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1 	 | 	 INTRODUCTION

Colorectal	cancer	(CRC)	is	one	of	the	most	common	ma-
lignant	 tumors	of	 the	digestive	 tract,	and	morbidity	and	
mortality	rank	third	and	second	in	malignant	tumors.1–	3	
Currently,	 early	 screening	 for	 CRC	 can	 effectively	 im-
prove	the	survival	rate	of	patients	with	CRC,	but	approx-
imately	 25%	 of	 CRC	 patients	 develop	 metastatic	 disease	
from	 an	 early	 stage.4–	6	 Therefore,	 a	 promising	 field	 of	
antimetastatic	 therapy	 lies	 in	 the	 targeted	 inhibition	 of	

cancer	cells	with	high	metastatic	potential	 from	the	pri-
mary	 site.7,8	 Recently,	 there	 has	 been	 a	 qualitative	 leap	
in	 tumor	medical	 technology,	 such	as	 the	application	of	
laparoscopic	 surgery,	 nano-	assembly	 technology,	 PET/
CT	imaging	technology,	and	dynamic	network	biomarker	
(DNB),	 etc.9–	11	 However,	 the	 cure	 rate	 and	 survival	 rate	
of	CRC	are	still	very	low,	mainly	lacking	new	drug	treat-
ment	targets	and	biomarkers	for	the	treatment	of	CRC.12	
According	 to	 the	 research	 of	 circular	 RNAs	 in	 the	 CRC	
field,	circular	RNAs	are	expected	to	be	therapeutic	targets	
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Abstract
Background: Colorectal	cancer	(CRC)	is	one	of	the	most	common	malignant	tu-
mors	of	the	digestive	tract.	According	to	the	research	of	circular	RNAs	in	the	CRC	
field,	compared	with	linear	RNAs,	circular	RNAs	are	a	special	type	of	noncoding	
RNA	that	are	covalently	closed	circular	structures,	which	have	no	5'	cap	structure	
and	3'	polyA	tail	and	are	not	affected	by	RNA	exonuclease	and	actinomycin	D.
Biological functions: Notably,	circular	RNAs	have	a	high	degree	of	stability	and	
potential	effect	on	gene	regulation.	Meanwhile,	circular	RNAs	are	involved	in	the	
sponge	action	of	microRNAs	and	mediate	protein	translation	and	direct	binding,	
alternative	splicing,	and	histone	modification.
Relationships with CRC: Studies	have	shown	that	circular	RNAs	are	related	
to	the	proliferation,	invasion,	recurrence,	metastasis,	ferroptosis,	apoptosis,	and	
chemotherapy	resistance	of	CRC.
Conclusions: This	article	provides	a	brief	review	based	on	the	source,	structural	
characteristics,	mechanisms,	biological	functions	of	circular	RNAs,	and	the	rela-
tionships	between	CRC.
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and	biomarkers	for	CRC	and	promote	great	progress	in	the	
medical	field	of	CRC	treatment.13–	16

Circular	RNAs	(circRNAs)	are	a	class	of	 special	non-
coding	RNA	molecules	formed	from	the	3’	to	5’	end	rings	
of	RNA	that	are	highly	expressed	in	the	eukaryotic	tran-
scriptome.17,18	 Compared	 with	 linear	 RNAs,	 circRNAs	
have	covalently	closed	circular	 structures	without	5'	 cap	
structure	and	a	3'	polyA	tail	and	are	much	more	stable	than	
linear	RNAs	(with	a	half-	life	beyond	48 h),13,17,19,20	which	
have	a	high	degree	of	stability	and	potential	effect	on	gene	
regulation.21–	23	In	short,	there	is	an	urgent	need	to	explore	
the	 source,	 classification,	 structural	 characteristics,	 and	
biological	functions	of	circRNAs	and	a	comprehensive	un-
derstanding	of	the	occurrence	and	development	of	CRC,	
chemotherapy	resistance,	recurrence	and	metastasis,	and	
drug	treatment	targets	and	biomarkers.

