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Abstract

The analysis of network evolution has been hampered by limited availability of protein interaction data for different
organisms. In this study, we investigate evolutionary mechanisms in Src Homology 3 (SH3) domain and kinase interaction
networks using high-resolution specificity profiles. We constructed and examined networks for 23 fungal species ranging
from Saccharomyces cerevisiae to Schizosaccharomyces pombe. We quantify rates of different rewiring mechanisms and
show that interaction change through binding site evolution is faster than through gene gain or loss. We found that SH3
interactions evolve swiftly, at rates similar to those found in phosphoregulation evolution. Importantly, we show that
interaction changes are sufficiently rapid to exhibit saturation phenomena at the observed timescales. Finally, focusing on
the SH3 interaction network, we observe extensive clustering of binding sites on target proteins by SH3 domains and a
strong correlation between the number of domains that bind a target protein (target in-degree) and interaction
conservation. The relationship between in-degree and interaction conservation is driven by two different effects, namely the
number of clusters that correspond to interaction interfaces and the number of domains that bind to each cluster leads to
sequence specific conservation, which in turn results in interaction conservation. In summary, we uncover several network
evolution mechanisms likely to generalize across peptide recognition modules.
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Introduction

Peptide recognition modules (PRMs) and kinase domains bind

short linear peptide motifs on their protein binding partners and

are integral members of many signaling pathways [1–3]. PRM

members include the SH3 (Src homology 3), SH2 (Src homology

2), and PDZ (PSD-95/Discs-large/ZO-1) domains [1]. In this

study, we focus on the SH3 domain, a small (,60 amino acids)

domain, implicated in crucial regulatory processes such as signal

transduction, cytoskeleton organization, and cell polarization

[4,5]. SH3 domains typically bind short proline rich peptides

containing a PxxP binding motif [5]. Initial structural analysis

revealed two main binding classes, although variations to these

canonical SH3 binding motifs have also been discovered.

Experimental identification of the short peptide binding motifs

recognized by PRMs has been performed using a number of

methods, such as synthetic peptide arrays (SPOT), oriented

peptide array libraries (OPAL), protein domain microarrays, and

phage display [1,6–10]. Binding specificity maps have been

generated for Saccharomyces cerevisiae SH3 and kinase domains

using phage display and combinatorial peptide library screening

approaches, respectively [6,11]. Domain binding specificities from

these experimental methods are captured in position weight

matrices (PWMs) enabling comprehensive and high confidence

predictions of physical interactions involving SH3 and kinase

domains. The high accuracy of these PWM predictions has been

demonstrated in their ability to recapitulate interactions derived

from orthogonal experimental methods such as yeast two-hybrid

[6].

Interaction network studies have uncovered network properties

such as scale-free and hierarchical topologies [12], resulting in the

development of models describing protein interaction network

evolution [12–15]. Network rewiring rates for protein interaction

networks have also been established for proteins in S. cerevisiae that

have paralogs [16], model eukaryotic protein interaction networks

[17], and yeast regulatory networks [18–20]. A global comparative

analysis on network rewiring from existing experimental datasets

has suggested that regulatory networks are among the fastest

evolving biological networks [21]. However, these comparative

studies are hampered by two problems: The analyzed networks are

often incomplete and the species examined are highly diverged.

An obvious problem is that interactions in species similar to the

model organisms (such as yeast or worm) are usually inferred by

means of orthology mapping, which prohibits any kind of

evolutionary analysis based on them [22,23]. Unlike these

mapping methods, predicting interactions via PWMs enables
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generation of interaction networks in a species-independent

manner. This permits a more accurate means to identify both

conserved and diverged interactions, as interactions are deter-

mined by a domain’s binding specificity and not by orthologous

protein pairs, thus enabling the evaluation of different evolutionary

mechanisms that give rise to the observed rates of network

rewiring.

In this study, we use the aforementioned high resolution S.

cerevisiae SH3 and kinase specificity maps [6,11] to computationally

predict high confidence SH3 and kinase interaction networks for

23 species belonging to the Ascomycota phylum of the Fungal

kingdom, representing over 300 million years of evolution [24].

We quantify network evolution rates for different network rewiring

mechanisms and compare them to other network evolutionary

rates [18]. Furthermore, we show that the rate of network rewiring

reaches saturation due to the rapid rate of interaction change.

Moreover, we uncover interaction conservation patterns related to

multiple SH3 domains binding the same proline rich region on a

protein binding partner. Finally, we show motif specific sequence

conservation translates to the conservation of interactions.

Results/Discussion

SH3 and kinase interaction networks for 23 fungal
species

Using position weight matrix (PWM) profiles derived from S.

cerevisiae phage display experiments and combinatorial peptide library

screens [6,11], we constructed SH3 and kinase interaction networks in

23 different fungal species spanning over 300 million years of evolution

(Figure 1, Materials and Methods). Note that our methodology does

not rely on sequence homology to predict interactions in different

species, enabling the identification of species-specific interactions

through binding profiles. Sequence homology is used only in the

comparison of interaction networks between different species. The

SH3 predicted network, using 30 PWMs from S. cerevisiae resulted in

,800 interactions and ,400 unique proteins for each of the 23 yeast

species. Likewise, the kinase network, using 63 PWMs, resulted in

,1800 interactions and ,450 unique proteins. Parameters to create

the networks were selected using the area under the receiver operator

curve (AUROC) and the Matthews correlation coefficient metrics

(Materials and Methods). In Figure S1 we provide estimates over a

range of true positive and true negative ratios.

