
ARTICLE OPEN

Gene expression signatures of human cell and tissue longevity
Inge Seim1,2, Siming Ma1 and Vadim N Gladyshev1

Different cell types within the body exhibit substantial variation in the average time they live, ranging from days to the lifetime of
the organism. The underlying mechanisms governing the diverse lifespan of different cell types are not well understood. To
examine gene expression strategies that support the lifespan of different cell types within the human body, we obtained publicly
available RNA-seq data sets and interrogated transcriptomes of 21 somatic cell types and tissues with reported cellular turnover, a
bona fide estimate of lifespan, ranging from 2 days (monocytes) to a lifetime (neurons). Exceptionally long-lived neurons presented
a gene expression profile of reduced protein metabolism, consistent with neuronal survival and similar to expression patterns
induced by longevity interventions such as dietary restriction. Across different cell lineages, we identified a gene expression
signature of human cell and tissue turnover. In particular, turnover showed a negative correlation with the energetically costly cell
cycle and factors supporting genome stability, concomitant risk factors for aging-associated pathologies. In addition, the expression
of p53 was negatively correlated with cellular turnover, suggesting that low p53 activity supports the longevity of post-mitotic cells
with inherently low risk of developing cancer. Our results demonstrate the utility of comparative approaches in unveiling gene
expression differences among cell lineages with diverse cell turnover within the same organism, providing insights into
mechanisms that could regulate cell longevity.
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INTRODUCTION
Nature can achieve exceptional organismal longevity, 4100 years
in the case of humans. However, there is substantial variation
in ‘cellular lifespan’, which can be conceptualized as the turnover
of individual cell lineages within an individual organism.1 Turnover
is defined as a balance between cell proliferation and death that
contributes to cell and tissue homeostasis.2 For example, the
integrity of the heart and brain is largely maintained by cells with
low turnover/long lifespan, while other organs and tissues, such as
the outer layers of the skin and blood cells, rely on high cell
turnover/short lifespan.3–5 Variation in cellular lifespan is also
evident across lineages derived from the same germ layers formed
during embryogenesis. For example, the ectoderm gives rise to
both long-lived neurons4,6,7 and short-lived epidermal skin cells.8

Similarly, the mesoderm gives rise to long-lived skeletal muscle4

and heart muscle9 and short-lived monocytes,10,11 while the
endoderm is the origin of long-lived thyrocytes (cells of the
thyroid gland)12 and short-lived urinary bladder cells.13

How such diverse cell lineage lifespans are supported within a
single organism is not clear, but it appears that differentiation
shapes lineages through epigenetic changes to establish
biological strategies that give rise to lifespans that support the
best fitness for cells in their respective niche. As fitness is subject
to trade-offs, different cell types will adjust their gene regulatory
networks according to their lifespan. We are interested in gene
expression signatures that support diverse biological strategies to
achieve longevity. Prior work on species longevity can help
inform strategies for tackling this research question. Species
longevity is a product of evolution and is largely shaped by
genetic and environmental factors.14 Comparative transcriptome

studies of long-lived and short-lived mammals, and analyses that
examined the longevity trait across a large group of mammals
(tissue-by-tissue surveys, focusing on brain, liver and kidney),
have revealed candidate longevity-associated processes.15,16 They
provide gene expression signatures of longevity across mammals
and may inform on interventions that mimic these changes,
thereby potentially extending lifespan. It then follows that, in
principle, comparative analyses of different cell types and tissues
of a single organism may similarly reveal lifespan-promoting
genes and pathways. Such analyses across cell types would be
conceptually similar, yet orthogonal, to the analysis across species.
Publicly available transcriptome data sets (for example, RNA-seq)
generated by consortia, such as the Human Protein Atlas (HPA),17

Encyclopedia of DNA Elements (ENCODE),18 Functional Annotation
Of Mammalian genome (FANTOM)19 and the Genotype-Tissue
Expression (GTEx) project,20 are now available. They offer an
opportunity to understand how gene expression programs
are related to cellular turnover, as a proxy for cellular lifespan.
Here we examined transcriptomes of 21 somatic cells and tissues
to assess the utility of comparative gene expression methods for
the identification of longevity-associated gene signatures.

