
sensors

Article

Efficient Resource-Aware Convolutional Neural Architecture
Search for Edge Computing with Pareto-Bayesian Optimization

Zhao Yang, Shengbing Zhang, Ruxu Li, Chuxi Li, Miao Wang, Danghui Wang and Meng Zhang ∗

����������
�������

Citation: Yang, Z.; Zhang, S.; Li, R.;

Li, C.; Wang, M.; Wang, D.; Zhang, M.

Efficient Resource-Aware

Convolutional Neural Architecture

Search for Edge Computing with

Pareto-Bayesian Optimization.

Sensors 2021, 21, 444.

https://doi.org/10.3390/s21020444

Received: 15 November 2020

Accepted: 7 January 2021

Published: 10 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China;
yz70528@mail.nwpu.edu.cn (Z.Y.); zhangsb@nwpu.edu.cn (S.Z.); lrx07@mail.nwpu.edu.cn (R.L.);
lichuxi@mail.nwpu.edu.cn (C.L.); miw43@mail.nwpu.edu.cn (M.W.); wangdh@nwpu.edu.cn (D.W.)
* Correspondence: zhangm@nwpu.edu.cn; Tel.: +86-1860-2988-020

Abstract: With the development of deep learning technologies and edge computing, the combination
of them can make artificial intelligence ubiquitous. Due to the constrained computation resources
of the edge device, the research in the field of on-device deep learning not only focuses on the
model accuracy but also on the model efficiency, for example, inference latency. There are many
attempts to optimize the existing deep learning models for the purpose of deploying them on the
edge devices that meet specific application requirements while maintaining high accuracy. Such
work not only requires professional knowledge but also needs a lot of experiments, which limits the
customization of neural networks for varied devices and application scenarios. In order to reduce
the human intervention in designing and optimizing the neural network structure, multi-objective
neural architecture search methods that can automatically search for neural networks featured with
high accuracy and can satisfy certain hardware performance requirements are proposed. However,
the current methods commonly set accuracy and inference latency as the performance indicator
during the search process, and sample numerous network structures to obtain the required neural
network. Lacking regulation to the search direction with the search objectives will generate a large
number of useless networks during the search process, which influences the search efficiency to a
great extent. Therefore, in this paper, an efficient resource-aware search method is proposed. Firstly,
the network inference consumption profiling model for any specific device is established, and it
can help us directly obtain the resource consumption of each operation in the network structure
and the inference latency of the entire sampled network. Next, on the basis of the Bayesian search,
a resource-aware Pareto Bayesian search is proposed. Accuracy and inference latency are set as
the constraints to regulate the search direction. With a clearer search direction, the overall search
efficiency will be improved. Furthermore, cell-based structure and lightweight operation are applied
to optimize the search space for further enhancing the search efficiency. The experimental results
demonstrate that with our method, the inference latency of the searched network structure reduced
94.71% without scarifying the accuracy. At the same time, the search efficiency increased by 18.18%.

Keywords: edge computing; neural architecture search; latency profiling model; Pareto-Bayesian
optimization

1. Introduction

In recent years, with the development of machine learning theory and the advance-
ment of embedded devices, IoT devices and mobile phones, the combination of them
has great application potential. On the one hand, various sensors (cameras, microphones
and GPS) in these devices can generate personalized data with different users in various
application scenarios (navigation, positioning and behavior detection [1–4]). At the same
time, with the development of dedicated computing architectures and computing engines,
the computing capability of these devices has been significantly improved, so that the
data collected by sensors can be processed locally on these devices to meet users’ require-
ments and guarantee data security. When processing these data collected by sensors into

Sensors 2021, 21, 444. https://doi.org/10.3390/s21020444 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21020444
https://doi.org/10.3390/s21020444
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020444
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/444?type=check_update&version=1

Sensors 2021, 21, 444 2 of 20

intelligent applications, deep learning algorithms are the best choices. In this case, deep
learning algorithms have been applied to machine learning fields, such as Computer Vision
(CV) [5,6] and Nature Language Processing (NLP) [7]. It can be foreseen that on-device
intelligence or edge intelligence will be ubiquitous.

However, directly deploying state-of-the-art (SOTA) deep neural networks into an
edge device still faces many challenges. The most important problem is the conflict between
the scales of neural networks and the computation capabilities of devices. As we all know,
in order to improve the learning ability of neural networks, wider and deeper network
structures [8,9] have been designed, which causes the explosive growth concerning the
scale of network parameters. It is impractical to deploy these neural networks in edge
devices with limited computation resources, especially in edge computing scenarios with
high real-time performance requirements, such as robots and autonomous driving.

In order to resolve the conflict between the scale of the neural network and the
computation resources of the devices, some lightweight network structures [10–12] have
been designed. At the same time, due to the redundancy of parameters in the neural
network, some neural network compact algorithms [13–18] have also been proposed.
Unfortunately, these methods are difficult to design for specific devices and requirements,
and only provide a solution to the problem from a general perspective. For example,
lightweight structure design provides convolutional operations with fewer computation
operations, and according to compact algorithms, there are a lot of redundant parameters in
the network. However, when optimizing the oversized network structures, these methods
not only require a lot of professional knowledge but also need numerous manual trials and
errors to find out the trade-off between the scale of parameters and accuracy.

Neural Architecture Search (NAS) [19–21] provides us with a more promising method,
without manual interventions. Furthermore, it can automatically search the network struc-
ture, such as the operations of each layer and the connections between layers, within a
given search space to achieve the best accuracy. Furthermore, in order to balance the
accuracy and hardware performance of the network, the methods with hardware perfor-
mance as one of the searching targets have been put forward [22,23]. However, in these
methods, only the hardware performances (inference latency, power consumption and
energy consumption) are used to evaluate a network structure, instead of illustrating the
resource consumption characteristics of a certain network structure and certain computing
operation during the search process. Therefore, it is hard to clarify the impact of every
choice of computing operation and layer connections in a network on the hardware per-
formance of the whole network. As a result, the search direction can only be obtained by
continuously enumerating the network structures during the search process, instead of
changing the search direction clearer, which reduces the search efficiency to a great extent.
At the same time, when constructing the search space, the network structure settings and
layer operation choices will make a huge difference in the network structure and the scale
of parameters, which will further affect the search efficiency.

Therefore, in order to solve the problems mentioned above, an efficient NAS frame-
work with the ability of hardware resource consumption characteristics awareness is put
forward. Based on Bayesian NAS, three strategies are adopted to efficiently search for the
neural network featured with high accuracy and can satisfy specific hardware performance
requirements. An overview of our work is shown in Figure 1. Firstly, the resource con-
sumptions of any given neural network are described to determine the inference latency of
both each operation and the whole network. Secondly, on the basis of the Bayesian NAS
method, by introducing the constraints of computation resources, an optimized Bayesian
search algorithm is given. Finally, with the help of cell-based structures and lightweight
operations, an optimized search space will be applied to the search process.

Sensors 2021, 21, 444 3 of 20

0.7

0.9

A
cc
ur
ac
y

Epoch1 20

La
te
nc
y
(m
s)

0

100

200

CNN 1 CNN 2 CNN 3

CNN
Training

Profiling
Model

CNN

Generation

Model

Fit

CNN

Selection

… …

Gaussian Process Model

Figure 1. The overview of the proposed method.