To compare the constructed networks and infer interaction

conservation among the different yeast species, orthology assign-

ments provided by Wapinski and co-workers were used to establish

orthology relationships for all proteins in the networks (Materials

and Methods) [25]. We further ensured that orthologs to the S.

cerevisiae SH3 and kinase proteins contained the particular SH3 and

kinase domains, respectively. Here, we assume domain binding

specificities found in S. cerevisiae to be similar for orthologous

proteins, even for distant species. While this is a critical assumption,

five different observations suggest it is reasonable for the proteins

analyzed. First, we examined paralogous domains in S. cerevisiae

since they tend to be under weaker purifying selection than non-

duplicated genes and are likely to diverge at faster rates than

proteins in different species [26]. We find paralogous SH3 proteins

to have very high PWM similarity, especially considering those

above 80% amino acid sequence identity (Figure S2). Second, we

show orthologs and paralogs share the same amino acids at similar,

presumably binding determining, positions in a multiple sequence

alignment (Figure S3). Third, SH3 domain crystal structures reveal

contact amino acids to a bound ligand are highly conserved in

orthologs (Figure S4). Fourth, orthologs to S. cerevisiae SH3 and

kinase domains exhibit a high degree of amino acid identity (Figure

S5A and S6). Fifth and finally, for many following analysis, we use

two species sets: one where we use all 23 species and a restricted set,

where we use orthologs with an amino acid sequence identity

greater than 80% (for which binding specificity is almost guaranteed

to be conserved). In all cases, we observe the same results.

SH3 and kinase interaction network structure and
topology is conserved

To assess the similarity of the fungal networks with each other, we

created phylogenetic trees from the orthology mapped interaction

networks, based on the number of conserved interactions between

species (Materials and Methods). Importantly, we found that the

phylogenetic trees derived from the predicted SH3 and kinase

interactions (Figure S7A and S7B) are remarkably similar to the

canonical protein sequence-based phylogeny (Figure 2A), suggesting

that the interaction networks share similar evolutionary properties

as genome sequences [27]. While we observe similar phylogenetic

trees for the fungal species, analysis spanning the 3 domains of life

revealed topological differences between the metabolic pathway and

sequence based phylogenetic trees, representing many more years of

evolution [28–30]. Despite the phylogenetic similarities for the

fungal species, only 5 SH3 interactions are conserved across all 23

yeast species, translating to ,1% of all S. cerevisiae SH3 interactions.

For kinases, not a single interaction is conserved across all kinase

interaction networks given the defined thresholds and orthology

mappings. The limited number of globally conserved interactions

indicates that phylogenetic similarities are due to conservation of the

network structure and topology rather than individual interactions

between orthologs.

Quantification of evolutionary changes in the SH3 and
kinase interaction networks

The observed lack of conservation of specific interactions may

be attributed to two main evolutionary mechanisms. First, an

interaction can be lost or gained but both the binding and target

Author Summary

Protein interaction networks control virtually all cellular
processes. The rules governing their evolution have
remained elusive, as comprehensive protein interaction
data is available for only a small number of very distant
species, making evolutionary network studies difficult.
Here we attempt to overcome this limitation by compu-
tationally constructing protein interaction networks for 23
relatively tightly spaced yeast species. We focus on
networks consisting of kinase and peptide binding domain
interactions, which play central roles in signaling path-
ways. These networks enable us to investigate evolution-
ary network mechanisms. We are able, for the first time, to
accurately quantify the contribution of different rewiring
mechanisms. Interaction change appears to be mainly
accomplished through binding site evolution rather than
through gene gain or loss. This is in contrast to other
evolutionary processes, where gene duplication or dele-
tion is a major driving factor. Moreover, our analysis
reveals that interaction changes are very fast – fast enough
that the number of changes saturates, i.e., the actual rate
of change has been strongly underestimated in previous
studies. Our analysis also reveals different mechanisms by
which certain interactions are conserved throughout
evolution. Our results likely transfer to other species and
networks, and will benefit future evolutionary studies of
signaling pathways.

Signaling Network Evolution
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proteins are evolutionary retained, which we refer to as

‘‘interaction rewiring’’ (i.e., orthologs exist for the associated genes

of the binding and target proteins). Second, the binding or target

protein itself can be gained or lost (i.e. through a gene duplication),

which we refer to as a ‘‘protein change’’. To examine interaction

differences observed in these networks, we quantified rates of

interaction rewiring and protein change in both the SH3 and

kinase networks and compared them to previously reported rates

for other types of interaction networks.

To attain a rate of interaction rewiring, we need to ascertain the

number of interaction changes between two species as well as their

divergence time (see Materials and Methods). We find that the

interaction rewiring rate decreases sharply as the divergence

distance increases for the SH3 and kinase interaction networks

(Figure 2B, Figure S8A) in addition to being slower than in

random networks (p-value,0.001, Figure S9). This suggests that

to obtain an accurate rewiring rate one has to use closely related

species, as the estimated rewiring rates are dependent on

divergence distance and hence the selected reference species. For

example, the rates of interaction rewiring in the SH3 network

between closely related species 1) S. cerevisiae and S. paradoxus and

between distant species 2) S. cerevisiae and S. pombe are 3.8661024

and 4.0161025 interaction rewirings per protein pair per million

years respectively. Indeed, using the nearest evolutionary species

as a reference, S. octosporus, for S. pombe results in an over 4 times

increase to 1.8561024 interaction rewiring per protein per million

years (Table S1). Intuitively, this phenomenon may be explained

by a saturation of interaction changes at longer evolutionary

distances. A similar result is observed when selecting SH3 domains

above a range of amino acid identity thresholds (Table S2, Figure

S10), indicating that our assumption of orthologs retaining similar

specificities is reasonable, as noted above.