RESULTS
We interrogated publicly available transcriptomes (paired-end
RNA-seq reads) of 21 human cell types and tissues, comprising 153
individual samples, with a mean age of 56 years (Table 1; details in
Supplementary Table S1). Their turnover rates (an estimate of
cell lifespan4) varied from 2 (monocytes) to 32,850 (neurons)
days, with all three germ layers giving rise to both short-lived and
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long-lived cell lineages. Biological replicates showed Pearson's
correlation coefficients above 0.90, indicating reproducibility
of the gene expression data (Supplementary Table S2;
Supplementary Figure S1). Gene expression patterns were first
analyzed by Principal Component Analysis (PCA) (Figure 1a), which
revealed that the first three Principal Components (PCs) accounted
for ~ 60% of gene expression variation. The cells and tissues
formed several clusters, suggesting related biological functions for
these clusters. For example, the gastrointestinal tissues,
esophagus, rectum and colon all grouped together, and
hematopoietic tissues (bone marrow and spleen) and monocytes
also clustered. Because transcriptomes of functionally related cell
types often exhibit substantial hierarchical structure,21,22 a

neighbor-joining gene expression tree was generated based on
mean gene expression levels (Figure 1b). Similar to the PCA
results, bone marrow and spleen clustered with monocytes, while
skeletal muscle and heart muscle grouped together and were
distinct from smooth muscle. Although the PCA and gene
expression tree correlated with the broad functional features
of the cells and tissues, the clustering did not strictly follow
germ layer origin. In agreement, recent data demonstrate that the
regulatory DNA landscape (epigenome), but not gene expression
(transcriptome), correlate with cell lineage relationships, including
germ layer origin.23–25 Thus, for any given cell type, e.g., a
neuron, epigenetic marks reflect both the prior (e.g., state in
the germ layer and derived cell lineages) and present regulatory
landscapes.24

Differential gene expression of cell and tissue groups
We selected several lineage groups and individual cells and tissues
and compared each of them against all other cells and tissues
in order to identify associated specific expression patterns
(Supplementary Tables S3 and S4; Supplementary Results and
Discussion). The results for heart (muscle), thyroid gland,
hematopoietic tissues and monocytes are presented in
Supplementary Figure S2. In heart and skeletal muscle, 455 out
of 12,044 genes were differentially expressed (phylogenetic
analysis of variance (ANOVA) P value ⩽ 0.01) compared with other
cells and tissues (Figure 2a). Approximately 44% of these genes
were associated with the tricarboxylic acid (TCA) cycle and
respiration, in agreement with the metabolic organization and
energy sources of these tissues.26

Neurons, which are critical for cognitive and motor functions,
have cell lifespans that likely exceed the lifespan of the
organism.7,27 Comparing neurons to shorter-lived cells and tissues
is conceptually similar to comparing gene expression of long-lived
mammals to related short-lived species, e.g., examining African
mole rats against other rodents.15 Accordingly, neurons should
possess a gene expression signature associated with low turnover/
long lifespan, in addition to the patterns indicative of neuronal
function. Out of 12,044 genes 1,438 were differentially expressed
in neurons (P⩽ 0.01; Figure 2b; Supplementary Table S3) and gene

Table 1. Summary of human cells and tissues used in the study

Tissue/cell type Germ layer Estimated turnover (days)

Adipose tissue Mesoderm 2,448
Adrenal gland Ectoderm 455
Bone marrow Mesoderm 3.2
(CD14+) monocytes Mesoderm 2
Colon Endoderm 3.5
Endometrium Mesoderm 13
Esophagus Endoderm 10
Heart muscle Mesoderm 25,300
Keratinocytes (skin epidermis) Ectoderm 64
Kidney Mesoderm 270
Liver Endoderm 327
Lung Endoderm 200
Neuron (neocortex) Ectoderm 32,850
Osteoblasts (bone) Mesoderm 8.3
Rectum Endoderm 3.5
Salivary gland Ectoderm 60
Skeletal muscle Mesoderm 5,510
Smooth muscle Mesoderm 67.5
Spleen Mesoderm 7.8
Thyroid gland Endoderm 3,180
Urinary bladder Endoderm 49

See Supplementary Table S1 for further details.

