaling motifs described in the literature those

belonging to the class of Feed forward loops (FFLs) are the most

versatile, being endowed with properties like imparting persis-

tence, delay or inhibition in signal output depending on the signs

of each of the links in the motif [13,17]. Further, motifs are

considered as the building blocks of the signaling networks and

accordingly we have recently shown integration of FFLs forming

larger regulatory modules, with a consequent amplification of the

regulatory features [16]. Therefore, we opted to examine the

higher order organization of three-node FFLs in signaling

networks, to determine their effects on the signal processing and

cellular response. To probe the issue of maintenance of response-

specificity, we selected a condition wherein cells were subjected to

varying levels of stochastic perturbations and evaluated the

consequent steady state value, rather than the kinetic features, of

the output attained [3,11,15,16,18–25]. It is the change in steady

state levels that have been shown to govern the outcome in

complex biological processes such as adaptability, immune

memory, development, and cell differentiation [15,25,26].

Results

A mathematical model for output from 3-node FFLs
We started with a simple model for a feed forward loop

consisting of three nodes A, B and C (Fig. 1A). Node A receives

the input signal which then influences the output node C either

directly or via additional regulatory node A. These relationships

represent signaling events in a cell, either immediately downstream

to some receptor or intermediate signaling events several steps
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following the initial receptor activation. Response of a biological

system depends largely on how information about an environ-

mental change or stimuli is relayed to the nucleus. Therefore cell

signaling regulates most of the cellular responses [1,27]. However

with a limited number of molecules available to intercept, process

and transmit the signal, it remains obscure how different biological

information could be processed so precisely with nearly overlap-

ping set of molecular agents [3,7]. The three-node feed forward

loop in this study was taken to represent signaling interactions

between the molecules and how the nature of interaction might

lead to specificity in cellular responses. Parameters governing the

relationship between the nodes are a1, a2 and a3 (Fig. 1A), and by

simply changing their signs, eight different three-node FFL motif

architectures could be described. Individual nodes were modeled

Figure 1. A mathematical model of three node FFLs. The typical feed-forward loop of three nodes is represented in panel A, along with the
model. Parameters a1 , a2 and a3 shows the relationship between the three nodes as depicted. It is important to note that by changing signs of a1 , a2

and a3 eight different motif architectures could be obtained. The specific input/output relationship is shown in Panel B, where output at node C is
plotted against the input b. Panel C shows unit change in output (O1-O1) as a function of per unit change in input b1{b2ð Þ. Plots corresponding to
panels C and D for each of the eight possible FFLs (see text) are shown in panel D and E. A motif specific I/O relationship is evident in the figure.
doi:10.1371/journal.pone.0028606.g001
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for their activated form by defining their basal activation value as

B~k1=d1 dB=dt~0½ � and C~k2=d2 dC=dt~0½ �. For each of the

nodes, their respective inactive form was represented by deducting

activated form from the unity thereby maintaining the overall

amount of a given molecule constant [13,15]. The steady state

(A�) achieved by A in response to a signal was equal to b and was

considered as our input to the motif. Enzymatic reactions were

modeled on the basis of the law of mass action and the output was

defined in terms of the steady state values achieved by node

C(denoted as C�).
In an FFL where all three edges exhibited positive regulation, an

increase in input signal b resulted in a corresponding increase in

C�(Fig. 1B). To obtain more precise input/output (I/O)

relationships, however, we calculated unit change in C� as a

function of the change in input b. Interestingly, here we instead

observed decrease in the increment in the output for a unit

increase in input signal caused mainly due to the saturation effect

(Fig. 1C). This profile, with its characteristic pattern of change in

C�, was taken as a descriptor of the response from the FFL that

was specific to the input signal. By this approach the I/O

relationships for all eight possible FFLs were examined. As shown

in Fig. 1D, the response pattern generated from each motif was

unique wherein many instances displayed a reduced value forC�
with an increment in input signal. The ability to generate such

diverse outputs to a common input, through elementary changes

in motif architecture, probably represents a critical feature that

confers plasticity during signal processing.