To investigate this saturation effect, we examined the absolute

number of interaction changes with respect to divergence time.

Importantly, we find the number of SH3 and kinase interaction

rewiring events is sufficiently rapid to reach saturation in about 200

million years of divergence since the last common ancestor

(Figure 2C, Figure S8B). This saturation effect is analogous to the

saturation of neutral sequence substitutions in the comparison of

highly divergent sequences resulting in a biased dN/dS ratio, due to

the inability to observe multiple substitutions at the same nucleotide

positions thus resulting in a deflated dS value. The observed

decrease in interaction rewiring rate is dominated by divergence

distance and possibly reflects the inability to observe multiple

rewirings of the same interaction, as the loss followed by a gain of

the same interaction appears as a conserved interaction (Table S1).

Previous studies that quantified evolutionary rates for network

changes [18,19] used relatively distant species for comparison and

were hence likely hampered by this issue. Thus we expect that they

have underestimated the true evolutionary rate.

Similar to interaction rewiring, the rate of protein change is also

dependent on the selected reference species. Using the nearest

species to calculate rates in the SH3 network, the average rate of

protein change is 1.9561025 protein changes per protein pair per

million years while the average rate of interaction rewiring is

1.6161024 interaction rewiring per protein pair per million years

(Table S1 and S3). An almost 10-fold difference between rates in

interaction rewiring and protein change suggests that interaction

rewiring is the primary mechanism for determining the overall rate

of interaction change in the SH3 interaction network. A similar

Figure 1. Generating SH3 and kinase interaction networks schematic. 23 yeast proteomes were scanned with 30 SH3 domain and 63 kinase
domain position weight matrices (PWMs). High scoring interactions are selected and merged together on a per species basis to form SH3 and kinase
interaction networks. In order to compare the different species’ networks, orthology mappings were used [25]. Vertices (nodes), solid directed arrows,
and dashed undirected lines represent proteins, protein interactions, and orthology assignments respectively. Blue nodes are proteins with an SH3 or
kinase domain and any other colored node is a target protein of either a SH3 or kinase domain. Nodes of the same color but in different species are
orthologs.
doi:10.1371/journal.pcbi.1002411.g001

Signaling Network Evolution
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result is observed in the kinase network (Table S2 and S4). SH3 and

kinase signaling interactions are known to evolve more rapidly than

metabolic and other protein interactions [17,21], due to the short

protein binding surface area forming the interaction interface.

Additionally, the time scale to observe the saturation phenomena in

these networks is significantly smaller than the time scales used in

previous comparison studies [17,21–23]. Here we find the dominant

mechanism for interaction change, at the observed time scale, is by

interaction rewiring for these signaling networks. This is reminiscent

of the study by Zhong et al. who found the mechanisms of

interaction rewiring and protein change corresponded to distinct

mutation events. They further found single genes associated with

multiple diseases could be explained by interaction rewiring (ie.

network perturbation) [31]. Thus the rapid rewiring rate exhibited

in the SH3 and kinase networks conceivably enables the discovery of

new functionality while maintaining the same gene repertoire.

Rates of interaction change in the SH3 and transcription
factor networks are similar to rates found in the kinase
network

A previous study examined the rate of interaction change (i.e.

the combination of interaction rewiring and protein change rates)

associated with phosphosite and transcription factor regulatory

Figure 2. Rates of interaction change. Divergence distances are taken with respect to the last common ancestor. A) The canonical phylogeny
based on protein sequences of common genes found in all 23 species (Materials and Methods). B) Rates of SH3 interaction change calculated such
that no branch is shared in the canonical phylogenetic tree versus divergence in millions of years. C) The number of SH3 interaction changes with
respect to S. cerevisiae versus divergence in millions of years. Saturation is reached within ,200 million years of divergence.
doi:10.1371/journal.pcbi.1002411.g002

Signaling Network Evolution
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networks [18]. We therefore compared rates for these networks to

rates for our SH3 and kinase interaction networks. To provide an

unbiased comparison, by compensating for the aforementioned

saturation phenomenon, we computed interaction change rates of

our kinase network using S. cerevisae as the sole reference strain

instead of the closest related species and observed similar rates

between the two networks. Specifically, interactions in the C.

albicans and S. pombe phosphosite network were reported to change

at a rate of 1.0961025 and 1.2461025 interaction changes per

protein pair per million years, respectively after adjusting to our

orthology mappings [18] (Table S5). Importantly, we found that

interaction changes in the C. albicans and S. pombe kinase networks

occur at a comparable rate, 3.6861025 and 3.8961025

interaction changes per protein pair per million years respectively

(Table S2 and S4), when S. cerevisiae was used as the reference

species. Considering that our computational approach is likely to

contain some false positives and false negatives, the calculated

rates may be overestimated. Thus, the close agreement between

our findings and the Beltrao et al phosphosite network study

supports the validity of our computational approach.

We next quantified rates in the C. albicans and S. pombe SH3

networks and found that they change at a rate of 5.9061025 and

5.4761025 interaction changes per protein pair per million years,

respectively (Table S1 and S3). Interestingly, interaction changes

in the SH3 networks occur at similar rates compared to interaction

changes in the kinase and phosphosite networks.

Rates for the transcription factor-DNA (TF-DNA) interactions

have also been deduced for S. mikatae and S. bayanus regulatory

networks using S. cerevisiae as a reference species. We found that the

rates of interaction change associated with these regulatory

networks (1.0261023 and 5.9161024 interaction changes per

transcription factor-gene pair per million years for S. mikatae and S.

bayanus, respectively) (Table S6) [18] are similar to the SH3

interaction network rates of interaction change for the same species

(4.8261024 and 4.2461024 interaction changes per protein pair

per million years for S. mikatae and S. bayanus respectively) (Table 1).