2 	 | 	 THE ORIGIN, 
CLASSIFICATION, AND 
STRUCTURAL CHARACTERISTICS 
OF circRNAs

CircRNAs	were	 first	discovered	 in	1976;	 they	were	pro-
duced	 from	 an	 irregular	 reverse	 splicing	 sequence	 in	
pre-	mRNA	 with	 potential	 for	 gene	 regulation,	 and	 the	
upstream	and	downstream	specific	splicing	sites	are	cova-
lently	linked	and	have	tissue	specificity.15,24–	26	Viroid	was	
the	first	circRNA	to	be	discovered,	and	in	the	following	
years,	circRNAs	in	the	nuclei	of	eukaryotes	were	found	

by	 electron	 microscopy.19,27	 With	 the	 continuous	 appli-
cation	of	high-	throughput	RNA	sequencing	 technology,	
new	circRNAs	will	continue	to	be	discovered.	Depending	
on	 the	 sequence	 of	 the	 genome,	 circRNAs	 are	 divided	
into	 three	 types:	 exonic	 circRNAs	 (EcircRNAs),	 exon–	
intron	 circRNAs	 (EIciRNAs),	 and	 intronic	 circRNAs	
(CiRNAs)28	(Figure 1).	The	circular	structure	and	stabil-
ity	of	circRNAs	can	be	determined	by	RNA	exonuclease	
(RNase),	 actinomycin	D,	and	oligo	 (dT)	primer.	Among	
them,	the	oligo	(dT)	primer	is	a	nucleotide	chain	consist-
ing	of	thymine	that	binds	to	the	polyA	tail	on	the	mRNA,	
notably,	the	binding	amount	of	circRNAs	and	oligo	(dT)	
primer	is	significantly	less	than	linear	RNAs.	In	addition,	
compared	with	linear	RNAs	with	or	without	polyA	tail,	
circRNAs	 can	 be	 resistant	 to	 RNase	 R	 and	 inhibit	 the	
transcription	 of	 actinomycin	 D.	 These	 results	 indicate	
that	circRNAs	have	no	5'	cap	structure	and	3'	polyA	tail,	
which	are	not	easily	degraded	by	RNase	R,	and	under	the	
activity	of	actinomycin	D	expression	is	very	stable.7,21,23,29	
Recently,	noncoding	RNAs	have	played	an	important	reg-
ulatory	role	in	the	field	of	cancer,	among	which	circRNAs	
and	 microRNAs	 have	 a	 greater	 impact.12,30	 Compared	
with	 classic	 tumor	 markers	 such	 as	 CEA,	 CA-	125,	 and	
CA-	199,	circRNAs	and	miRNAs	have	greater	advantages	
in	 the	 diagnostic	 sensitivity	 and	 specificity	 of	 CRC.31,32	
Importantly,	 circRNAs	 are	 stably	 expressed	 in	 vivo	 and	
can	serve	as	diagnostic	markers	for	cancer,	as	well	as	vari-
ous	immune	diseases.33–	35	Meanwhile,	circRNAs	partici-
pate	in	acting	as	miRNA	sponges,	histone	modification,	
protein	 translation	 and	 direct	 combination,	 alternative	

F I G U R E  1  The	biogenesis	
of	circRNAs.	(A)	Intron	pairing-	
driven	circularization.	The	reverse	
complementary	sequences	on	both	sides	
of	the	paired	introns	mediate	reverse	
splicing	to	generate	circRNAs.	(B)	RBPs	
bind	to	the	flanks	of	introns	to	bring	the	
donor	site	closer	to	the	acceptor	site,	
thereby	assisting	circulation.	(C)	The	
biogenesis	of	CiRNAs	require	a	consensus	
motif.	(D)	Alternative	back-	splicing

a. Intron pairing-driven circularization. The reverse complementary sequences on both sides of 
the paired introns mediate reverse splicing to generate circRNAs. 

b. RBPs bind to the flanks of introns to bring the donor site closer to the acceptor site, thereby 
assisting circulation. 

c. The biogenesis of CiRNAs require a consensus motif. 
d. Alternative back-splicing. 
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splicing,	 ferroptosis,	 and	 apoptosis.	 This	 indicates	 that	
they	are	suitable	to	be	used	as	potential	drug	therapeutic	
targets	and	new	clinical	biomarkers	 in	 the	treatment	of	
CRC.23,36,37