Motifs can be ranked on the basis of their vulnerability to
systemic noise

Having established the I/O relationship patterns, we next asked

the question of how such motifs are buffered against noise. In vivo,

cells are continuously exposed to a range of non-specific signals. In

addition stochastic processes that introduce mutations or alter-

ations in protein turnover rates also represent non-specific

perturbation to the signaling network. To probe this, we

incorporated a dispersed stochastic perturbation in our model

that could influence any of the components of the motif

independent of the signal input (Fig. 2A). The rational for using

dispersed perturbation was derived from the fact that a multiplicity

of both cell intrinsic and external factors such as cytokines, growth

factors, nutrients, environmental stresses, modulations in protein

stability, among several others, can potentially influence any of the

signaling components through a diverse range of mechanisms

[2,28,29]. Cumulatively, such perturbations would exert a

heterogeneous influence on the basal state of the signaling

network. We considered such random influences as systemic

perturbations and incorporated these effects into the model as

multiplicative Gaussian white noise (Fig. 2A) [5,10].

Incorporation of systemic perturbations in our model resulted in

a marked influence on the nature of the steady state achieved. The

output value, instead of a single point observed as observed in the

absence of noise, varied widely for several motif types, such that

beyond a threshold level of noise the specificity of the response to

the input signal was lost. A representative profile of such divergent

output response is depicted in Fig. 2B, where C� is calculated for

an incoherent type II FFL. Beyond a threshold, multiple values

distributed over a wide range were obtained. That is, the

correlation between input and output was lost and the output

became entirely unpredictable (Fig. 2B). The threshold values were

calculated analytically (Theorem 1), and it was defined by the

point where divergent steady state output responses were initiated

(Fig. 2B). Briefly, Theorem 1 defines the relationship between the

noise intensities with the system parameters in terms of stochastic

stability using methods from Ito’ differential calculus (Ref, Mao).

Given the variations in the C� values in the perturbed condition, a

precise I/O relationship could not be determined. Instead, a range

of values within which the output could lie was obtained.

Therefore, we determined the standard deviation for this range

as an estimate of increased imprecision in the signal output. At

increased perturbation levels, any input-dependent change in

output was completely masked by the several-fold higher increase

in the standard deviation of the range of these possible values

(Fig. 2C). Similar phenomenon was observed when at a constant

noise level, input signal was changed (Fig. 2D). The combination

of noise and input level could together then describe the

vulnerability threshold, beyond which output becomes unstable.

We next examined whether the eight variant architectures for

FFLs display distinctions in vulnerability thresholds to such

stochastic perturbations. The aim here was to determine whether

the fine distinctions in topology between these motifs play any

differential role in buffering against noise. Since the vulnerability

threshold defines stability of the output we examined the allowed

regions of stability for C�, in the two-dimensional parameter space

defined by the intensities of the perturbations and the input signal

(s{b, Fig. 2E). A clear distinction in the allowed regions across

the individual motifs could be observed with coherent type II and

incoherent type II FFLs being revealed as the most resilient by

virtue of exhibiting the larger boundary of allowed parameter

space in comparison with that of the others (Fig. 2E). On a more

quantitative note we estimated the area of the allowed zone of

stability in the (s{b) parameter space, and used the obtained

values to rank the eight FFL motifs in terms of their vulnerability

to stochastic perturbations (Fig. 2F). The results revealed the

ranking, in terms of the vulnerability threshold, that described the

incoherent type II FFL as the most sensitive and the coherent type

I as the least vulnerable to systemic perturbations (Fig. 2F). The

remaining motifs were graded between these two extremes. An

important aspect here was to ascertain the robustness of the

relative ranking of various FFLs to changes in parameter values.

Also we wanted to ensure that the rankings hold good under

different kinetic laws governing the regulatory behavior. We

therefore began with changing the parameter values (a1, a2 and

a3), and calculated rank of the eight FFLs in terms of the area

under (s{b) plot. The analysis provided some intriguing

observations. Four out of eight motifs (CI, CIII, ICI, and ICII)

retained their ranking across the entire range of magnitude for a1,

a2 and a3 while other four (ICIV, CII, CIV and ICIII) swapped

rankings.

We also performed these analyses using Michaelis-Menten

kinetic law and established that relative stability thresholds for

various motifs were independent of the magnitude of parameters

a1, a2 and a3 under both mass action and Michaelis-Menten

kinetics (Figure S1). While, at one level, these findings confirm

distinctions in functional properties to individual motifs, they

further extend by highlighting that the architecture of a motif also

plays a critical role in defining its sensitivity to random

perturbations. Such an interpretation then automatically implies

that the manner in which various motifs are organized in a

signaling network would impact on the overall vulnerability of the

network against non-specific perturbations.