Given enhancer regions diverge at a fast rate [32,33], transcription

factor interactions are expected to change rapidly.

Here we find that different peptide recognition domain

networks evolve at different rates, all of which are faster by an

order of magnitude than the rate of change of protein-protein

interaction networks [21]. This is the case even when considering

the estimated error in the rate of network rewiring within the SH3

interaction network between the evolutionary closest species of

S.cerevisiae and S. paradoxus (estimated at 1.761024 interaction

changes per protein pair per million years). Given the rate at

which the signaling and regulatory networks rewire, it is tempting

to speculate that the ability to rapidly reorganize their structure is

a mechanism for swift adaptation to selective constraints while

minimizing disruption to a core network responsible for basic

cellular functionality.

Global trends in interaction conservation
The rates above highlight the plastic nature of SH3 and kinase

interaction changes which in addition to the lack of a significant

correlation between a SH3 PWM’s entropy and the rate of

interaction rewiring (r= 20.067, p-value = 0.724, Figure S11)

suggest detecting conserved interaction signals to be difficult.

Interestingly, we readily observed global trends of network

conservation. Using S. cerevisiae as the reference species, we found

a significant correlation between the number of domains that bind

a target protein and the degree to with interactions are conserved,

for both the SH3 (r= 0.466, p-value,2.2610216) and kinase

(r= 0.337, p-value,2.2610216) interaction networks (Figure 3A

and 3B). These correlations explain 16% and 10% of the variance,

respectively, where interaction conservation is the fraction of

species retaining an interaction found in S. cerevisiae. This suggests

targeted proteins may retain interactions by maintaining many

interaction partners (ie. the target protein has a high in-degree).

To identify mechanisms giving rise to the above correlation, we

use the position specific binding information provided by the

PWMs to determine the exact region bound by a domain on a

target protein (Materials and Methods). We found that high in-

degree target proteins have peptide regions bound by multiple

SH3 domains, forming binding site clusters primarily in proline

rich regions (Figure cluster 4A). Binding site cluster formation may

be attributed to two modes: 1) binding by the same SH3 specificity

class and 2) binding by multiple SH3 specificity classes that share a

common PXXP core, where X is any amino acid. As an example,

Srv2p contains a multiclass cluster composed of class I, II, and III

SH3 domain binders (Figure 4A). While we observe the formation

of clusters, two proteins cannot simultaneously occupy the same

binding site, thus multiple binding domains forming a cluster

competitively bind for the target binding site.

Having identified cluster formations at SH3 target binding sites,

we explored the relationship between the size of the binding site

clusters and interaction conservation. A significant correlation was

found between cluster size and interaction conservation (r= 0.192,

p-value = 4.6761026) (Figure 4B), though not as significant as the

correlation found at the global level of protein interactions

between the number of interacting SH3 domains and interaction

conservation. Interestingly, cluster sizes greater than 7 fail to

exhibit the same degree of interaction conservation as proteins

whose in-degree are of the same magnitude. Since proteins with

many interacting SH3 domains may contain multiple clusters, this

suggests the number of binding clusters may play a role in

determining an interaction’s conservation degree. Pursuing this

observation, we find a significant correlation between the number

of binding site clusters and interaction conservation (r= 0.461, p-

value = 5.85610212) (Figure 4C). This is in agreement with

previous studies suggesting that the amount of a protein

participating in interactions is more conserved [34,35]. The

existence of disjoint clusters is analogous to the existence of several

different interaction interfaces participating in a complex forma-

tion, which is most likely driving the correlation with interaction

conservation. Similar observations are found within the kinase

interaction network where correlations between interaction

conservation and both binding site cluster size (r= 0.210, p-

value = 1.40610214) and the number of clusters (r= 0.296, p-

value = 6.48610210) are found (Figure S12).

Sequence specific conservation relates to interaction
conservation

Cluster formation at binding sites suggests that the sequence

could be evolutionary constrained to preserve recognition by

multiple binding domains. To investigate the relationship between

sequence conservation and interaction conservation we measured

the binding site divergence using the AL2CO algorithm (Materials

and Methods) [36] and observe a significant correlation between

sequence conservation and binding cluster size (r= 0.241, p-

value = 2.8061025), indicating the existence of selective pressure

to maintain sequence conservation due to multiple interacting

partners. However, the relative contribution of different target

binding site amino acids to a domain’s binding specificity varies

wildly. Consider the binding specificity of a class I SH3 domain

with the consensus sequence RXXPXXP, where X is any amino

acid. The first, middle, and last positions of the binding site are

constrained to specific anchor amino acids, whereas the other

Signaling Network Evolution
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positions are free to evolve to any other amino acid. Thus from the

perspective of the class I domain, a binding site is conserved when

the 3 anchor amino acids are present, while the other amino acids

are free to evolve.

To measure the conservation of a target peptide sequence

relative to a SH3 domain’s binding specificity we developed a new

metric. Using S. cerevisiae as the reference species, for an observed

target binding site, we first calculate its PWM score and the PWM

score for all orthologous proteins. The difference between a

species’ PWM score to that of the S. cerevisiae ortholog indicates the

relative amount the target site has evolved. To provide a summary

metric, PWM scores for each ortholog are weighted by their

divergence distance from the S. cerevisiae ortholog (Materials and

Methods). While many previous studies sought to identify

conserved protein interactions [22,23], here we show that this

metric enables identification of both conserved and evolving

interactions. Conserved interactions have values near zero as is the

case for Srv2p which contains a highly conserved binding cluster

of size 6. Evolutionary changing interactions bind evolving target

binding sites identified by negative values, larger magnitudes

indicate recently acquired target binding sites. One example of an

evolved target binding site is found on Ubp7p in a cluster size of 5.