3 	 | 	 MECHANISMS AND 
BIOLOGICAL FUNCTIONS OF 
circRNAs

3.1	 |	 CircRNAs act as miRNAs sponges in 
CRC

In	terms	of	 function,	recent	studies	have	confirmed	that	
circRNAs	contain	many	miRNA-	binding	sites	and	act	as	
miRNA	sponges	in	CRC	cells	as	competitive	endogenous	
RNAs	(ceRNAs)	by	binding	to	miRNAs	and	specific	antag-
onism.	 This	 “sponging”	 is	 competitive	 inhibition.17,38–	41	
CircRNAs	 indirectly	 increase	 the	 expression	 levels	 of	
downstream	target	gene	mRNAs	and	proteins	by	adsorb-
ing	miRNAs	and	participate	in	the	occurrence	and	devel-
opment	of	tumors.42–	46	Xu	et	al.	found	that	hsa-	circ-	000984	
was	mainly	concentrated	in	the	cytoplasm	and	identified	
the	downstream	target	as	miR-	106b,	indicating	that	hsa-	
circ-	000984	can	act	as	a	ceRNA	by	competitively	binding	
miR-	106b,	increasing	the	expression	of	cyclin-	dependent	
kinase	 6	 (CDK6)	 and	 participating	 in	 the	 proliferation	
and	 metastasis	 of	 CRC.	 It	 is	 worth	 noting	 that	 the	 high	
expression	 of	 hsa-	circ-	000984	 is	 significantly	 related	 to	
TNM	 staging	 and	 the	 cell	 cycle.	 In	 addition,	 miR-	106b	
and	 the	 3'UTR	 of	 CDK6	 have	 complementary	 binding	
sites.	 Meanwhile,	 the	 abnormal	 expression	 of	 CDK4/6	
may	be	an	important	sign	in	the	field	of	CRC	and	bladder	
cancer,	 indicating	 that	 hsa-	circ-	000984	 may	 have	 broad	
application	prospects	 in	 the	emerging	 field	of	molecular	
markers,	which	may	be	a	breakthrough	in	targeted	diag-
nosis	of	CRC.38,47	At	the	same	time,	Shang	et	al.	confirmed	
that	 circPACRGL	 and	 miR-	142-	3p/miR-	506-	3p	 have	 a	
specific	 spongy	effect,	 thereby	promoting	 the	expression	
of	 transforming	 growth	 factor-	β1	 (TGF-	β1).	 The	 TGF-	β	
family	 regulates	 CRC	 cell	 proliferation,	 differentiation,	
tumor	angiogenesis,	tumor	immunity,	and	inflammatory	
response.48–	52	This	indicates	that	circPACRGL	and	TGF-	
β1	 have	 a	 coordinated	 effect	 and	 promote	 the	 differen-
tiation	of	neutrophils	from	N1	to	N2,	which	may	lead	to	
the	occurrence	of	tumors.	However,	 it	 is	worth	thinking	
about	how	circPACRGL	in	tumor-	derived	exosomes	regu-
lates	 miRNAs	 and	 TGF-	β1	 to	 affect	 CRC.	 Therefore,	 we	
conclude	 that	 the	circPACRGL-	miR-	142-	3p/miR-	506-	3p-	
TGF-	β1	axis	is	a	breakthrough	discovery	in	the	treatment	
of	 CRC.53	 As	 one	 of	 the	 most	 extensive	 circRNAs,	 circ-	
CDR1as	is	formed	by	reverse	transcription	of	the	cerebel-
lar	denature-	associated	antigen	1	(CDR1)	gene,	indicating	

that	the	pre-	linear	RNA	of	CDR1as	transcribed	from	the	
antisense	 strand	of	CDR1	will	undergo	5'	 and	3'	 reverse	
splicing	at	the	same	time	to	form	a	circRNA,	which	is	ap-
proximately	1485 bp	in	length	and	contains	more	than	70	
miR-	7-	binding	 sites.	 Notably,	 miR-	7	 can	 act	 as	 a	 tumor	
suppressor	 to	 induce	 growth	 factor	 signal	 transduction;	
therefore,	we	conclude	that	circ-	CDR1as	may	regulate	the	
stability	of	the	target	gene	miR-	7	through	the	sponge	ac-
tion	of	miRNAs,	regulating	insulin	secretion	and	tumori-
genesis.39,54,55	These	results	suggest	that	circRNAs	can	act	
as	sponges	for	miRNAs	and	participate	in	the	tumorigen-
esis	of	CRC,	which	is	expected	to	be	a	breakthrough	in	the	
diagnosis	and	treatment	of	CRC.