Figure 1. Clustering of gene expression from diverse human cells and tissues. (a) Representations of gene expression in Principal Component
(PC) space. Values in parenthesis indicate the percentage of variance explained by each of the PCs. Ostensible germ layer origin is indicated
(red: mesoderm; blue: ectoderm, green: endoderm). (b) Gene expression tree. Branches are colored according to germ layer origin (as in a).
Estimated cell and tissue turnover (‘cellular lifespan’; in days) is shown next to cell and tissue names. The tree was generated by neighbor-
joining (NJ) method (bootstrap= 1,000,000). Bootstrap values are indicated by circles: white ⩾ 0.9; yellow ⩽ 0.9.
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set enrichment analysis showed enrichment for functions
associated with lysosomes, proteasomes, ribosomal proteins and
apoptosis (Supplementary Table S3). Neurons presented with
reduced expression of 27 ribosomal proteins and multiple 20S
proteasome subunit genes (Figure 2b), consistent with distinct
protein metabolism required to fine-tune self-renewal and
synaptic plasticity.28 This group of genes was not correlated with
cell and tissue turnover (see section below), suggesting that this
expression pattern is unique to long-lived neurons. Reduced
protein metabolism, which may be induced by dietary restriction
and other interventions, is known to associate with extended
lifespan in a number of model organisms.29,30 Furthermore,
expression of the tumor suppressor p53 (TP53) was significantly
reduced (P⩽ 0.001) in neurons, where it was expressed at a level

5–30 times lower than that in the other cells and tissues
(Figure 2b). Reduced p53 expression is associated with a
concomitant reduction in cell cycle-related proteins in neurons
following their terminal differentiation from neuroblasts.31

Gene expression patterns of cell and tissue turnover
We identified genes whose expression correlated with cell and
tissue turnover. Available turnover times for a number of tissues
and cell types (in days)3 were supplemented with estimates from
the literature and used as a bona fidemeasure of lifespan (‘lifespan
trait’). We applied generalized least squares regression,32 tested
different evolutionary models and selected the best fit model by
maximum likelihood (see Extended Experimental Procedures).

Figure 2. Genes differentially expressed between selected cell lineages and tissues. (a) Heart and skeletal muscle. Left panel, heat map of
genes differentially expressed in heart and skeletal muscle relative to the other cells and tissues (standardized expression level; red:
high expression; blue: low expression). Right panel, significantly enriched (FDR P⩽ 0.05) pathways. (b) Neuron. Left panel, heat map of
genes differentially expressed in neurons, colored and annotated as in a. Right panel, significantly enriched (FDR P⩽ 0.05) pathways
‘ribosome’ and ‘proteasome’. FDR P denotes false discovery rate-adjusted P value. Lower panel, box plot showing p53 (TP53) expression.
Error bars indicate s.e.m.
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Two hundred eight out of 12,044 genes showed significant
correlation with turnover at a false discovery rate
(Q-value) of 0.05, with 75% (155 genes) in negative correlation
and 25% (53 genes) in positive correlation (Supplementary Table
S5). Notable genes with a positive correlation included the
complex SNRPN-SNURF locus, which gives rise to a number of
proteins and short non-coding RNAs (Supplementary Figure S3;
Supplementary Results and Discussion). We visualized the
protein–protein interaction network represented by these 208
genes, revealing significant enrichment (FDR P⩽ 0.05) for genes
involved in cell cycle, immune signaling (NF-κB) and p53 signaling
(Figure 3a,b and Supplementary Tables S6 and S7). In our data set,
hematopoietic tissues (bone marrow and spleen) and monocytes
constituted the samples with the shortest turnover. Removal of

these data points in the regression analysis retained the ‘turnover
signature’, with the overlapping gene set comprising critical cell
cycle and apoptosis associated genes, such as CHEK1, CHEK2,
MKI67, FOXM1, TP53 and BCL10, while a correlation with immune
signaling-associated genes was lost (Table 2 and Supplementary
Table S8).