Our work has the following three main contributions:

• When computing a neural network, the computation resource bottlenecks of an edge
device are identified, which will bring more computation overheads and enlarge the
inference latency. Then, the computation workloads, memory usage, and inference
latency of a neural network are profiled. With the guidance of the profiling model,
the hardware performance impactions of each choice during the search process and
the inference latency of the sampled networks can be determined.

• An optimized Bayesian search algorithm is proposed by introducing inference latency
as one of the search objectives. With the profiling model, we can determine the
resource consumptions and computation overheads of each kind of search choice and
instruct to adjust the search direction for the purpose of obtaining neural networks
with high accuracy and low inference latency, thereby narrowing down the search
space and improving the search efficiency.

• Then, the optimized search space with cell-based structures and lightweight opera-
tions is further proposed. Therefore, we can reduce the number of networks that may
be sampled and the computation workloads to reduce the training overheads during
the search process, which can further enhance the search efficiency.

Experimental evaluations are conducted on the MNIST and CIFAR-10 datasets. The re-
sults demonstrate that the proposed method can obtain a neural network with high accu-
racy and low inference latency and help to improve the search efficiency.

2. Preliminary
2.1. Multi-Objective NAS

NAS is a process that automatically searches for neural networks for any given
dataset and task. At present, there are three main methods for searching the structure
of a neural network, and they are based on Reinforcement Learning [24–26], Genetic
Algorithms [27–30] and Bayesian Optimization [31–33], respectively. When the hardware
performance is considered in the search process, multi-objective NAS algorithms [34–37]
are proposed. References [34,36] deploy neural networks on real devices, such as mobile
phones, to obtain the hardware performance, while [35,37] apply estimation models to
obtain the inference latency. When designing multi-objective search algorithms, these
methods only use accuracy and hardware performance to evaluate whether the searched
neural network meets the requirements. However, they cannot evaluate the impact of every
choice during the search process, such as the resource consumptions and computation
overheads for the operations and connections of layers. Therefore, it is impossible to obtain
a clear direction to guide the search process. Only with numerous network structure sam-
pling, can we get closer to the search target, thereby significantly reducing search efficiency.

Sensors 2021, 21, 444 4 of 20

At the same time, to get the hardware performances, the actual device deployment will
bring additional time costs, especially when thousands of neural networks will be sampled
during the search process, and thus the overall search efficiency is reduced.

Here, a preliminary experiment is conducted on the basis of [24]. To be specific,
the accuracy and inference latency of the neural network are set as the search objectives
to construct Multi-Objective NAS and confirm the application requirement for inference
latency as 30 ms. The neural network search is performed on the CIFAR-10 dataset. Fur-
thermore, the accuracy and inference latency of the 3000 sampled network structures are
measured during the search process. The results are shown in Figure 2. Although the accu-
racy of the network structure is gradually improved and the inference latency converges to
the application requirement, the distribution range of the inference latency is still extremely
large. It can be seen that when the accuracy of the searched network structure exceeds
80%, the distribution of the inference latency is still mainly between 25 and 35 ms, and the
standard deviation (std) of their inference latency is 7.14. In addition to that, the std of
the inference latency of the first 2000 sampled network structures is also calculated, and it
is 7.80, similar to the inference latency std of the network in which the accuracy exceeds
80%, which means that the inference latency of the searched network with high accuracy is
still fluctuating continuously. This result shows that the search process is not constrained
by the two-dimensional constraints of accuracy and inference latency. At the same time,
it is difficult to reflect a clear trade-off between accuracy and inference latency along the
search process. As a result, when the accuracy is gradually enhanced, a large amount of
network sampling and training is still required to obtain the optimal network structure,
which seriously affects the search efficiency. Therefore, in order to solve this problem,
an efficient NAS method is put forward.

Figure 2. The search results of the preliminary experiment.

Our work is mostly related to [31–33], with Bayesian Optimization for NAS that can
guide the direction of network morphism (the changes of network structure). With the
search direction guiding capability, when we apply our profiling model and assign it with
the ability to be aware of the hardware performance, the search space will be further
narrowed down with two-dimensional search objectives, and the network morphism will
be guided in the direction of high accuracy and low inference latency.

2.2. Hardware Performance Evaluation Model

Another relevant topic is the hardware performance evaluation of neural networks.
In [38], a runtime analysis model is designed for different deep neural networks (DNN)
on variable devices, and it is based on the number of parameters in neural networks.
The authors divide the running time of each layer in the DNN into two parts: computing
time and communication time. Then, computing time is estimated by floating-point
operations and device speed, while communication time is the time of input and output.
However, for different devices, their average computing time and communication time
are varied. In order to obtain accurate results, a large number of experiments need to be
conducted for different DNNs and devices. In [39], the inference latency of the whole

Sensors 2021, 21, 444 5 of 20

network is predicted by sparse polynomial regression while collecting the real running time
of different kinds of neural network operations on GPUs. However, these two methods
are mainly aimed at GPU platforms, rather than embedded or mobile devices since the
inference latency from the perspective of the number of parameters or actual running time
does not need to consider the impact of hardware mapping structure or the computation
resources on the final results. Therefore, when evaluating the hardware performance of
neural networks in embedded devices, mobile devices and edge devices, not only do the
hardware mapping structures need to be considered, but also they should consider the
computation workloads, memory usages, and data transfer under different computation
resources. Only in this way can we obtain a more accurate hardware performance.

3. Inference Consumption Profiling for Edge Devices

In order to efficiently search neural networks with high accuracy and low inference
latency, the search algorithm with the capability of hardware resource awareness is required,
when the ability can help us clarify the changes in resource consumption and the change in
inference latency caused by changes in the network structure in each search stage. In this
way, the resource consumption characteristics of the operations that can change the network
structure will be clarified, which enables us to make adaptive network structure change
when facing a low-latency search objective. Therefore, the resource consumptions and
computation overheads of the neural network sampled during the search process should
be comprehensively evaluated. Specifically, the Convolutional Neural Network (CNN) is
taken as our research object based on the given hardware mapping structure, profile the
computation workloads, memory usage, and inference latency.

3.1. Parallel Mapping Structure

Aiming to accurately profile the inference consumption of a CNN on an edge device,
firstly, an appropriate hardware mapping architecture is selected. The accuracy of CNN
obtained by NAS exceeds the accuracy of humans in processing the same tasks. However,
its structure will be complicated and irregular, which brings extremely high computation
complexity. In addition, as different CNNs have different structures, operations, and the
corresponding number of parameters, all of these will affect the hardware performance to
various degrees. When the computation mode of the neural network in the target hardware
is determined, the resource consumptions of complicated network structure and diverse
computing operation and their impact on the inference latency can be fully clarified.

In the parallel structure, each layer of the CNN will be mapped onto the chip separately.
Furthermore, it is read from the memory when it needs to be calculated and then written
back to the memory after the calculation. Compared with the pipeline structure, only
one layer is calculated in each round of calculation. In this case, the conflict between
computation workload and the memory is moderated. The scale of the neural network will
have a limited impact on the hardware performance of the parallel structure. Therefore,
the parallel structure is chosen for an edge device.