3.2	 |	 CircRNAs are involved in protein 
translation

CircRNAs	can	be	involved	in	protein	translation,	in	which	
translation	 initiation	 elements	 and	 open	 reading	 frames	
play	crucial	roles.28	As	an	oncogene,	hsa-	circ-	002144	can	
bind	to	miR-	615-	5p	and	colocalize	with	the	cytoplasm	of	
cancer	cells.	In	addition,	the	target	proteins	of	miR-	615-	5p,	
LARP1,	and	mTOR	may	serve	as	translation	regulators,	in-
dicating	that	overexpression	of	them	can	rescue	the	effect	
of	 hsa-	circ-	002144	 knockdown	 on	 tumors.	 Meanwhile,	
inhibition	 of	 miR-	615-	5p	 can	 restore	 the	 inhibitory	 ef-
fect	 of	 hsa-	circ-	002144	 on	 LARP1	 and	 mTOR	 proteins.	
It	 is	worth	noting	 that	miR-	615-	5p	has	been	reported	 to	
be	 involved	 in	 tumor	 angiogenesis,	 and	 the	 mTOR	 pro-
tein	 regulated	 by	 the	 phosphatidylinositol	 3-	kinase/Akt	
pathway	 is	 also	 involved	 in	 the	 proliferation	 and	 angio-
genesis	of	CRC,	which	indirectly	indicates	that	its	mecha-
nism	 may	 be	 related	 to	 tumor	 angiogenesis	 and	 protein	
translation.	Therefore,	we	conclude	that	hsa-	circ-	002144,	
LARP1,	and	mTOR	proteins	may	have	synergistic	stimu-
latory	effects	on	protein	translation,	providing	an	effective	
target	 for	 future	 clinical	 treatment	 of	 CRC.	 However,	 it	
is	 worth	 thinking	 about	 whether	 the	 phosphatidylinosi-
tol	 3-	kinase/Akt	 pathway	 regulates	 hsa-	circ-	002144	 for	
tumor	 intervention;	 furthermore,	 how	 hsa-	circ-	002144	
regulates	E-	cadherin	and	N-	cadherin	and	participates	 in	
the	epithelial–	mesenchymal	transition	of	CRC	needs	to	be	
verified.25	Hsa-	circ-	0001492	circulates	in	exons	2–	4	of	the	
ERBIN	gene,	called	circ-	ERBIN,	and	is	mainly	located	in	
the	cytoplasm.	Meanwhile,	circ-	ERBIN	can	also	activate	
hypoxia-	inducible	 factor-	1α	 (HIF-	1α)	 to	 improve	 tumor	
angiogenesis,	 indicating	that	circ-	ERBIN	coregulates	the	
translation	of	4E	binding	protein	1	 (4EBP-	1)	 to	 increase	
the	 protein	 level	 of	 HIF-	1α	 and	 promote	 the	 phospho-
rylation	 state	 through	 mTOR	 signaling	 at	 the	 non-	cap-	
dependent	 protein	 level.	 It	 is	 noteworthy	 that	 ERBIN	 is	
involved	in	a	variety	of	malignant	tumors,	including	CRC,	
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but	 linear	ERBIN	 is	easily	degraded	under	 the	action	of	
actinomycin	D.	Among	them,	ERBIN	maintains	cell	po-
larity,	indicating	that	circ-	ERBIN	and	ERBIN	have	a	com-
mon	trend	in	CRC	tumorigenesis	and	protein	translation;	
however,	 the	 regulatory	 mechanism	 of	 circ-	ERBIN	 and	
linear	ERBIN	is	not	yet	clear.	Therefore,	we	conclude	that	
circ-	ERBIN	may	maintain	the	activity	of	4EBP-	1,	suggest-
ing	 that	 circ-	ERBIN	may	be	a	promising	 target	 for	CRC	
treatment.56	Hsa-	circ-	02276,	its	peptide,	can	bind	to	Lgr4,	
called	circLgr4,	which	is	highly	expressed	in	CRC	and	is	
mainly	concentrated	in	the	nucleus.	Notably,	circLgr4	has	
peptide	coding	ability	and	participates	 in	protein	coding	
and	 regulation	 in	 a	 peptide-	dependent	 manner,	 indicat-
ing	that	the	peptide	encoded	by	circLgr4	can	be	combined	
with	Lgr4	 to	mediate	 the	proliferation	and	metastasis	of	
CRC.57	These	results	 indicate	 that	circRNAs	can	partici-
pate	 in	 protein	 translation	 and	 maintain	 the	 growth	 of	
intestinal	 cancer	 cells,	 providing	 a	 promising	 target	 for	
future	clinical	treatment	of	CRC.