Higher order organization of Motifs exhibits specific
design principle

Accordingly then, we next asked whether any specific pattern of

organization could be detected, for the motifs within a network.

To address this at the first level, we continued to restrict our focus

on the 3-node FFLs and examined for any preferred order of their

Design Principle of Signaling Networks
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Figure 2. Signal and noise are differentially processed by different FFLs. The model for inclusion of systemic perturbation is shown in Panel
A. Here si,i~1,2,3 are real constants known as intensities of perturbations. Further, ji

t~ji(t),i~1,2,3 are standard Wiener processes independent of
each other. Panel B shows output at node Cat a given signal as a function of increase in systemic noise (Black dots). Red arrow indicates the threshold
noise level at which output becomes divergent (see text). Corresponding output in the absence of noise is also shown (Red dots). As an alternate
measure of specific I/O relationship in the presence of systemic noise, standard deviation for the C� is plotted as a function of s (panel C) or b (panel
D). Data for plots used in Panel B, C and D were taken for an incoherent type II FFL, for the sake of clarity. Panel E depicts two dimensional (s{b)
parameter spaces for the stability of the signal output through different FFL architecture. The shaded region shows stability of output at C�. In most
cases, an increase in signal lead to higher vulnerability to noise as sdecreases with increase in b except for the two instances, coherent type I and
incoherent type I where the noise threshold increases with increase in signal. Relative ranking of the FFLs on the basis of their vulnerability threshold
was calculated by the area of the respective stability zone in 2E and is shown in panel F.
doi:10.1371/journal.pone.0028606.g002
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organization, in instances where two FFLs occur in tandem. The

three different arrangements that are potentially possible in such

cases are shown in Figure 3. In spite of the limited set of

combination tested here the diversity in robustness threshold

generated was remarkable (Fig. 3, lower panel). Therefore clearly

in a large signaling network, how different kinds of motifs are

organized would determine both the overall robustness and output

specificity of the network. Specifically taking cues from Figure 3,

formation of high threshold motifs at the effectors end of the

network would ensure response specificity as well as diversity. At

the same time simply by altering the order in which motifs are

organized downstream to input, different I/O relationship could

also be achieved. One possible way of altering the order of motif

organization could be differential recruitment of various signaling

molecule downstream to the receptor.

To verify these findings, we selected a manually curated,

published human signaling network consisting of 1634 nodes and

4888 regulatory interactions [30]. Since nodes with higher

connectivity are important for regulating plasticity [17], we

wanted to identify whether any specific pattern exists in

distribution of signaling molecules across various motifs. We

developed an algorithm in MTLAB to measure the frequency of

occurrence of a given node in the eight possible three-node FFLs.

This was then integrated with the vulnerability ranking of the

individual FFLs as outlined in Figure 4A (see ‘Methods’). The

resulting scores obtained helped to identify nodes that were

overrepresented in either the vulnerable or the robust FFLs (Table

S2), and such nodes were described as vulnerability hot spots

(VHS) or robustness hot spots (RHS) respectively. Subsequent to

this exercise, we reasoned that the distribution pattern of VHS

versus RHS in the signaling network would provide insights into its

regulatory features and, in particular, the question of how the

antithetical properties of robustness and sensitivity are integrated.

An analysis of the human signaling network yielded an aggregate

of 324 RHS and 75 VHS and this is represented in Figure 4B.

While this bias towards RHS - relative to VHS - was not surprising

considering robustness displayed by biological signaling networks,

a further analysis of these nodes revealed additional features of

interest. The RHS were primarily composed of receptors and

receptor proximal kinases (Fig. 4C). In contrast, molecules directly

regulating cellular responses like apoptosis (Bad, Bcl2, Bax, and

other Bcl family members) and phosphatases (MKP1, MKP2,

MKP3, MKP5, PPP1CC, PPP2R5C etc) terminal cell-cycle

regulatory molecule (CDK4) and ubiquitin conjugating enzymes

dominated the constitution of VHS (Fig. 4C).