3.2. Theoretical Inference Latency Formulation

Since the parallel structure is adopted for edge devices, when profiling the inference
overheads of a CNN, the first thing to be noted is the data movement of any given layer
that is the main factor affecting the inference latency, especially on devices with constrained
resources. Furthermore, frequent data movement will extend the processing time of the
entire neural network architecture. Therefore, before profiling the inference latency, the data
movement has to be analyzed when processing a CNN. The data size of the ith layer on
CNN can be divided into three parts, namely input data data(i)in , weight data data(i)weight,

and output data data(i)out, which can be denoted as follows:

data(i)in = R(i)2
· N(i)

in · bitwidth, (1)

Sensors 2021, 21, 444 6 of 20

data(i)weight = K(i)2
· N(i)

in · N
(i)
out · bitwidth, (2)

data(i)out = S(i)2
· N(i)

out · bitwidth. (3)

The notations are described in Table 1.

Table 1. Description of notations.

Notations Description

R(i)2
The size of Input data of ith layer

N(i)
in

Input feature map number of the ith layer

S(i)2
The size of output data of ith layer

N(i)
out Output feature map number of the ith layer

K(i)2
Kernel size

N(i)
in · N

(i)
out The number of kernels

IO(i) Date movement
bitwidth Data bitwidth

bandwidth Bandwidth
PE Process Element

PEnum The number of PE
PEsize The size of PE

f Clock frequency
paddinig The width of padding

datainportnum The number of input data shifts

Considering the data size and on-chip buffer, if the on-chip buffer is smaller than the
data size, the data movement is:

IO(i) = data(i)in + data(i)weight · N
(i)
out + data(i)out, (4)

while, if the on-chip buffer is bigger than the data size, the data movement is:

IO(i) = data(i)in + data(i)weight + data(i)out. (5)

After identifying the data movement of each layer, we will elaborate the processing
time of each layer and the overall inference latency of a CNN. The processing time of the ith
layer can also fall into three parts: computation time T(i)

comp, loading time T(i)
load and physical

operation time T(i)
po . The data of each layer directly affects the computation time, and the

number of layers influences the overall latency. There is a positive correlation between
the amount of data and computation time. At the same time, in the parallel structure,
high parallelism can improve performance by transferring data. Therefore, it is negatively
related to the computation time. The load time is determined by the target device and its
corresponding bandwidth. In addition, computation and loading are running in parallel.
As the physical operation time occupies only a small part of the processing time and cannot
be depicted, it is set as a constant. The processing time of each layer in a CNN can be
indicated by:

T(i) = max(T(i)
comp, T(i)

load) + T(i)
po , (6)

where,
T(i)

comp = F1(N(i)
in , N(i)

out, S(i)2
, K(i)2

, 1/Tp), (7)

T(i)
load = F2(IO(i), 1/Bandwidth), (8)

T(i)
po = c. (9)

Sensors 2021, 21, 444 7 of 20

In the above, the computation time of CNN is shown from a general perspective. How-
ever, due to different types of operations concerning each layer in CNN, their computation
processes are also different, and the computation time of convolution layer T(i)

conv, pooling
layer T(i)

pool and fully connect layer T(i)
f c is expressed as:

T(i)
conv =

⌊
N(i)

in
PEnum

⌋
· N(i)

out · S(i)2 · K(i)2

PE2
size · f · Tp

, (10)

T(i)
pool =

⌊
N(i)

in
PEnum

⌋
· N(i)

out · (
R(i)2+padding

2)2 · K(i)2

PE2
size · f · Tp

, (11)

T(i)
f c =

N(i)
in · N

(i)
out

datainportnum · f · Tp
. (12)

For a CNN model m with N-layer, with the parallel mapping structure, its inference
latency L(m) is the sum up of the processing time of each layer:

L(m) =
N

∑
i=1

T(i). (13)

With the analysis on computing bottlenecks when a neural network is deployed on an
edge device, and through the inference latency profiling model, we can obtain the inference
latency of a single layer and the whole network. Therefore, it should be noticed that this
inference latency profiling model is of great importance for us to construct the efficient
NAS framework.

3.3. Device-Specific Profiling Model Evaluation

In this part, the accurateness of the proposed inference latency profiling model will be
evaluated by comparing estimated results with actual measurements. Xilinx Zynq-7000
SoC ZC706 and Xilinx Virtex-7 FPGA VC707 were employed as the test devices, and their
resources are shown in Table 2. The experiments were conducted by VGG-13 on the
CIFAR-10 dataset.

Table 2. Resources of the selected test devices.

Type Xilinx Zynq-7000 SoC ZC706 Xilinx Virtex-7 FPGA VC707

LUT 350 485,760
Block RAM (Mb) 19.1 37.08

DSP slice 900 2800
Bandwidth(Gbps) 9.6 1.6

Since in the proposed profiling model, the computation time and the loading time of
each layer are affected by the data size, in order to evaluate the accurateness of the profiling
model, the number of kernels in VGG-13 is adjusted to confirm the data size that should be
processed. In experiments, x% kernels are randomly kept in VGG-13 (x from 100 to 10),
which means the profiling model is evaluated under different 10 scenarios. Tables 3 and 4
illustrate the comparison results. Then, it can be easily found that the profiling model
possesses accuracies of 90.90–95.83%, with the average of 92.74%, which shows the high
profiling accurateness.

Sensors 2021, 21, 444 8 of 20

Table 3. Profiling accurateness evaluation for VGG-13 on ZC706.

Ratios% 100 90 80 70 60 50 40 30 20 10

Est (ms). 1129.24 1009.32 905.24 782.36 678.38 566.29 452.12 339.45 225.59 112.48
Act (ms). 1178.37 1056.29 966.47 851.74 746.23 602.19 496.87 370.27 239.17 122.37

Table 4. Profiling accurateness evaluation for VGG-13 on VC707.

Ratios% 100 90 80 70 60 50 40 30 20 10

Est (ms). 1436.49 1246.83 1148.14 941.78 896.52 691.94 577.94 408.81 266.69 168.83
Act (ms). 1523.02 1357.91 1251.79 1013.65 853.31 765.34 618.45 442.53 291.24 186.51

4. Resource-Aware Bayesian Search for Edge Devices

Based on our proposed inference latency profiling model, we assign the Bayesian
search with the ability of hardware resource awareness. In the search process, accuracy
and inference latency are taken as the search targets. By finding the Pareto Optimal
Front, the search direction is guided, and the CNN with a trade-off between accuracy and
inference latency for the edge devices is also obtained. Moreover, since inference latency
is the additional search target, the search space will be further narrowed down, and the
search efficiency will also be enhanced.

The search process can be divided into two main stages. Firstly, the obtained CNNs
are sorted and selected with accuracy and inference latency to update the search direction,
which is the Bayesian Optimal process. Secondly, network morphism is performed accord-
ing to the new search direction to obtain the new network structures. Our method is shown
in Algorithm 1.

Algorithm 1 Efficient Resource-aware Convolutional Neural Architecture Search with
Pareto-Bayesian Optimization.