The metric captures the evolving binding site, while only weak

sequence conservation is observed. Not surprisingly, a significant

correlation between the metric and interaction conservation

(r= 0.425, p-value,2.2610216) is observed, highlighting the

Table 1. Quantification of the two mechanisms of yeast SH3 interaction change: 1) interaction rewiring, and 2) protein change.

Species SH3 domain orthologs Orthologs
Changed
interactions

Divergence Time
(My)

SH3 interaction change (per protein
pair per My)

S. paradoxus 21 5096 497 10 4.6461024/3.8661024

61 5.7061025/4.7461025

S. mikatae 21 4913 659 15 4.2661024/3.0561024

88 5.6961024/4.0861025

S. bayanus 21 4996 800 20 3.8161024/2.3661024

91 4.3461025/2.6861025

C. albicans 17 3982 1217 400 4.4961025/2.0161024

381 1.4161025/1.9261025

S. pombe 15 3247 1172 600 4.0161025/1.8561024

426 1.4661025/4.4261026

Rows including the species name contain the interaction rate for the SH3 interaction change denoted by 1) above, while the row immediately below illustrates the rate
for the second type of interaction change. Rates before and after the backslash were calculated respectively by using S. cerevisiae and the closest species to the species
in question from the gene derived phylogenetic tree as the reference species. Divergence time is taken with respect to the last common ancestor in millions of years.
doi:10.1371/journal.pcbi.1002411.t001

Figure 3. Significant correlations exist between interaction conservation and the number of interaction partners of a target protein
in the S. cerevisiae SH3 and kinase interaction networks. A) A strong correlation between interaction conservation and the number of
interaction partners of a target protein for the SH3 protein interaction network (r= 0.466, p-value,2.2610216) and B) for the kinase protein
interaction network (r= 0.337, p-value,2.2610216).
doi:10.1371/journal.pcbi.1002411.g003

Signaling Network Evolution
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metric’s ability to capture sequence conservation relevant to

interaction conservation. In line with this, we find a significant

correlation between the metric and binding site cluster size

(r= 0.271, p-value = 2.4161026). This result demonstrates that

binding specificity from multiple domains indeed places evolu-

tionary constraint on the target binding site sequence.

In conclusion, we use the specificity profiles of a common

signaling domain to generate a model network for the fungal clade

spanning a wide range of evolutionary distances. In this manner

we overcome the difficulty of comparing interaction networks of

very divergent model organisms derived from a limited amount of

experimental interaction data. We draw a number of conclusions

that are biologically important: First, we find that the major driver

of evolution of signaling pathways is interaction change and not

gene duplication or loss. Second, we find network interaction

changes are so rapid that they swiftly saturate, a phenomenon

future studies will need to consider. Finally, we find signatures of

network conservation and propose associated mechanisms. We

expect our results can be generalized to many other signaling

domains, such as SH2, WW, and PDZ domains, since they are

affected by the same fundamental evolutionary processes.

Materials and Methods

Collection of proteomes and domain specificity map data
Genomic and proteomic data for 23 fungal species from the

Ascomycota phylum were obtained from a variety of sources [37–

43]. The same genomic and proteomic datasets were selected as

those used to generate the orthology group assignments by

Wapinski et al. [25], but extend to 23 fungal species which is

available on their website as version 1.1 (retrieved August 2009).

30 SH3 position weight matrices (PWMs) for 25 of 27 S. cerevisiae

SH3 domains were obtained from Tonikian et al. [6]. Kinase

PWMs were obtained from Mok et al. for 61 of 122 S. cerevisiae

kinase proteins, for a total of 63 kinase PWM classes [11]. SH3

PWMs were constructed by aligning peptide sequences derived

from phage display to create amino acid frequencies for each

ligand position. Kinase PWMs are based on intensity signal ratios

Figure 4. Binding cluster formation and existence of a significant correlation between interaction conservation and both binding
cluster size and the number of binding site clusters. A) Global protein in-degree decomposition into amino acid resolution binding
demonstrates the formation of binding site clusters. A segment of the S. cerevisiae protein Srv2p is shown demonstrating binding cluster formation B)
A strong and significant correlation between interaction conservation and binding cluster size exists (r= 0.192, p-value = 4.6761026). C) The
correlation between interaction conservation and the number of clusters is found to have an even stronger correlation with the number of clusters
found on a protein for the SH3 interaction network (r= 0.461, p-value = 5.85610212).
doi:10.1371/journal.pcbi.1002411.g004

Signaling Network Evolution
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for each amino acid at every ligand position from peptide library

screens.

Binding target site prediction using MOTIPS at high
accuracy

Identifying putative target binding sites for each SH3 and kinase

domain was determined using the Motif Analysis Pipeline

(MOTIPS) [44], a method similar to ScanSite [45]. Binding

target sites were identified for the 23 yeast species using the S.

cerevisiae SH3 and kinase domain PWM specificity classes (see

above). Here we use the term target binding site to refer to a

peptide target prediction corresponding to a PWM class. Given a

PWM, the binding target site score is defined by

Score~
Score(bindingsite)c{ Scoreoptimal

c

Scoreoptimal
c

where c is the PWM class, Scoreoptimal
c is the optimal binding score

for the PWM class, and Score(bindingsite)c is defined below.