3.3	 |	 CircRNAs interact with 
RNA- binding proteins (RBPs)

CircRNAs	 interact	 with	 RNA-	binding	 proteins	 by	 ad-
sorbing	 proteins.	 RNA-	binding	 proteins	 have	 complete	
RNA-	binding	 domains	 that	 bind	 double-	stranded	 or	
single-	stranded	 RNA	 and	 are	 involved	 in	 the	 biological	
processes	of	RNA,	such	as	RNA	transcription,	RNA	modi-
fication,	 pre-	mRNA	 splicing,	 and	 RNA	 localization.	 In	
addition,	 some	RBPs	are	also	 involved	 in	 the	biogenesis	
of	circRNAs.58,59	Hsa-	circ-	0008558	is	composed	of	LONP2	
exons	8–	11,	called	circLONP2,	and	 is	mainly	distributed	
in	 the	 nucleus.	 It	 is	 worth	 noting	 that	 circLONP2	 coop-
erates	 with	 FUS	 and	 DDX1	 to	 form	 a	 complex,	 which	
may	promote	the	maturation	of	miR-	17-	5p	by	recruiting	
DGCR8/Drosha	protein,	thereby	playing	the	role	of	a	key	
metastasis-	initiating	 molecule	 in	 CRC.	 Among	 them,	
FUS	is	an	RNA-	binding	protein	that	regulates	circRNAs	
in	 mouse	 embryonic	 stem	 cells	 and	 regulates	 mouse	
motor	neurons,	which	also	activates	 the	 transcription	of	
X-	linked	apoptosis	inhibitor	protein	(XIAP)	and	mediates	
tumorigenesis	 as	 a	 key	 regulatory	 factor.60,61	 However,	
it	 is	 worth	 thinking	 about	 the	 mechanism	 of	 how	 miR-	
17-	5p	 is	 assembled	 into	 exosomes	 and	 how	 circLONP2	
participates	 in	 regulation.	 Therefore,	 we	 conclude	 that	
circLONP2	 can	 be	 used	 as	 an	 effective	 antimetastatic	
therapeutic	 target,	 which	 may	 be	 a	 breakthrough	 in	
CRC	 antimetastatic	 treatment.7	 CircZNF609	 partici-
pates	 in	protein	coding;	 furthermore,	FUS	can	also	bind	
to	 the	pre-	mRNA	of	ZNF609	to	 increase	circZNF609	ex-
pression.	 However,	 more	 evidence	 is	 needed	 to	 confirm	
that	FUS	can	promote	 the	circulation	of	circRNAs.	This	