1: Input: The initial CNN model x, the initial GP modelM, the initial searched CNN
queue S , the dataset D, the given search time T , the number of generated CNN in each
round of search N

2: Push x into S
3: while T do
4: for x in S do
5: x is trained with D
6: Get the accuracy of x

7: Get the latency of x with the profiling model

8: end for

9: S is sorted by A∗ search and finding the Pareto optimal front with accuracy and
latency

10: M is fitted with the sorted S
11: for i in N do
12: Generate x with network morphism

13: Push x into S
14: end for

15: end while

16: Output: the CNN structure

Sensors 2021, 21, 444 9 of 20

4.1. The Kernel of Gaussian Process in Bayesian Search

Bayesian optimization is a model-based hyperparameter optimization method where
a Gaussian process (GP) is adopted to update the posterior distribution of the objective
function by continuously adding sample points without knowing the internal structure of
the objective function that is usually defined as:

X∗ = argx∈S max f (x). (14)

From the above equation, it can be seen that the goal of Bayesian optimization is
to find x from the candidate set S to maximize f (x). When Bayesian optimization is
applied for the purpose of searching for the CNN, each input x is a CNN structure, and its
corresponding output f (x) is the accuracy and inference latency of this CNN structure.
Here, it is assumed that f (x) satisfies the Gaussian distribution, with the prior distribution
of f (x), and then new CNNs can be gradually added so as to update the distribution.
These new CNNs are obtained from the previously generated network structure through
network morphism, such as widening the layers and increasing the number of layers
of the network. Subsequently, by continuously correcting and modifying the original
assumed prior distribution according to the newly added CNNs, we can finally get the real
distribution and the CNN with a trade-off between accuracy and inference latency that can
be effectively deployed on the edge devices.

Furthermore, the GP is applied to update the Gaussian distribution. Additionally,
in order to make Bayesian Optimization more suitable for network morphism, it is re-
designed by [33]. In traditional Bayesian Optimization, the GP is usually adopted in the
Euclidean space. However, the neural network architectures do not belong to Euclidean
space and are difficult to parameterize into a fixed-length vector. It is impractical to di-
rectly vectorize neural networks. Therefore, an edit-distance based GP kernel is applied to
calculate the operands of transforming an existing CNN to a new one.

Assuming fa and fb are two CNN structures, the kernel is defined as following:

K(fa, fb) = e−ρ2(d(fa , fb)), (15)

where d(·, ·) ∈ [0,+∞) is the edit-distance between two CNN structures; ρ is a mapping
function that maps the distance in the original metric space to the corresponding distance
in the new space. Calculating the edit-distance of two neural networks can be seen as
calculating the edit-distance of two graphs, and this approximate solution is denoted by:

d(fa, fb) = Dl(La, Lb) + λDs(Sa, Sb), (16)

where Dl is the edit-distance for morphing the layers and Ds is for morphing the connec-
tions between layers. La and Lb are the set of layers of CNN fa and fb, Sa and Sb are their
layer connection sets. In addition, the Dl and Ds are calculated by:

Dl(La, Lb) = min
|La |

∑
i=1

dl

(
l(i)a , ϕl

(
l(i)a

))
+ ||Lb| − |La||, (17)

and

Ds(Sa, Sb) = min
|Sa |

∑
i=1

ds

(
s(i)a , ϕs

(
s(i)a

))
+ ||Sb| − |Sa||, (18)

where ϕl and ϕs are layer and connection injective functions, dl(·, ·) is the edit-distance of
widening a layer into another, ds(·, ·) is the edit-distance for two matched connections.

Through the above kernel function, the GP model can be updated, and applied to
guide the CNN generation in the next round of the search process. Then, the details of the
CNN model selection will be given.

Sensors 2021, 21, 444 10 of 20

4.2. Pareto-Bayseian Search for Edge Computing

When searching for high accuracy and low latency CNNs for an edge device based on
its computation resources, the search process is constrained from two dimensions. For a
CNN structure, there is a conflict between its high accuracy and low latency. In order to
get high accuracy, its structure will be deeper and wider. However, only with a limited
scale of the structure, low latency can be achieved. Therefore, during our search process,
these two searching objectives are optimized at the same time to guide the search direction,
and finally, a CNN with a trade-off between accuracy and inference latency is obtained.

Two kinds of commonly-used multi-objective optimization methods are mainly shown
below: (1) Convert the multi-objective problem into a mono-objective problem. How to
combine different kinds of objectives and assign them with different weights is the key
point to solve the optimization problem. (2) It is Pareto optimal. Compared with the above
method, without manual intervention, the results of Pareto optimal are more objective and
accurate. Therefore, in the search process, Pareto optimal is chosen to find the trade-off
between accuracy and latency.

Pareto optimal. In Pareto optimal, assume there are two objective functions f 1 and
f 2: Dominant solution: the values of f 1 and f 2 belonging to solution a are better than those
of solution b. In this case, solution a is superior to solution b, or in other words, solution a
dominates solution b.

Non-dominant solution: If there are no other solutions better than solution a, that is,
solution a is not dominated by other solutions, then solution a is called a non-dominant
solution or the Pareto solution.

Pareto front: the set of all non-dominant solutions. All the solutions in the Pareto
front are not dominated by other solutions. There is an example of the Pareto front shown
in Figure 3.

0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
f2

f1

1

2

3

4

5

6

7

Figure 3. An example of the Pareto front. Solution 5, 6 and 7 are the non-dominant solutions, and they
are the Pareto front.

Pareto-Bayesian search. In the Bayesian search, a tree-structured search process is
applied as shown in Figure 4, starting with an initialized structure and expanding it, and all
of its child nodes in the tree are the structures after the network morphism. The search
process is to continuously select nodes in the tree and expand them, and finally obtain
a network structure that meets the requirements. When applying the Pareto optimal to
the search process, at each round of the search process, the new morphed networks are
trained, and through the profiling model, their accuracy and inference latency are obtained.
The accuracy and latency are saved as a tuple, by finding the Pareto front to get the results
of Pareto optimal. Then, the Bayesian optimization is performed on the searched network
structure in the Pareto front, and these networks are sorted by their accuracy and latency
comprehensively. Apart from that, A∗ [40] search is applied to determine which network
structure will be morphed. A∗ search is an efficient tree-structure search algorithm. In the
tree structure, it maintains a priority queue and can keep expanding the best node in
the queue.

Sensors 2021, 21, 444 11 of 20

With A∗ search, for the searched networks, their priorities are obtained based on
accuracy and latency and added to the priority queue. As the network with the high-
est priority is taken out and expanded by network morphism, then the priorities of the
morphed networks are calculated. According to the acceptance function of the Simulated
Annealing Algorithm, whether the new morphed networks are better than their father
node is determined. If so, the new network is added to the top of the priority queue, and it
is also considered as the starting point of the next network morphism.

Init.
CNN

Init.
CNN

1

2

Init.
CNN

Init.
CNN

3

N
et
w
or
k

M
or
ph

ism

Pareto Optimal

A* Search

Round 1 Round 2 Round 3 Round 4

Figure 4. The tree-structured Pareto Bayesian search process. The gray node is the node that has been searched, the white
node is the node that is known but not searched. The green border indicates that the node will perform network morphism
in the current round to generate new network structures.