Score(bindingsite)c~
XNc

p~1

{ log
aapP20

x~1 aax

 !

where Nc is the length of the target binding site for class c, p is the

position of an amino acid within the target binding site, and aa is

an amino acid’s entropic adjusted ‘‘count’’ [46] at a given position

in the PWM. Each predicted binding target site is further

associated with parameters of disorder (lack of tertiary structure)

and surface solvent accessibility respectively computed by

disopred2 and sable [47,48] to provide additional features to

enhance target binding site predictions.

Parameter selection was performed using the area under the

receiver operator curve (AUROC). Other binary classification

metrics such as Matthews correlation coefficient (MCC) resulted in

the same parameters being selected. To measure model perfor-

mance, both true positive and true negative sets are required. For

SH3 interactions, true positive interactions were retrieved from

Tonikian et al. [6] and true negative interactions were created

using randomly selected interacting partners for each SH3

domains. The true negative set was constrained to exclude protein

pairs annotated with overlapping cellular compartments, addi-

tionally true positive interactions were removed from the negative

set. The parameter selected for the SH3 interaction network were

the top scoring 30 interactions for each class, with accessibility and

disorder scores respectively greater than 3 and 0 to achieve

AUROC and MCC values of 0.86 and 0.79 respectively. For the

kinase interaction network we used data from Breitkreutz et al [49].

Unfortunately, this dataset identifies only interaction partners and

does not include interaction directionality, which is crucial for our

purposes. To determine interaction directionality, S. cerevisiae

phosphosite data from literature [18,50–54] was superimposed on

the Breitkreutz et al kinase network. Kinase PWMs from Mok et al.

were subsequently used to identify kinase domains that bind

specific phosphosites [11,49]. To ensure the interaction is

significant and likely a true positive, phosphoproteins were

scanned by every kinase PWM to create a best score background

distribution. For each kinase PWM best score distribution we

assume it follows a Student’s t-distribution and use a threshold of

p-value,1610216 to define the true positive set. The kinase

network true negative set was constructed in the same manner as

the SH3 negative. Parameters selected for the kinase interaction

network were top 360 interactions for each PWM class,

accessibility score greater than 4.0 and a disorder score greater

than 0.9 to achieve AUROC and MCC values of 1 and 0.16

respectively. In all comparisons, a 1 to 5 ratio between true

positives and true negatives were used. Various metrics describing

the confusion matrix were found to be similar across a range of

true positive and true negative ratios (Figure S1).

Network comparison and orthology assignment
Comparisons between the 23 different species interaction

networks were made using orthology mappings provided by the

SYNERGY algorithm [55]. Two network comparison types were

performed, global and local, respectively based on the absence or

use of exact amino acid positional target binding information.

Global comparisons involve determining the interaction conser-

vation between two proteins. Here an interaction is conserved if

any of the target proteins has an ortholog found to also be a

binding partner for a given protein domain (one-to-one and one-

to-many orthology relationships). Local comparisons are used in

identifying conserved interactions when estimating the network

rewiring rate. To simplify network comparisons for evolutionary

rate calculations, we constrained orthology mappings to one-to-

one and many-to-one relationships with respect to the reference

species, thus ensuring at most a single protein per species exists in a

multiple sequence alignment for each reference species’ protein.

Orthology mappings are established using the shortest distance

between genes, where the distances are derived from the

orthogroup’s reconstructed gene tree, as orthogroups encompass

both orthologs and paralogs. The reconstructed gene trees for each

orthogroup were retrieved from the January 2009 data revision by

Wapinski I. et al. containing the 23 fungal species used in this study

[25].

Ortholog selection for S. cerevisiae proteins containing a
SH3 or kinase domain

Blastp [56] and the SH3 Pfam HMMs [57] were used to

determine SH3 domain existence in the orthologs to S. cerevisiae

proteins containing a SH3 domain. If both blastp and the SH3

Pfam HMMs failed to identify a SH3 domain, the protein was

removed from the interaction network. S. cerevisiae domain regions

were retrieved from Tonikain et al. [6]. Parameters used for blastp

were ‘-evalue 0.1’ and for the Pfam HMMs, ‘-e_seq 0.1 -e_dom

0.1’. In a similar manner, kinase proteins from Mok et al. were

selected [11] and the Pfam Pkinase HMM was run with ‘-e_seq

0.01 -e_dom 0.01’. The S. cerevisiae kinase domain boundaries were

extracted from the Pfam output, and blastp was run with ‘-evalue

0.1’. If both blastp and the Pkinase Pfam HMM failed to identify a

kinase domain in an orthologous S. cerevisiae protein, the protein

was removed from the kinase interaction network.

Multiple sequence alignment
For each gene target involved in a SH3 or kinase interaction,

the protein sequences of the gene target and its associated

orthologs were aligned using MAFFT v6.717b [58] with the ‘–

auto’ parameter.

SH3, kinase, and canonical phylogenetic trees
The R statistical program with the Analyses of Phylogenetics

and Evolution (APE) package [59] was used to generate the

phylogenetic trees derived from conserved interactions in the SH3

and kinase interaction networks for the 23 yeast species using a

minimum evolution method. As input for such methods, a multiple

sequence alignment (MSA) is required. A MSA based on

conserved interactions can be created by considering an
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interaction between a protein pair as a single position within a

MSA, whose value is 1 if the interaction is present and 0 otherwise.