These findings were particularly intriguing in that they

suggested the existence of a possible organizational principle for

motifs in signaling networks. That is, the enrichment of RHS at

the receptor and its proximal levels would confer heightened

robustness for filtering out signal from noise As opposed to this,

enrichment of VHS within the effector components that define

signal output would ensure that the resulting cellular responses are

both buffered against noise as well as display sufficient flexibility to

ensure divergent cellular responses. This functionally segregated

polarization of VHS and RHS may then potentially explain

incorporation of the opposing properties of sensitivity and

robustness by signaling networks. That the observed segregation

of VHS and RHS in the human cancer-signaling network may in

fact represent a more general principle was supported by our

subsequent analysis of signaling networks downstream of receptors

to seven different ligands. These were EGF, TGFB, IL1B, NGF,

FGF, BDNF and Glutamate. In all of these cases, we traced the

paths downstream of the corresponding receptor. While tracing

the paths downstream to these ligands, we ensured directions of

Figure 3. Meta-organization of motifs defines vulnerability and robustness hot-spots in the network. Three possible ways of alternate
arrangement of 3 node FFLs are shown in the upper section of Panel A. Corresponding analysis of all possible combinations revealed that diverse
robustness patterns could be obtained as a result of permutative combination of these motifs (lower section, Panel 3A). For each combination here,
area was calculated in the (s{b) parameter space and was used to plot the pseudo-color maps shown. The color bar at the extreme right shows
relative high and low values. Note that the motif organization at the extreme left has only five links where signs could be changed, giving rise to 25

i.e. 32 combinations. Combinations not possible in this organization are shown as gray. The other two organizations could give 64 different
combinations. A table ranking various combinations of alternately placed FFLs is presented in Table S1.
doi:10.1371/journal.pone.0028606.g003
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the interaction were also accounted for by using our own

algorithm developed in MATLAB (see ‘Methods’ for detail). An

empirical examination of these networks clearly revealed a biased

enrichment of RHS among the receptor proximal components.

This observation could be further confirmed by calculating the

ratio of robust to vulnerable nodes at each step in the pathway

(Fig. 5). A significantly higher presence of RHS in the receptor-

proximal steps was clearly detected in all the eight instances

studied (Fig. 5).

Discussion

Biological systems display remarkable robustness despite being

surrounded with an environment consisting of diverse physical

and physiological stimuli. Some of the attributes that impart

robustness to both external and internal perturbations include

topological features of the signaling network [31]. The

topological features can further be weighted in their magnitude

of influence depending on net concentration of the constituent

nodes as well as stochastic variations in their level owing to

various intrinsic mechanisms [32]. How these features contribute

towards overall robustness and sensitivity of biological networks

are however not well understood. In the present study, using a

very simple three-node feed-forward loops we have shown that

depending on the nature of interaction among the constituent

nodes in a topological framework, a system might vary between

Figure 4. Scoring of signaling intermediates for their vulnerability to noise in a human signaling network. Using the ranking of FFLs
shown in Figure 2E, a scoring strategy was developed for the participant nodes (Panel 4A). Then in a real human cancer signaling network, this
strategy was applied to score each of nodes in the network. The cancer signaling network sorted on the basis of aggregate score of component
nodes is represented in Panel B. distribution of vulnerable (blue), robust (red) and intermediate nodes (yellow and green) are shown in the network.
Links in pink are activating interactions while those in blue are inhibitory. Neutral associations are displayed in grey. Classification of robust and
vulnerable nodes into various functional categories is shown in Panel C and further listed in Table S3.
doi:10.1371/journal.pone.0028606.g004

Figure 5. A novel design principle for signaling network
organization. Downstream to seven different ligands, we counted
number of robust and vulnerable nodes at every step. Ratio of
cumulative numbers of vulnerable to robust nodes at every step
downstream to any receptor was calculated and is shown in the figure.
Enrichment of receptor proximal steps with robust nodes is evident
here. The red dotted line represents overall network ratio of robust to
vulnerable nodes. This shows that contrary to the network average,
early steps of the network are significantly enriched with the robust
nodes.
doi:10.1371/journal.pone.0028606.g005
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being highly vulnerable or extremely robust for a given input in