It can be seen from Figure 4 that in the first round of search, the initialized CNN is
subjected to morphism of the new CNNs according to the determined morphism direction
with the GP model. Then, we can obtain the Pareto front of the accuracy and inference
latency of these networks and sort them with the A∗ search. Furthermore, node 1 is selected
after the first round of the search. Here, the structural features and morphism selections of
node 1 will be applied to update the GP model. Since node 1 satisfies the high-accuracy and
low-latency search objectives, in this round of network morphism, the changes in accuracy
and resource consumptions caused by changes in network structure will be reflected in
the Gaussian distribution and guide the subsequent network morphism. Thus, it is shown
that when the search algorithm has hardware resource awareness, the search direction
can be regulated. Later, in the second round of the search process, network morphism
is performed on the basis of node 1, and the above operations are repeated. In addition,
in each round of the search process, all the morphed CNNs are sorted, and each node has
the opportunity to be selected for network morphism. Therefore, in round 4, node 3 is
selected to be morphed rather than simply expand the child nodes of node 2. Through
the above search method, by continuously evaluating the CNNs that have been selected
and the new CNNs obtained by network morphism, we can more clearly know about the
impact of operation selection and network structure expansion in the network morphism
process on the accuracy and inference latency and have a trade-off between accuracy
and inference latency. Based on this, the GP model can be updated, and the adaptive
relationship between operation selections and resource consumptions will be recorded.
After updating the GP model multiple times, it has a preference for network morphism
to some extent. At this time, the GP model is adopted to get the direction of the network
search for further guiding the search process more efficiently. In addition, the A∗ search
can morph the networks from the nodes that are known but not searched, instead of only
expanding the current optimal node, and the Simulated Annealing Algorithm assigns a
probability mutation that is time-varying and tending to zero. The combination of these
two methods can prevent the search process from falling into a local optimum.

Sensors 2021, 21, 444 12 of 20

Compared with the search process when only the accuracy is set as the search target,
inference latency as an additional target avoids the brutal growth of the network structure
in pursuit of higher accuracy, which is suppressing the growth of the tree structure and
reducing the number of nodes to be searched in the tree structure. In addition to that,
with two dimensions of search targets, the search direction is shrunk into a more narrowed
range. Then, a clearer search direction can further help to reduce the number of networks
that need to be evaluated. Therefore, the Pareto-Bayesian search can obtain a CNN with
high accuracy and low latency, and it is more suitable to be deployed on the edge device
and can further improve the search efficiency.

5. Parameter Saving Search Space

Due to the number of options when morphing the network in [33], the huge search
space will greatly reduce search efficiency. In this part, the search space of the Bayesian
search is optimized to enhance the search efficiency from the following two aspects: (1) The
cell-based structure is applied to reduce the number of the options for further decreasing
the amount of sampled networks during the search process, thereby, reducing the search
space and improving the search efficiency; (2) the lightweight convolutional operation
replaces the traditional convolutional operation to reduce the computation workloads,
enhance the training efficiency during the search process and further improve the overall
search efficiency.

In [33], there are four basic operations when network morphism: deep(G, u) adds a
new layer after the uth layer; wide(G, u) widens the uth layer; add(G, u, v) adds an additive
connection between the uth layer and the vth layer, and concat(G, u, v) adds a concatenative
connection between the uth layer and the vth layer. When the network deepens, there are
nine options for the new layer: Conv (1 × 1, 3 × 3, 5 × 5), Pooling (1 × 1, 3 × 3, 5 × 5),
Relu, BatchNormalize (BN) and Dropout.

At each round of the search process, although the Bayesian optimization can guide the
search direction, there will be a large number of new sampled networks after the network
morphism, which means a large number of networks are required to be trained to evaluate
their accuracy and degrade the efficiency of the search process to a great extent. Therefore,
the cell-based structure is applied to the convolutional operations shown in Figure 5. In this
case, it can be seen that the number of options for the new layer is reduced from nine to
seven, which will effectively reduce the number of sampled networks at each search stage,
especially, when the network is deeper.

In order to further enhance the efficiency of the search process, the lightweight con-
volutional operation is employed. In this case, depthwise convolutional operation [41] is
used to replace the traditional convolutional operation. Then, the computation workloads
of these two operations with the same input are compared:

CWDepthConv

CWConv
=

M2 · K2 · Cin + M2 · Cin · Cout

M2 · K2 · Cin · Cout
=

K2 + Cout

K2 · Cout
=

1
K2 +

1
Cout

, (19)

where M is the input size; K is the kernel size; Cin is the number of the input channel,
and Cout is the number of the output channel, when the computation workloads of depth-
wise convolutional operation are reduced significantly. Therefore, the reduction of the
computation workloads will bring two benefits: (1) During the search process, the training
process at each stage will be sped up, and the overall search efficiency will be improved;
(2) when the searched CNN is deployed on the edge device, the inference latency will be
further reduced.

Sensors 2021, 21, 444 13 of 20

Conv (1×1��3×3, 5×5�)

Pooling (1×1��3×3, 5×5�)

BN

ReLu

Dorpout

Convcell (1×1��3×3, 5×5�)

DepthConv

ReLu

BN

Pooling (1×1��3×3, 5×5�)

Dorpout

Figure 5. The cell-based convolutional operation.

6. Experiments
6.1. Implementation and Environment Details

Our experiments were implemented in TensorFlow with the 48-core Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20 GHz processor and an NVIDIA TESLA P100 GPU card. The MNIST
dataset contains a training set of 60,000 images and a test set of 10,000 images with a
dimension of 28 × 28 × 3. In the CIFAR-10 dataset, a training set of 50,000 images and a
test set of 10,000 images with a dimension of 32 × 32 × 3 are comprised. The computing
devices employed for edge computing are Xilinx Zynq-7000 SoC ZC706 and Xilinx Virtex-7
FPGA VC707, and their details are shown in Table 2. The initial architecture is a three-layer
convolutional neural network with 64 filters and 3 × 3 Conv in each layer. During the
search process, the stride is equal to one, and the number of filters equals 64.

6.2. Performance Evaluation

In this part, the experiments are conducted on the MNIST and CIFAR-10 datasets to
evaluate compared with Bayesian search (BS), whether the Pareto Bayesian search (PBS)
can obtain CNN with high accuracy and low latency that is more suitable to directly deploy
on the edge devices. There are three search time settings, and the results are shown in
Tables 5 and 6. The results demonstrate that the PBS can effectively search for the CNN
with a trade-off between accuracy and inference latency.

Table 5. The search results on MNIST.

Search Time Performance
ZC706 VC707

BS PBS Variation (%) BS PBS Variation (%)

210 (min) Accuracy (%) 99.58 99.37 −0.21% 99.51 99.34 −0.17%
Latency (ms) 862.21 65.21 −92.43% 1042.15 98.27 −90.57%

240 (min) Accuracy (%) 99.62 99.46 −0.16% 99.64 99.47 −0.17%
Latency (ms) 1185.32 62.66 −94.71% 1369.52 104.12 −92.40%

270 (min) Accuracy (%) 99.67 99.49 −0.18% 99.59 99.46 −0.13%
Latency (ms) 1213.40 64.74 −94.66% 1497.94 105.54 −92.95%

Table 6. The search results on CIFAR-10.