Negative correlation between cell cycle and associated genome
integrity pathways and cell and tissue turnover
Gene ontology, KEGG pathway analysis and manual interrogation
of genes correlating with turnover revealed that 30–40% of these
(Supplementary Tables S5 and S8) have roles in the cell cycle, a
highly complex multi-step process. They spanned all phases of the
cell cycle, with the majority of the genes showing decreased

Figure 3. Overview of genes correlating with cellular turnover. (a) Heat map analysis. Upper panel, cellular turnover of the cells and tissues (in
ascending order). Lower panel, heat map displaying gene expression of genes correlating with turnover (standardized expression levels; red:
high expression; blue: low expression). (b) Network analysis. Protein–protein interaction network of genes correlating with turnover. The
interaction network was created by interrogating the STRING database (evidence view). Lines (strings) indicate protein interactions. Proteins
without interacting partners were omitted. Selected pathways are indicated by colored rings. (c) Expression of the cell proliferation marker
Ki-67 (MKI67) correlates negatively with turnover. Error bars indicate standard error of the mean. FDR P denotes false discovery rate P value.
(d) Genes associated with RAD51-mediated genome stability control in the replication phase of the cell cycle. Names highlighted in blue
showed negative correlation with turnover. CDK: cyclin-dependent kinase; CCNA2: cyclin A2; CCNB2: cyclin B2; CHEK1: checkpoint kinase 1,
CHK1; CHEK2: checkpoint kinase 2, CHK2; CLSPN: claspin; BRCA2: breast cancer 2, early onset; RAD51: RAD51 recombinase; RAD51AP1: RAD51
associated protein 1; MMS22L: MMS22-like, DNA repair protein; TONSL: tonsoku-like, DNA repair protein.
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expression associated with increased turnover. As expected, the
classic DNA replication marker, Ki-67 (MKI67), which is only
expressed during the cell cycle,33 was present at high levels in
rapidly proliferating tissues such as bone marrow, rectum and
colon. It was expressed at very low levels in monocytes (the
majority of which do not proliferate) and in post-mitotic skeletal
muscle and neurons (most of which are incapable of cell division;
Figure 3c). Ki-67 was expressed at a moderate level in heart
muscle, which can proliferate at a limited rate,9 and where Ki-67
may promote postnatal cardiac remodeling.34

A negative correlation between the cell cycle machinery and
cell and tissue turnover is not surprising, as proliferative
homeostasis, a balance between cell growth and death, is
essential for normal turnover (as occurs in epidermal cells, for
example). In contrast, terminally differentiated cells comprising
heart muscle, skeletal muscle and neurons, have permanently or
largely exited the cell cycle. They are, therefore, expected to
express low levels of genes related to cell cycle checkpoints and
the maintenance of replication fidelity. We noted that a number of
genes essential for genome stability during the premitotic phase

(G2), a process tightly linked to tumor development,35 were
negatively correlated with turnover (Figure 3d). This included
regulators of cyclin-dependent kinases, such as cyclin A (CCNA2)
and B (CCN2B), checkpoint kinase 1 (CHEK1) and its regulator
claspin (CLSPN), and CHEK2, which together with breast cancer 2
early onset (BRCA2), RAD51 recombinase (RAD51), its enhancer
RAD51AP1 (RAD51AP1), and MMS22-like DNA repair protein
(MMS22L) promote genome stability.35 These data support
recent work showing that RAD51 and BRCA2 are major facilitators
of genome integrity in proliferating cells.35–37 Genes in the
p53 pathway can halt progression of the cell cycle (induce
senescence), or inhibit apoptosis in proliferating cells, and
blocking apoptosis is crucial for the survival of differentiated
post-mitotic cells.38 In agreement with a reduction in the
involvement of cell cycle in longer-lived cells and tissues, multiple
p53 pathway associated genes, including p53 itself (TP53), were
negatively correlated with turnover (Supplementary Figure S4;
Supplementary Tables S5 and S8). They encompassed several
checkpoint kinases (CHEK1 and CHEK2), BCL2-associated X protein

Table 2. Overlap of genes correlating with turnover before and after removal of immune system-associated cells and tissues (monocytes, bone
marrow and spleen)