suggests	that	under	the	combination	of	G	protein	subunit	
β2	(GNB2)	and	FUS,	circZNF609	may	be	a	breakthrough	
in	the	detection	and	treatment	of	liver	cancer	research.62	
Hsa-	circ-	0008367	is	derived	from	the	13th	and	14th	exons	
of	the	IARS	gene	and	is	called	circ-	IARS.	It	is	worth	noting	
that	m6A	methylation	is	the	most	abundant	posttranscrip-
tional	mRNA	methylation	in	eukaryotes	and	is	one	of	the	
most	common	RNA	modifications,	including	the	process-
ing	of	primary	miRNAs,	the	maturation	of	miRNAs,	and	
the	 interaction	 of	 RNA-	binding	 proteins.	 Among	 them,	
ALKBH5	 was	 reported	 to	 be	 an	 N6-	methyladenosine	
(m6A)	eraser.	However,	ALKBH5	also	acts	as	an	RBP	and	
cooperates	with	circ-	IARS	to	regulate	ferritin	autophagy,	
indicating	 that	 circ-	IARS	 is	 dependent	 on	 the	 negative	
regulation	of	the	autophagy	inhibitor	ALKBH5	to	partici-
pate	 in	 autophagy.	 Finally,	 we	 conclude	 that	 circ-	IARS	
can	significantly	inhibit	autophagy	and	ferric	phagocyto-
sis	of	ALKBH5	by	interacting	with	the	m6A	demethylase	
ALKBH5.27,63–	66	These	results	indicate	that	circRNAs	may	
interact	with	RNA-	binding	proteins	by	adsorbing	proteins	
to	participate	in	the	progression	of	CRC.

3.4	 |	 circRNAs and alternative splicing

Alternative	splicing	(AS)	of	RNA	refers	to	the	splicing	of	
pre-	mRNA	 at	 different	 splicing	 sites,	 selectively	 remov-
ing	introns	and	retaining	exons,	thereby	generating	two	or	
more	 mRNA	 transcripts	 to	 increase	 protein	 diversity.	 AS	
mainly	 relies	on	 splice	bodies,	 splice	 sites,	 cis-	acting	ele-
ments,	and	trans-	acting	factors	to	participate	in	the	prolif-
eration,	invasion,	chemotherapy	resistance,	and	apoptosis	
of	 various	 cancers.67	 A	 variety	 of	 circRNAs	 containing	
exons	or	introns	can	be	generated	by	a	single	gene	through	
alternative	splicing.	A	large	number	of	studies	have	found	
that	 circRNAs	 are	 covalently	 linked	 to	 upstream	 and	
downstream-	specific	 splicing	 sites	 generated	 from	 stand-
ardized	 sequences	 in	 pre-	mRNA	 or	 nonstandardized	
reverse	 splicing	 sequences	 that	 have	 potential	 for	 gene	
regulation.24–	26	Most	circRNAs	are	exon	circRNAs,	which	
are	produced	by	reverse	splicing	of	exon	regions	of	known	
protein-	coding	genes.68–	70	Hsa-	circ-	000984	is	located	at	7q	
of	the	chromosome	region,	which	contains	an	exon	formed	
by	head-	to-	tail	 splicing.38	Circ-	ERBIN	circulates	 in	exons	
2–	4	 of	 the	 ERBIN	 gene,	 indicating	 that	 circ-	ERBIN	 is	
highly	conserved	and	regulates	the	translation	of	4E	bind-
ing	protein	1	(4EBP-	1)	in	the	transcriptome,	increasing	the	
protein	level	of	HIF-	1α.56	Hsa-	circ-	0008558	is	composed	of	
LONP2	exon	8–	11,	originating	in	a	specific	reverse	splicing	
sequence	and	a	specific	back-	junction	site	of	circLONP2.	It	
is	worth	noting	that	circLONP2	can	coordinate	with	DDR1	
(Discoidin	domain	receptor	1)	to	regulate	the	maturation	of	
pri-	miR-	17,	indicating	that	it	may	drive	mature	miR-	17-	5p	
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to	promote	the	tumorigenesis	of	CRC.7,71	CircRNAs	com-
pete	with	each	other	for	circularization	and	splicing,	indi-
cating	that	EcircRNAs	may	play	an	important	role	in	AS.	
Reverse	 splicing	 usually	 creates	 a	 specific	 dorsal	 splicing	
site	to	splice	internal	exons	to	form	AS.	At	the	same	time,	
EcircRNAs	can	also	block	the	translation	initiation	site	and	
generate	a	 large	number	of	noncoding	 linear	 transcripts,	
thereby	 reducing	 the	 protein	 level	 of	 mRNA.	 It	 is	 worth	
noting	that	EIciRNA	may	also	be	separated	during	this	pro-
cess,	and	the	truncated	linear	mRNA	cannot	participate	in	
protein	translation.72–	75	Therefore,	we	conclude	that	simi-
lar	to	linear	RNAs,	circRNAs	produced	by	reverse	splicing	
of	exons	may	play	significant	regulatory	roles	in	the	tran-
scriptome	 through	 alternative	 splicing	 and	 participate	 in	
the	occurrence	and	development	of	tumors.76,77