Search Time Performance
ZC706 VC707

BS PBS Variation (%) BS PBS Variation (%)

210 (min) Accuracy (%) 82.66 80.84 −2.20% 83.07 81.63 −1.44
Latency (ms) 986.15 123.81 −87.44% 1666.32 159.80 −90.41%

240 (min) Accuracy (%) 89.16 87.81 −1.51% 88.92 87.03 −1.89%
Latency (ms) 1358.74 127.76 −90.59% 2278.11 161.51 −92.91%

270 (min) Accuracy (%) 89.23 88.25 −1.09% 90.12 88.52 −1.60%
Latency (ms) 1412.14 136.15 −90.36% 2630.93 160.75 −93.89%

Sensors 2021, 21, 444 14 of 20

Under the three experimental settings, for the target device ZC706, on the MNIST
dataset, compared with BS, the accuracy variation is−0.21%, −0.16%, and−0.21%, and the
inference latency is reduced by 92.43%, 94.71%, and 94.66%. On the CIFAR-10 dataset,
the accuracy variation is −2.20%, −1.51% and, −1.09%, while the inference latency is
reduced by 87.44%, 90.59%, and 90.36%. For VC707, the accuracy variation is −0.17%,
−0.17%, and −0.13%, and the inference latency is reduced by 90.57%, 92.40%, and 92.95%,
respectively, on MNIST. Furthermore, on CIFAR-10, the accuracy variation is −1.44%,
−1.89% and, −1.60%, and the inference latency is reduced by 90.41%, 92.91%, and 93.89%,
respectively. The CNN searched by PBS gains a huge benefit on the inference latency only
by sacrificing a tiny of accuracy. Therefore, PBS can search for a better CNN than BS for
edge computing.

The search results cannot fully demonstrate the efficiency of the search process. There-
fore, in order to illustrate that the two dimensions of search objectives in PBS can effectively
guide the search direction, the intermediate results of each stage during the search process
should be paid more attention to. In this case, we take the 240-min setting as an example
for analysis, and the search results are shown in Figures 6 and 7.

BS PBS

0.987

0.99

0.993

0.996

0.999

1 2 3 4 5 6 7 8 9 10 11

Accuracy

(a)

BS PBS

0

0.3

0.6

0.9

1.2

1 2 3 4 5 6 7 8 9 10 11

Latency(s)

(b)

0.6

0.675

0.75

0.825

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy

BS PBS

(c)

0

0.35

0.7

1.05

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13

Latency(s)

BS PBS

(d)

Figure 6. The search results for ZC706. (a,b) The accuracy and inference latency of the searched networks on MNIST
and (c,d) the CIFAR-10 within 240 min.

It can be seen that during the BS search process, accuracy is the mono-objective to
guide the search process and ignores the increase of inference latency brought by an
increase in the scale of the network structure. As a result, with the continuous increase
in the accuracy of the searched CNN at each stage, the inference latency is also increased,
which demonstrates that during the search process, at each stage, the new generated CNNs
are morphed from the search result of the last stage, which means in the tree-structured
search space, the BS tries to evaluate the deeper leaf nodes and will result in an explosive
growth of the search space. On the contrary, during the PBS search process, although the
accuracy of the searched CNN is gradually increasing, the inference latency eventually
only changes within a small range. The latency std of the searched network is only 0.024

Sensors 2021, 21, 444 15 of 20

and 0.028 on MNIST and CIFAR-10, respectively, for ZC706 in Figure 6. For VC707, the std
is 0.012 and 0.023 on MNIST and CIFAR-10 accordingly in Figure 7. The comparison
with the search results in Figure 2 indicates the search process is looking for a trade-off
between accuracy and inference latency and constantly searching for the generated but
not searched nodes in the tree-structured search space. With two dimensions of search
targets, the search space will not explosively grow as the BS and has the clear trending of
convergence. At the same time, the continuous increase of the accuracy and the eventual
concentrate of the inference latency demonstrate that the PBS can effectively guide the
search direction, and prevent the search process from falling into a local optimum.

BS PBS

0.992

0.9925

0.993

0.9935

0.994

0.9945

0.995

0.9955

0.996

0.9965

0.997

1 2 3 4 5 6 7 8 9 10 11

Accuracy

(a)

BS PBS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11

Latency(s)

(b)

BS PBS

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 2 3 4 5 6 7 8 9 10 11 12 13

Accuracy

(c)

BS PBS

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13

Latency(s)

(d)

Figure 7. The search results for VC707. (a,b) The accuracy and inference latency of the searched networks on MNIST
and (c,d) the CIFAR-10 within 240 min.

The above results reveal that our proposed method can effectively regulate the search
direction to search for networks with high accuracy and low inference latency. Furthermore,
the search time is enlarged to search for the network with higher accuracy. Then, two
mono-objective NAS methods (they only set accuracy of the network as the search objective)
and two multi-objective NAS methods (they also set accuracy and inference latency of the
network as the search objective, which is the same as our method) are selected as the SOTA
method for comparison. Among them, ENAS [24] as an efficient mono-objective NAS
method, can search for a high-accuracy network structure within 0.4 GPU days. Therefore,
the search time is set to 0.4 GPU days here. The search results are shown in Table 7.
Compared with the two SOTA mono-objective search methods, the accuracy of the network
structure searched for ZC706 by our method is reduced by 0.28% and 0.88%, and for VC707
is reduced by 0.16% and 0.76%. Compared with the other two multi-objective search
methods, the accuracy is enhanced by 0.13% and 7.55% for ZC706, 0.30% and 7.67% for
VC707. In the mono-objective search process, the searched network structures can become
deeper and wider arbitrarily, while, our method constrains the search direction and the
network structure to a certain extent. In this case, the NAS [19] and ENAS [24] can search

Sensors 2021, 21, 444 16 of 20

for networks with higher accuracy. Compared with other multi-objective search algorithms,
our method has more advantages and can obtain networks with higher accuracy within
a more limited search time. At the same time, the network structure searched on the
CIFAR-10 is transferred to the ImageNet dataset, and the Top 1 accuracy of 64.87% and
65.23%, respectively, can be obtained. The results of transfer learning demonstrate the
application potentials of our method.

Table 7. Comparison with other methods.