Gene Description Correlation with cell
turnover

Function(s)

BCL10 B-cell CLL/lymphoma 10 Negative Apoptosis
BRCA2 Breast cancer 2, early onset Negative Cell cycle
CCDC92 Coiled-coil domain containing 92/limkain

beta-2
Positive —

CCNB2 Cyclin B2 Negative Cell cycle
CDC42 Cell division cycle 42 Negative Cell cycle
CDCA3 Cell division cycle associated 3 Negative Cell cycle
CDCA8 Cell division cycle associated 8 Negative Cell cycle
CENPW Centromere protein W Negative Cell cycle
CHEK1 Checkpoint kinase 1 Negative Cell cycle
CHEK2 Checkpoint kinase 2 Negative Cell cycle
CRELD1 Cysteine-rich with EGF-like domains 1 Positive Putative cell adhesion molecule
CRY2 Cryptochrome circadian clock 2 Positive Core circadian clock gene
DDB2 Damage-specific DNA binding protein 2,

48 kDa
Negative DNA repair

EXO1 Exonuclease 1 Negative DNA repair
FANCD2 Fanconi anemia, complementation group D2 Negative Cell cycle
FOXM1 Forkhead box M1 Negative Cell cycle
HEY1 Hes-related family bHLH transcription factor

with YRPW motif 1
Positive Transcription factor

HNRNPF Heterogeneous nuclear ribonucleoprotein F Negative mRNA stability and transport
KIF11 Kinesin family member 11 Negative Cell cycle
KIF23 Kinesin family member 23 Negative Cell cycle
MKI67 Marker of proliferation Ki-67 Negative Cell cycle
MSH5 mutS homolog 5 Negative DNA repair
NADSYN1 NAD synthetase 1 Negative Redox reaction coenzyme, precursor for cell signaling molecules,

and substrate for protein post-translational modifications
NCAPG Non-SMC condensin I complex, subunit G Negative Cell cycle
NCAPH Non-SMC condensin I complex, subunit H Negative Cell cycle
NUF2 NUF2, NDC80 kinetochore complex

component
Negative Cell cycle

ORC1 Origin recognition complex, subunit 1 Negative Cell cycle
PARPBP PARP1 binding protein Negative Cell cycle
PLK4 Polo-like kinase 4 Negative Cell cycle
RCC1 Regulator of chromosome condensation 1 Negative Cell cycle
SAMD9 Sterile alpha motif domain containing 9 Negative Apoptosis
SNRPN Small nuclear ribonucleoprotein polypeptide

N
Positive Complex SNURF-SNRPN locus: mRNA processing, short non-

coding RNA precursor
STK26 Serine/threonine protein kinase 26 Negative Apoptosis
STK38 Serine/threonine kinase 38 Negative Cell cycle and apoptosis
TP53 Tumor protein p53 Negative Apoptosis
ZWINT ZW10 interacting kinetochore protein Negative Cell cycle

Abbreviation: mRNA, messenger RNA.
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(BAX), which activates apoptosis, and ASC/TMS1 (PYCARD), which
when downregulated inhibits BAX translocation to mitochondria.
To further investigate the connection between gene expression

and turnover, we turned to the library of integrated network-
based cellular signatures (LINCS) to identify perturbations (gene
overexpression and knockdown) that produce a similar overall
gene expression profile to our regression analysis. We found that
the most similar profiles came from genes associated with cell
cycle control and associated DNA repair (Supplementary Table
S11). This included overexpression of the major cell cycle
inhibitors p18 (also known as INK4C; CDKN2C), p21 (CDKN1A)
and p27 (CDKN1B), in agreement with the negative correlation
between downstream genes and turnover in our data set.

No correlation between oxidative phosphorylation gene
expression and cell and tissue turnover
It is clear that mitochondrial dysfunction is a hallmark of aging.
Properly functioning mitochondria are essential for energy
production and cell survival, and hence, are crucial for longevity
and resistance to age-related disease.39 We calculated pair-wise
correlations of the expression of 97 nuclear-encoded genes
associated with oxidative phosphorylation (OXPHOS)40 across
the data set, revealing a strong correlation across all samples with
the exception of heart muscle and skeletal muscle (Figure 4a). As
shown in Figure 4b, expression of individual OXPHOS genes varied
by tissue, in agreement with a previous microarray study,40 but
there was no overall correlation with cell and tissue turnover.