The canonical phylogenetic tree was created by concatenating

the protein MSA of 79 out of 153 genes families with synteny

support [27,60], where the 79 gene families correspond to

orthogroups containing each of the 23 yeast species exactly once

[25]. In other words, only gene families with no paralogs were

selected. MAFFT was used to align the 79 gene family

orthogroups. The alignments were concatenated and a phyloge-

netic tree was created using SEMPHY version 2.0b3 with the JTT

matrix and parameters ‘–jtt –S –O’ [61]. The divergence distance

from the last common ancestor between S. cerevisiae and S. pombe

was set to 600 million years and the APE package was used to

create the canonical phylogenetic tree.

Interaction change rates
To compare rates of interaction change with the computed SH3

and kinase interaction networks against prior literature rates, we

used rates of interaction change provided by Beltrao and

colleagues for the kinase and transcription factor networks. To

provide a fair comparison, divergence times for K. lactis, C. albicans,

and S. pombe with respect to S. cerevisiae were set to 300, 400, and

600 million years respectively, values use by Beltrao et al. [18].

Divergence times for the yeast sensu stricto group taken with

respect to S. cerevisiae for S. paradoxus, S. mikatae, and S. bayanus were

10, 15, and 20 million years respectively [62].

Estimating rates of interaction change between interaction

networks requires the divergence times between the networks to be

known. To estimate divergence times, we created a canonical gene

phylogenetic tree encompassing all 23 fungal species. The above

section details the construction of the canonical phylogenetic tree.

The network rewiring mechanism of ‘‘interaction rewiring’’ and

‘‘protein change’’ require the identification of conserved interac-

tions, as the absence of a conserved interaction is an interaction

change. For interaction rewiring, an interaction is conserved if

there exists a target binding site within a window centered on the

reference species’ target binding site plus 10 flanking amino acids.

For protein change, interaction conservation is based solely on the

existence of a protein ortholog.

Rates of interaction change with respect to a reference species

were calculated in the same manner as Beltrao et. al. using the

following equation:

intChanges

orthDomain Pr oteins|orth Pr oteins|divergenceTime

where intChanges is the number of gained and lost interactions,

orthDomainProteins is the number of orthologous proteins between

the two species in comparison containing a SH3 or kinase domain,

orthProteins is the number of orthologous proteins, and divergenceTime

is the divergence time in millions of years separating the two

species [18]. Rates for both network rewiring mechanisms of

interaction rewiring and protein change were calculated using the

above equation. This equation can be viewed as the fraction of the

interaction changes versus all possible interactions amongst

proteins with orthologs and normalized by the divergence distance

between the two compared species interaction networks.

Determining if rates of interaction rewiring significantly differ

between the predicted network and random networks, 1000 sets of

randomized interaction networks for each of the 23 species were

created. The networks were randomized such that protein degree

and the total number of nodes within the 23 interaction networks

were maintained. For each set of randomized networks, the rate of

interaction rewiring was calculated and compared against rates

found in the original interaction networks.

Estimating the error in network rewiring was performed in the

SH3 interaction network and between the two closest yeast species:

S.cerevisiae and S. paradoxus. Using the predicted S.cerevisiae interaction

network, the number of false positives and false negatives were

calculated using the true positive and true negative datasets

determined above. We assume the number of incorrect interactions

is the same in the S. paradoxus SH3 interaction network, hence the

maximum number of incorrect interactions is double the number of

false interaction changes found in the S.cerevisiae network.

Analysis of binding site clusters
The set of target binding sites, linear peptide sequences, for each

SH3 and kinase domain were provided by the MOTIPS pipeline.

When multiple target binding sites overlap, a target binding site

cluster is formed. Specifically, a binding site cluster is defined as a

region on a protein target for which every peptide segment bound

by a protein domain overlaps with every other bound peptide

segment, and for every pair of overlapping bound segments, one

segment overlaps another by more than 50% of its peptide length.

A greedy approach is used to form the clusters.

Sequence conservation metrics
Determining the binding site sequence conservation is measured

by AL2CO [36] in conjunction with a weighted scoring scheme to

account for gaps. AL2CO was run with the parameters ‘–f 1 –g

0.01’. Each amino acid position within the multiple sequence

alignment was further weighted by 1 minus the ratio of gaps vs

non-gaps at that amino acid position, thereby decreasing the

conservation score of positions with many gaps.

Calculating the sequence conservation specific to a protein

domain is computed in 3 steps: 1) use PWMs to calculate the

highest scoring target binding site for all protein orthologs at the

location of the reference species’ target binding site in a MSA

within a 10 amino acid flanking window, 2) obtain divergence

distances for all protein orthologs with respect to S. cerevisiae, and 3)

finally weight the difference in PWM scores between protein

orthologs versus the S. cerevisiae protein PWM score with the

reciprocal of the protein orthologs divergence distance from the S.

cerevisiae protein. Computing the highest scoring target binding

sites for all protein orthologs for a given protein domain is

performed by making a MSA for each target protein, where each

MSA consists of the target protein and its protein orthologs. Using

S. cerevisiae as the reference species, a window is set to the

boundaries of the target binding site plus 10 flanking amino acids

on either side. For each protein ortholog, the highest scoring target

binding site is attained from the sequence within the window. A

score threshold defined as twice the worst PWM score in the

S.cerevisiae network is applied to the PWM score difference between

protein orthologs and the S. cerevisiae protein to capture sequences

likely to have diverged towards the S. cerevisiae binding target site.

Divergence distances for protein orthologs of a S. cerevisiae target

protein are obtained from the reconstructed gene tree by Wapinski

I. et al. of the target protein’s orthogroup [25]. If protein paralogs

exist within the orthogroup, the protein with the shortest distance

to the S. cerevisiae target protein is retrieved.