Method Dateset Accuracy (%) Search Time (GPU Days)

NAS [19] CIFAR-10 95.53 22,400
ENAS [24] CIFAR-10 96.13 0.4

DPPNet-ES [23] CIFAR-10 95.07 8
FBNet [42,43] CIFAR-10 87.7 9
Ours (ZC706) CIFAR-10 95.25 0.4
Ours (VC707) CIFAR-10 95.37 0.4
Ours (ZC706) ImageNet (Transfer) 64.87 (Top 1) 0.4
Ours (VC707) ImageNet (Transfer) 65.23 (Top 1) 0.4

6.3. Efficiency Evaluation

In this part, the ability of optimized search structure and space to improve the overall
search efficiency will be evaluated. In the previous section, the reduction of options for the
new layer with the cell-based convolutional operations that can reduce the search space
has been illustrated. Since the optimized search space is still very huge, it is impossible to
evaluate the improvement of overall search efficiency with a thorough search. Therefore,
in this part, only the improvements brought by the lightweight operation are experimentally
evaluated. The efficiency of PBS and lightweight PBS is compared by the number of search
stages within the same search time. The experiments are conducted for ZC706 on five
different search time settings, and the results are shown in Tables 8 and 9. It can be seen
that when the search time is 150 min, on MNIST, the number of search stages is four
and two for Lightweight PBS and PBS, respectively. The search efficiency is increased by
100%. Furthermore, on CIFAR-10, the search efficiency is increased by 150%. However,
due to the short search time and too few networks searched, the network structures
differ greatly. Thus, the training time is extremely different, which is not enough to fully
reflect the improvement of search efficiency of Lightweight PBS. When the search time
gradually increases and accuracy and inference latency are taken as the two-dimensional
constraints to regulate the search direction, the search process will focus more on the choice
of computing operations. At this time, it can better reflect the improvement of search
efficiency by Lightweight PBS. When the search time is longer than 210 min, an 18.18%
search efficiency improvement can be obtained on MNIST at most, and 7.7% improvement
on CIFAR-10. The results show that under five settings, the lightweight PBS can always
search more CNNs. With the lightweight operation, the time cost of training at each search
stage is reduced to enhance the search efficiency.

Table 8. The number of stages during the search process on MNIST.

150 (min) 180 (min) 210 (min) 240 (min) 270 (min)

PBS 2 5 9 11 12
Lightweight PBS 4 6 9 13 14

Table 9. The number of stages during the search process on CIFAR-10.

150 (min) 180 (min) 210 (min) 240 (min) 270 (min)

PBS 2 4 8 13 13
Lightweight PBS 5 7 7 13 14

Besides what is mentioned above, the ability of lightweight PBS to search for the
better CNN is also evaluated. The accuracy and inference latency of the searched optimal
CNN under different search time settings are shown in Figure 8. With different search

Sensors 2021, 21, 444 17 of 20

times, the accuracy of the searched CNNs when applying the lightweight convolutional
operation can be compared or even surpass the results of the PBS. At the same time, when
the scale of the searched CNNs is similar, with the lightweight operation, the inference
latency will be smaller. Furthermore, with the increase of the search time, the inference
latency is not continuously increased, and the guidelines for the search direction of our
method are demonstrated once again. The best CNNs for MNIST and CIFAR-10 datasets
are shown in Figures 9 and 10. In summary, the Pareto Bayesian search and optimized
search structure can help us obtain a CNN more efficiently with a trade-off between higher
accuracy and lower latency for edge computing.

PBS

0.7

0.75

0.8

0.85

0.9

150 180 210 240 270

Accuracy

Lightweight PBS

(a)

PBS Lightweight PBS

0.06

0.08

0.1

0.12

0.14

150 180 210 240 270

Latency(s)

(b)

Figure 8. The search results on CIFAR-10 in 5 different search time settings. (a) is the accuracy of the searched networks, (b)
is the latency of them.

De
pt
hC

on
v(
3×

3)

Re
Lu

BN

Po
ol
in
g�
��
��

De
pt
hC

on
v(
5×

5)

Re
Lu

BN Re
Lu

BN

Dr
op

ou
t

Re
Lu

BN

Po
ol
in
g�
��
��

Dr
op

ou
t

De
ns

e

G
lo
ba

lP
oo

lin
g

De
pt
hC

on
v(
5×

5)

De
pt
hC

on
v(
3×

3)

Figure 9. The searched CNN for MNIST.

DepthConv�����

ReLu

BN

ReLu

BN

ReLu

BN

Pooling�����

GlobalPooling

Dense

×4

DepthConv�����

DepthConv�����

Pooling�����

Figure 10. The searched CNN for CIFAR-10.

Sensors 2021, 21, 444 18 of 20

7. Conclusions and Future Work

In this study, in order to obtain the CNN structure efficiently deployed on the resource-
constrained edge devices, an efficient resource-aware convolutional neural network search
method is proposed. During the search process, the proposed profiling model is adopted
to be aware of the resources of the edge device and then obtain the inference latency of the
CNN structure, further combined with the accuracy of the CNN as the two-dimensional
targets for the CNN search process. In each stage of the Bayesian search, the trade-off
between accuracy and inference latency is obtained by finding the Pareto front, and the
search direction is narrowed down to a smaller range that can more efficiently search
for the CNN with a trade-off between high accuracy and low latency. At the same time,
through the cell-based search structure, the search space is reduced to improve search
efficiency, and the lightweight convolutional operations are applied to reduce the time cost
of training in each search stage and the inference latency of the obtained CNN. Finally,
from the experimental results, it can be found that the proposed method can help us
efficiently obtain a CNN structure with high accuracy and low latency that is more suitable
for deploying on an edge device.

In the future, further research will be conducted on two aspects. Firstly, for the
search objectives, in this paper, only the accuracy and inference latency of the network
are considered as the search objectives. In future work, more hardware performances,
such as the power consumption and energy consumption of the network deployed on
an edge device will be taken as the search objectives, and whether higher dimensional
constraints will further improve the search efficiency will also be verified. Secondly,
the search algorithm will be designed directly for the image with a larger size. In this
article, our method is certified on the MNIST and CIFAR-10, and the networks searched on
CIFAR-10 are further transferred to the ImageNet for verification. The experiment results
demonstrate that our searched networks have a competitive performance. In the future
study, the challenges when searching for large-size images and the way of enhancing the
efficiency of the search process will be further focused on.

Author Contributions: Methodology, Z.Y.; project administration, Z.Y., S.Z. and M.Z.; software, R.L.,
C.L. and M.W.; writing—original draft, Z.Y.; writing—review and editing, D.W., M.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 61472322).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ganti, R.K.; Ye, F.; Lei, H. Mobile crowdsensing: Current state and future challenges. IEEE Commun. Mag. 2011, 49, 32–39.

[CrossRef]
2. Zhang, X.; Yang, Z.; Wu, C.; Sun, W.; Liu, Y.; Xing, K. Robust trajectory estimation for crowdsourcing-based mobile applications.

IEEE Trans. Parallel Distrib. Syst. 2013, 25, 1876–1885. [CrossRef]
3. Wu, C.; Yang, Z.; Liu, Y. Smartphones based crowdsourcing for indoor localization. IEEE Trans. Mob. Comput. 2014, 14, 444–457.

[CrossRef]
4. Koukoumidis, E.; Peh, L.S. Signalguru: Leveraging mobile phones for collaborative traffic signal schedule advisory. In Proceedings

of the 9th International Conference on Mobile Systems, Applications, and Services, Bethesda, MD, USA, 28 June–1 July 2011;
pp. 127–140.