DISCUSSION
Several interrelated evolutionary and mechanistic theories have
been proposed that provide insights into the evolution of lifespan
and suggest the involvement of a large armamentarium of
genes.41,42 In this study, we employed gene expression data from
21 somatic cell types and tissues and sought to identify genes and
pathways associated with cell and tissue turnover, to our
knowledge the current best estimate of cellular lifespan,1 in one
of the longest-lived mammals, human. We first tested for

differential expression in selected groups of cells and tissues,
revealing expression patterns that fit well with expected biological
functions, including the TCA cycle and respiration in cardiac and
skeletal muscle; immune function genes in bone marrow,
monocyte and spleen, and reduced protein metabolism in
neurons.
The major insights of our study centered on the relationship

between gene expression and cell and tissue turnover. Multiple
genes taking part in the energetically expensive cell cycle and
associated repair (genome stability) were negatively correlated
with turnover. By interrogating the Broad Institute’s Library of
Integrated Cellular Signatures resource, we found that very similar
gene expression patterns can be achieved by targeted over-
expression and knockdown of single genes, suggesting that gene
expression patterns associated with cell and tissue turnover, and
by proxy cell lifespan, may in principle be achieved by genetic,
pharmacological and perhaps dietary interventions. The observa-
tion that turnover negatively correlates with cell cycle genes may
seem tautological. Indeed, one would expect tissue or cell
populations with high turnover to exhibit more cells in the cell
cycle and, consequently, high expression of cell cycle and
associated genes. However, it is recognized that the rate of aging
and longevity is indeed fine tuned by the balance of cell division
and death (i.e., cell turnover).2 Interestingly, a recent study
examined the transcriptional response to long-term calorie
restriction in humans, revealing that calorie restriction shifts
cellular metabolism of skeletal muscle from proliferation to
maintenance and repair.43 The concomitant reduction in cell
cycle gene expression presumably results in a ‘younger’
transcriptional signature that contributes to the lifespan-
extending properties of calorie restriction.
Expression of p53 (TP53), often referred to as the ‘guardian of

the genome’, was negatively correlated with cell and tissue
turnover; with particularly low levels of expression in long-lived
neurons. Evidence is emerging that p53 has an evolutionarily
ancient lifespan-regulating function, in addition to its role as
tumor suppressor. It is appreciated that p53 promotes organismal
longevity by preventing survival of abnormal cells; however,
several investigators have speculated that p53 protects against

Figure 4. Expression of nuclear-encoded oxidative phosphorylation (OXPHOS) genes in 21 human somatic cells and tissues. (a) Pairwise
correlation matrix of 97 OXPHOS genes. Darker blue shading indicating stronger positive correlation. Blue corresponds to a correlation of ~ 1
and white to ~ 0. (b) Upper panel, cellular turnover of the cells and tissues (in ascending order). Lower panel, heat map displaying gene
expression of individual OXPHOS genes. Scaled log2 transformed normalized counts (Z-score) are plotted in blue–red color, with red indicating
high expression and blue indicating low expression.
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cancer in proliferating cells at the cost of accelerated aging.3,44,45