Supporting Information

Figure S1 Effect of varying the true positive/true negative ratio

on different metrics describing the confusion matrix for A) the

SH3 interaction network and B) the kinase-substrate network.

(EPS)
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Figure S2 Pairwise similarity of S. cerevisiae SH3 domain

specificities against each other. A) PWM dissimilarity versus

percent amino acid identity between two SH3 domains, where

PWM dissimilarity is the normalized sum of the minimum L2

norm between two PWM positions by padding each PWM with

flanking fake amino acid X. B) The number of common position

specific interactions shared between two SH3 domains versus

percent amino acid identity.

(EPS)

Figure S3 Multiple sequence alignment of S. cerevisiae SH3

domain paralogs and their orthologs for A) Boi1 and Boi2, B) Lsb1

and Pin3, C) Myo3 and Myo5, and D) Lsb3 and Lsb4. Many

positions shared between orthologs are shared between paralogs.

The MAFFT multiple sequence alignments [58] were visualized

using JalView [63].

(EPS)

Figure S4 Contact amino acids, defined as amino acids 5 Å

from a bound ligand in a crystal structure, for S. cerevisiae SH3

domains are highly similar to those found in their orthologs.

Highlighted columns indicate contact amino acids for the S.

cerevisiae SH3 domains in the multiple sequence alignment for A)

Pex13 (2V1R and 1N5Z) [64], B) Sho1 (2VKN), C) Bbc1 (1ZUK),

and D) Lsb3 (1SSH). PDB ids are in parenthesis. If two structures

were present, the union of the contact positions was taken. The

MAFFT multiple sequence alignments [58] were visualized using

JalView [63].

(EPS)

Figure S5 SH3 domains in orthologous proteins exhibited a

high degree of amino acid identity to their S. cerevisiae ortholog.

(EPS)

Figure S6 Kinase domains in orthologous proteins exhibited a

high degree of amino acid identity to their S. cerevisiae ortholog.

(EPS)

Figure S7 Phylogenetic trees derived from A) SH3 interaction

conservation and B) kinase interaction conservation for 23 fungal

species.

(EPS)

Figure S8 Kinase rates of interaction change and number of

kinase interaction changes. A) Rates of kinase interaction change

calculated such that no branch is shared in the canonical

phylogenetic tree versus divergence in millions of years. B) The

number of kinase interaction changes with respect to S. cerevisiae

versus divergence in millions of years.

(EPS)

Figure S9 A) SH3 interaction rewiring rates taken with respect

to S. cerevisiae compared against rates taken from 1000 randomized

networks. B) Enlargement of A, with a focus on more distance

species to S. cerevisiae.

(EPS)

Figure S10 Rates of interaction change is similar when

considering orthologs to S. cerevisiae A) SH3 and B) kinase proteins

above various percent amino acid identity thresholds. Calculating

the rates of interaction change for domains only used orthologous

proteins meeting the threshold criteria.

(EPS)

Figure S11 Ranking the SH3 PWMs by their information

content by summing the entropy at each position within the PWM

fails to reveal a correlation between SH3 domains and the rate of

interaction rewiring (r= 20.067, p-value = 0.724).

(EPS)

Figure S12 A strong correlation exists between interaction

conservation and both binding cluster size and associated number

of cluster on a protein in the S. cerevisiae kinase interaction network.

A) A significant correlation between interaction conservation and

binding cluster size exists (r= 0.210, p = 1.40610214) and B)

interaction conservation and the number of clusters found on a

protein (r= 0.296, p = 6.48610210).

(EPS)

Figure S13 Preferential binding of SH3 domains to the same

GO functional groups across species. The Jensen-Shannon

divergence was used to measure the distribution of GO terms of

the target proteins bound by SH3 domains in other species with

respect to their S. cerevisiae counterparts. A score of 0 indicates

identity and 1 indicates complete difference in GO functional

group distributions. Many species show a mean score of 0.15,

indicating high similarity in GO functional groups bound by the

SH3 domain in S. cerevisiae.

(EPS)

Table S1 Quantification of yeast SH3 interaction change due

interaction rewiring. The number of interactions gained and lost is

found in parenthesis. Rates after the backslash were calculated by

using the closest species to the species in question from the gene

derived phylogenetic tree.

(DOC)

Table S2 Quantification of yeast kinase interaction change due

interaction rewiring. The number of interactions gained and lost is

found in parenthesis. Rates after the backslash were calculated by

using the closest species to the species in question from the gene

derived phylogenetic tree.

(DOC)

Table S3 Quantification of yeast SH3 interaction change due

protein change. The number of interactions gained and lost is

found in parenthesis. Rates after the backslash were calculated by

using the closest species to the species in question from the gene

derived phylogenetic tree.

(DOC)

Table S4 Quantification of yeast kinase interaction change due

protein change. The number of interactions gained and lost is

found in parenthesis. Rates after the backslash were calculated by

using the closest species to the species in question from the gene

derived phylogenetic tree.

(DOC)

Table S5 Phosphoevolution rates adapted from Beltrao et al. to

correspond to the ortholog mappings used in this study [18]. S.

cerevisiae protein kinases were derived from Breitkreutz et al., whose

category was denoted as ‘kinase catalytic’. The corresponding

orthologs were mapped to C. albicans and S. pombe (Methods) [49].

The range in rates is given by the assumption up to 5 interactions

are either gained or lost following the gain or loss of a

phosphoprotein.

(DOC)

Table S6 Transcription factor rates of interaction change with

respect to S. cerevisiae are from Borenman et al. [19]. Rates were

calculated in the same way as Beltrao et al. [18] but the number of

orthologs and the divergence times are adjusted to reflect those

used in this study.

(DOC)
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