5. Simonyan, K. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
6. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2818–2826.
7. Lopez, M.M.; Kalita, J. Deep Learning applied to NLP. arXiv 2017, arXiv:1703.03091.cv.
8. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
9. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; Volume 14, pp. 1–9.

http://doi.org/10.1109/MCOM.2011.6069707
http://dx.doi.org/10.1109/TPDS.2013.250
http://dx.doi.org/10.1109/TMC.2014.2320254

Sensors 2021, 21, 444 19 of 20

10. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-resnet and the impact of residual connections on
learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017.

11. Iola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. Densenet: Implementing efficient convnet descriptor
pyramids. arXiv 2014, arXiv:1404.1869.

12. Sler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520.

13. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning, trained quantization and
Huffman coding. arXiv 2015, arXiv:1510.00149.

14. Lin, Y.; Han, S.; Mao, H.; Wang, Y.; Dally, W.J. Deep gradient compression: Reducing the communication bandwidth for
distributed training. arXiv 2017, arXiv:1712.01887.

15. Zhou, H.; Alvarez, J.M.; Porikli, F. Less is More: Towards Compact CNNs. In Proceedings of the European Conference on
Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016.

16. Alvarez, J.M.; Salzmann, M. Learning the number of neurons in deep networks. In Proceedings of the Advances in Neural
Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2270–2278.

17. Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; Li, H. Learning structured sparsity in deep neural networks. In Proceedings of the Advances
in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2074–2082.

18. He, Y.; Zhang, X.; Sun, J. Channel pruning for accelerating very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1389–1397.

19. Zoph, B.; Le Q.V. Neural architecture search with reinforcement learning. In Proceedings of the 5th International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

20. Real, E.; Moore, S.; Selle, A.; Saxena, S.; Suematsu, Y.L.; Tan, J.; Le Q.V.; Kurakin, A. Large-scale evolution of image classifiers. In
Proceedings of the 34th International Conference on Machine Learning, Beijing, China, 21–26 June 2014; Volume 70, pp. 2902–2911.

21. Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; Kavukcuoglu, K. Hierarchical representations for efficient architecture search. In
Proceedings of the 6th International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

22. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A; Le, Q.V. Mnasnet: Platform-aware neural architecture search
for mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20
June 2019; pp. 2820–2828.

23. Dong, J.D.; Cheng, A.C.; Juan, D.C.; Wei, W.; Sun, M. Dpp-net: Device-aware progressive search for pareto-optimal neural
architectures. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018;
pp. 517–531.

24. Pham, H.; Guan, M.Y.; Zoph, B.; Le Q.V.; Dean, J. Efficient neural architecture search via parameter sharing. In Proceedings of the
35th International Conference on Machine Learning, Vienna, Austria, 25–31 July 2018.

25. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 July 2018; pp. 8697–8710.

26. Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; Liu, C.L. Practical block-wise neural network architecture generation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA; 18–23 June 2018; pp. 2423–2432.

27. Xie, L.; Yuille, A. Genetic cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29
October 2017; pp. 1379–1388.

28. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search. In Proceedings of the
Aaai Conference on Artificial Intelligence, Long Beach, CA, USA, 16–20 June 2019; Volume 33, pp. 4780–4789.

29. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient multi-objective neural architecture search via lamarckian evolution. arXiv 2018,
arXiv:1804.09081.

30. Luo, R.; Tian, F.; Qin, T.; Chen, E.; Liu, T.Y. Neural architecture optimization. In Proceedings of the Advances in Neural
Information Processing Systems, Montreal, QC, Canada, 3–8 December 2018; pp. 7816–7827.

31. Kasamy, K.; Neiswanger, W.; Schneider, J.; Poczos, B.; Xing, E.P. Neural architecture search with bayesian optimisation and
optimal transport. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3–8
December 2018; pp. 2016–2025.

32. Mendoza, H.; Klein, A.; Feurer, M.; Springenberg, J.T.; Hutter, F. Towards automatically-tuned neural networks. In Proceedings of
the Workshop on Automatic Machine Learning, New York, NY, USA, 24 June 2016; pp. 58–65.

33. Jin, H.; Song, Q.; Hu, X. Auto-keras: An efficient neural architecture search system. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1946–1956.

34. Hsu, C.H.; Chang, S.H.; Liang, J.H.; Chou, H.P.; Liu, C.H.; Chang, S.C.; Pan, J.Y.; Chen, Y.T.; Wei, W.; Juan, D.C. Monas:
Multi-objective neural architecture search using reinforcement learning. arXiv 2018, arXiv:1806.10332.

35. Zhang, X.; Jiang, W.; Shi, Y.; Hu, J. When Neural Architecture Search Meets Hardware Implementation: From Hardware
Awareness to Co-Design. In Proceedings of the 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Miami, FL,
USA, 15–17 July 2019; pp. 25–30.

36. Dong, J.D.; Cheng, A.C.; Juan, D.C.; Wei, W.; Sun, M. Ppp-net: Platform-aware progressive search for pareto-optimal neural
architectures. In Proceedings of the ICLR 2018 Workshop, Vancouver, BC, Canada, 30 April–3 May 2018.

Sensors 2021, 21, 444 20 of 20

37. Jiang, W.; Zhang, X.; Sha, E.H.M.; Yang, L.; Zhuge, Q.; Shi, Y.; Hu, J. Accuracy vs. efficiency: Achieving both through fpga-
implementation aware neural architecture search. In Proceedings of the 56th Annual Design Automation Conference, Las Vegas,
NV, USA, 2–6 June 2019; pp. 1–6.

38. Qi, H.; Sparks, E.R.; Talwalkar, A. Paleo: A performance model for deep neural networks. In Proceedings of the 5th International
Conference on Learning Representations, Toulon, France, 24–26 April 2017.

39. Cai, E.; Juan, D.C.; Stamoulis, D.; Marculescu, D. Neuralpower: Predict and deploy energy-efficient convolutional neural
networks. In Proceedings of the The 9th Asian Conference on Machine Learning, Seoul, Korea, 15–17 November 2017.

40. Nosrati, M.; Karimi, R.; Hasanv, H.A. Investigation of the∗(star) search algorithms: Characteristics, methods and approaches.
World Appl. Program. 2012, 2, 251–256.

41. Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

42. Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian, Y.; Vajda, P.; Jia, Y.; Keutzer, K. FBNet: Hardware-Aware Efficient
ConvNet Design via Differentiable Neural Architecture Search. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Long Beach, CA, USA, 16–20 July 2019; pp. 10734–10742.

43. Srinivas, S.V.K.; Nair, H.; Vidyasagar, V. XHardware Aware Neural Network Architectures using FbNet. arXiv 2019,
arXiv:1906.07214.

	Introduction
	Preliminary
	Multi-Objective NAS
	Hardware Performance Evaluation Model

	Inference Consumption Profiling for Edge Devices
	Parallel Mapping Structure
	Theoretical Inference Latency Formulation
	Device-Specific Profiling Model Evaluation

	Resource-Aware Bayesian Search for Edge Devices
	The Kernel of Gaussian Process in Bayesian Search
	Pareto-Bayseian Search for Edge Computing

	Parameter Saving Search Space
	Experiments
	Implementation and Environment Details
	Performance Evaluation
	Efficiency Evaluation

	Conclusions and Future Work
	References