Thus, in non-dividing cells p53 may, in effect, reduce lifespan. It
was found that suppression of TP53 orthologs in animal models
such as the mouse and fruit fly can extend organismal lifespan
(reviewed in ref. 46). Dominant-negative Drosophila p53 (Dmp53)
significantly extends organismal lifespan when expressed in
adult neurons, but not other tissues (such as muscle) via insulin/
insulin-like signaling (IIS) and TOR (target of rapamycin)
pathways.47,48 Several p53 (TP53) retrogenes have been recently
reported in the elephant genome,49 however, while elephant
lymphocytes and fibroblasts show an increased response to DNA
damage compared with human cells,49 it is currently not known
how many of these retrogenes are actively translated and exhibit
p53 function, nor whether the expression of p53 is appropriately
activated and/or elevated in all elephant cells. Thus, the elephant’s
resistance to cancer may stem from other mechanisms and it
would be of interest to examine the expression of TP53
in elephant neurons and other cell types. Interestingly, the
cancer-resistant long-lived blind mole rat, Spalax, has evolved an
enhanced necrotic and reduced apoptotic defense (via a
dominant negative form of p53) against cancer, possibly to adapt
to an oxygen-poor underground environment, which would
normally result in extensive p53-mediated cell death.50,51 Whether
Spalax p53 contributes to the longevity of this cancer-resistant
rodent is not known, but is an exciting possibility under the
hypothesis that reduced p53 activity exerts beneficial effects on
cellular lifespan if tumor formation is avoided. Taken together, we
speculate that very low levels of endogenous p53 contribute to
the exceptional lifespan of cells and tissues with low turnover,
such as neuron, heart muscle and skeletal muscle, and perhaps
also organismal longevity.
It is now appreciated that expression of OXPHOS genes

decreases with age in diverse cells and tissues in species ranging
from nematode to human.39 However, the link between
mitochondrial homeostasis and lifespan is currently enigmatic.39

Interestingly, lifespans of different strains of the single-celled yeast
is associated with upregulation of OXPHOS genes.52 In our data
set of 21 human cells and tissues, expression of individual
OXPHOS genes, and more generally metabolic genes, did not
correlate with cell turnover. Thus, we propose that while cells
and tissues share a gene expression signature manifested as
reduced mitochondrial function with age, the overall integrity of
mitochondria in long-lived human cell types is achieved by
distinct gene expression strategies.
Our study has several limitations. Future studies should attempt

to more accurately determine the turnover of cells and
cell populations (tissues) in the body, and sequence the
transcriptomes of additional long-lived post-mitotic cells, such as
osteocytes.53 Single-cell RNA sequencing is rapidly evolving54 and
would greatly advance the study of cell turnover, especially as it
would avoid the analysis of organs that are composed of
heterogeneous cell types. Multiple cells and tissues from the
same individual are also becoming available.55 Finally, the
contribution of epigenetics56,57 and long-lived proteins58,59 to cell
and tissue turnover is largely unknown but likely important.
Owing to a lack of a matching set of samples and limited number
of biological replicates, we did not interrogate other species, such
as the mouse, for turnover-associated genes. It is currently
unknown whether individual genes identified through our
procedure would overlap among species,60 but is an important
question for future studies. Although some common features may
be observed, human cell types may also harbor signatures quite
distinct from other animals, including other primates, since
humans are one of the most exceptionally long-lived species.61

Overall, our analysis, employing cellular turnover, as a proxy of
lifespan, is a first step to a molecular understanding of cell
and tissue longevity. We reveal a gene signature of exceptionally
long-lived post-mitotic neurons, and genes and pathways that

correlate with turnover across 21 somatic cells and tissues.
The data suggest that human cell lineages utilize both common
and lineage-specific strategies to alter their lifespan. This new
perspective should provide further impetus to the study of the
lifespan trait (longevity) and the aging process.

MATERIALS AND METHODS
See Supplementary Information for detailed methods.

Biological samples
Our analysis was restricted to 21 adult somatic cells and tissues with more
than three biological replicates and bona fide lifespan estimates
(cell turnover in days) derived from a recent comprehensive review3 and
the additional data collected through primary literature searches
(see Supplementary Experimental Procedures).

Transcriptome data relationship inference
The relationship of publicly available transcriptomes (RNA-seq data) from
the 21 cells and tissues was investigated by principal component analysis
and a gene expression tree (see Supplementary Experimental Procedures).

Identification of genes differentially expressed between cell and
tissue groups
Differentially expressed genes in a particular group (e.g., heart and skeletal
muscle) were identified by ANOVA, taking into account the hierarchical
relationship between samples in our data set (tissue autocorrelation by
‘phylogenetic ANOVA’). See Supplementary Experimental Procedures for
further details.

Identification of genes correlating with cell and tissue turnover
To identify genes correlating with cell turnover (a bona fide lifespan
estimate) we employed generalized least squares regression
(Supplementary Experimental Procedures).
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