the presence of inherent stochasticity at each of the nodes. One

of the most key advancement in our understanding through this

study is the revelation that the topological features like feed-

forward loops could be ranked in terms of their role for a

common biological property. Next we show that in a signaling

network, if we estimate frequency of occurrence of any given

node to different kinds of FFLs, they can be scored for their

robustness quotient. Interestingly, we observed a level of

segregation in the distribution of robust and vulnerable function

to molecules known for their different biological functions. On a

simpler note, the present study reveal a simple yet elegant design

principle that could potentially explain many of the complex

traits exhibited by signaling networks. The most significant of

these is that the selective positioning of RHS in the receptor-

proximal and that of VHS in the effector component-proximal

segments facilitates the balance between robustness and diversity

of the overall system. It is also likely that the concentration of

RHS in the neighborhood of the receptor represents an

evolutionary principle that allows cells to evolve more complex

networks further downstream, in response to the increasing

repertoire of extracellular cues. It was further supported by a

detailed look at the composition of molecules at each of the steps.

Thus, initial steps downstream to various receptors were

enriched with kinases while later steps gradually got enriched

with TF regulators and apoptosis regulators. From the contrary

view though, the localization of RHS would also suggest that

aberrations in functioning of the signaling network leading to

disease would largely derive from mutations in the RHS sub-set

of signaling nodes. Such an interpretation is indeed supported by

the fact that most genes whose mutations are associated with

cancer (e.g. ABL1, BRCA1, SRC, ATM, BRAF, PTEN,

TGFBR2, EGFR, RB, p53, SMAD4 etc) in fact belong to the

category of RHS described here.

We recognize that while our present study was restricted to three-

node FFLs, other categories of motifs are also present in the

signaling network. Some of these are Feed Back Loops, Four-node

FFLs, and Bifans among others. Consequently, an extension of the

analysis described here to incorporate all such motifs can clearly be

expected to provide many additional insights into the regulatory

aspects of signal transduction. From the standpoint of the present

study, however, we believe that its highlight is the revelation that a

defined principle exists for the higher-order organization of FFLs

and, perhaps, motifs in general. Further, our demonstration that this

organization impacts on the thresholds governing sensitivity to

stimuli and robustness to perturbations is also of particular

significance. These findings, therefore, have important implications

for understanding both the evolutionary aspects of network design,

as well as the etiology of several diseases.

Methods

Deterministic model
The model represents a three node signaling motif, Node A

receives the input signal which then influences the output node C

either directly or via additional regulatory node A. Parameters

governing the relationship between the nodes area1, a2and a3

(Fig. 1A), and by simply changing their signs, eight different three-

node FFL motif architectures could be described. Individual

nodes were modeled for their activated form by defining their

basal activation value as B~k1=d1 dB=dt~0½ � and C~k2=d2

dC=dt~0½ �.

dA

dt
~aA 1{

A

b

� �
:F1(A,B,C),

dB

dt
~k1{d1Bza1A(1{B):F2(A,B,C),

dC

dt
~k2{d2Cza2A(1{C)za3B(1{C):F3(A,B,C),

ð1Þ

With initial conditionsA(0)§0,B(0)§0,C(0)§0,

Steady state analysis
The system (1) has a positive steady state E �~(A � ,B � ,C � )

given by

A �~b, B �~
k1za1b

d1za1b
, C �~

k2za1bza3B�
d2za1bza3B�

Jacobian matrix of the system (1) around the interior equilibrium

point (A � ,B � ,C � ) is given by

{a 0 0

a1(1{B � ) {d1{a1b 0

a2(1{C � ) a3(1{C � ) {d2{a2b{a3B�

0
B@

1
CA ð2Þ

Since the eigenvalues associated with the matrix (2) are negative

real numbers, so the interior equilibrium point E� is always stable.

Stochastic model

dA~F1(A,B,C)zs1(A{A � )dj1
t ,

dB~F2(A,B,C)zs2(B{B � )dj2
t ,

dC~F3(A,B,C)zs3(C{C � )dj3
t ,

ð3Þ

Where, si,i~1,2,3, are real constants and known as the intensities

of fluctuations, ji
t~ji(t),i~1,2,3, are standard Wiener processes,

independent of each other. We consider (3) as an Ito stochastic

differential system of type

dXt~x(t,Xt)dtzg(t,Xt)djt, ð4Þ

Xt0~X0:

In the equation

Xt~(A,B,C)T , jt~(j1
t ,j2

t ,j3
t )T , x~(F1,F2,F3),

g~

s1(A{A � ) 0 0

0 s2(B{B � ) 0

0 0 s3(C{C � )

0
B@

1
CA ð5Þ
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The linearized version of (4) at E� is given by

du(t)~H(u(t))dtzg(u(t))dj(t), ð6Þ

Where,

H uð tð ÞÞ~ {au1,a1ð 1{B�ð Þu1{ d1za1bð Þu2,a2 1{C�ð Þu1

za3 1{C�ð Þu2{ d2za2bza3B�ð Þu3Þ
ð7Þ

g(u(t))~

s1u1 0 0

0 s2u2 0

0 0 s3u3

0
B@

1
CA ð8Þ

Theorem
Assuming that det(Q) .0, where Q is given in (9) it is observed

that the zero solution of system (5) is asymptotically mean square

stable if

s1~

ffiffiffi
a

2

r
:s1c, s2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1za1b

2

r
:s2c, s3~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1za2bza3B�

2

r
:s3c,

and

Q~

a

2
{s2

1 {
1

4
a1(1{B � ) {

1

4
a2(1{C � )

{
1

4
a1(1{B � )

d1za1b

2
{s2

2 {
1

4
a3(1{C � )

{
1

4
a2(1{C � ) {

1

4
a3(1{C � )

d1za2bza3B�
2

{s2
3

2
6666664

3
7777775
ð9Þ

Scoring for vulnerability of nodes
We devised an indigenous method to estimate the cumulative

vulnerability score for each of the nodes in a signaling network.

Suppose N denotes the node number and Ki denotes the number of

times the N th node occurs in the i th rank. Let Si be the score given

to the i th rank such that s(i)~si~
(i{1){

n

2
, for iƒn=2

i{
n

2
, for iwn=2

8<
:

where n denotes the total number of motif types (eight in the

present study).

Then the cumulative score given for Nth node is

N~
Xn

i~1

KiSi

Nodes with the cumulative score greater than n/2 was then

identified as robust nodes while those with less than –n/2 were

classified as vulnerable nodes.

Algorithm for finding downstream paths of the
corresponding receptors

A square matrix A(i,j) is made from the network where

A(i,j)~
1,i?j

0,i.j

�

The size of the matrix is the total number of interactions in the

network. Then Starting with a node (ligand under investigation),

say number n, we search for the nth row. We collect all the columns

j’s such that A(n,j) = 1, in a matrix A1. This A1 matrix denotes the

nodes coming in the second step in the downstream path of the

ligand n. With each j’s collected in matrix A1 are now treated as

the starting node and for each of them we follow the last step to get

new set of nodes. The resulting nodes are collected in another

matrix A2, which denotes the nodes coming in the third step in the

downstream path of the ligand n. This process is repeated until we

get matrix A6 with nodes coming in the sixth step in the

downstream path of the ligand n.

Supporting Information

Figure S1 Ranking of motifs is independent of the
kinetic law used. In the study, motifs were ranked depending

on the stability area in the (s{b) parameter space. Since the

original model considered simplistic mass action kinetics, we also

performed similar analysis using the Michaelis-Menten kinetic law.

A comparison of the relative ranking of the eight motifs under two

different governing kinetic laws is shown in Figure S1A (top panel).

Lower panel describes the model under the two different kinetic

laws used. Figure S1B describes that the relative ranking of five out

of the eight motifs are independent of the magnitude of parameters

a1, a2 and a3 under both the kinetic law conditions (see text for

details). Note that the entire analyses using the two kinetic laws

were performed with the same set of parameter values.

(TIF)

Table S1 Meta-organization of FFLs and resulting
vulnerability thresholds. Table ranks all the possible organi-

zations across the three combinations (see Fig. 3) in terms of their

vulnerability threshold. A higher threshold rank would therefore

mean a more robust organization.

(PDF)

Table S2 Scoring of nodes for their vulnerability based
on the frequency of occurrences in various FFLs. For each

of the 1604 nodes (Rows) in the human cancer signaling network,

frequency of their occurrence in various FFLs were calculated.

Motifs are shown here as Rank 1 to Rank 8 (Fig. 2E).

(PDF)

Table S3 Functions assigned to the genes in the
signaling network. Function of all the nodes present in the

human signaling network is listed in this table. This data was

directly used from an already published manuscript (30).

(PDF)
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