3.5	 |	 CircRNAs participate in histone 
modification

Histone	 modifications	 include	 methylation,	 acetylation,	
glycosylation,	 phosphorylation,	 and	 ubiquitination.78	 In	
many	 eukaryotes,	 methylation	 of	 the	 5'	 end	 of	 mRNA	
plays	a	significant	biological	role	in	mRNA	splicing,	deg-
radation,	and	stability.	Methylation	of	the	3'	terminal	con-
tributes	to	the	transport	of	the	mRNA	and	maintains	the	
stability	 of	 the	 mRNA	 together	 with	 the	 polyA-	binding	
protein.63,79	 Hsa-	circ-	0000384	 is	 derived	 from	 exons	 2,	 3,	
4,	and	5	of	 the	MRPS35	gene,	called	circMRPS35,	and	is	
mainly	concentrated	in	the	nucleus.	As	a	tumor	suppressor	
gene,	circMRPS35	has	a	negative	correlation	with	lymph	
node	metastasis	and	TNM	staging.	Notably,	lysine	acetyl-
transferase	7	(KAT7)	is	more	prone	to	lysine	5,	lysine	12,	
and	acetylated	H4.	Moreover,	as	the	coordination	partner	
of	KAT7,	circMRPS35	may	significantly	increase	the	H4K5	
acetylation	level	of	the	target	genes	FOXO1	and	FOXO3a.	

Therefore,	we	conclude	that	circMRPS35	combined	with	
KAT7	acetylation	may	mediate	FOXO1	and	FOXO3a	to	in-
terfere	with	tumor	metastasis,	laying	a	solid	foundation	for	
tumor	intervention,	which	may	be	a	major	breakthrough	
in	regulating	tumors	at	the	level	of	histone	acetylation.23	
Chen	et	al.	screened	CRC	transfer-	related	circ-	NSD2	from	
NSD2	exons	1–	2	as	a	histone	methyltransferase	in	a	CLM	
mouse	model	and	confirmed	 that	circ-	NSD2	was	mainly	
concentrated	in	the	cytoplasm	and	partially	concentrated	
in	the	nucleus.	It	is	worth	noting	that	circ-	NSD2	can	acti-
vate	DDR1	and	JAG1	(Jagged1)	genes.	Among	them,	DDR1	
and	JAG1,	either	alone	or	in	combination,	may	participate	
in	CRC	migration	and	proliferation,	indicating	that	over-
expression	of	DDR1	and	JAG1	can	effectively	reverse	the	
effect	of	circ-	NSD2	knockdown	on	CRC,	providing	a	diag-
nostic	 target	 for	 the	 treatment	of	CRC	liver	metastasis.18	
CircEgg	adsorbs	miR-	3391-	5p	through	acting	as	a	sponge,	
inhibits	 histone	 H3	 lysine	 9	 methylation	 (H3K9me3),	
promotes	 histone	 H3	 lysine	 9	 acetylation	 (H3K9ac),	 and	
positively	 regulates	 histone	 deacetylase	 (HDAC)	 Rpd3	
gene	 expression.	 It	 is	 worth	 noting	 that	 circEgg	 can	 en-
code	 the	circEgg-	P122	protein	 to	 inhibit	 the	methylation	
of	 H3K9me3.	These	 results	 suggest	 that	 circEgg	 may	 in-
teract	with	miR-	3391-	5p	and	the	circEgg-	P122	protein	en-
coded	 by	 miR-	3391-	5p	 to	 regulate	 histone	 modification,	
among	 them,	 methylation	 is	 transcriptional	 inhibition,	
and	acetylation	is	transcriptional	activation,	which	are	the	
main	epigenetic	histone	modification,	thereby	regulating	
the	genome-	wide	expression	of	genes.	In	addition,	this	is	
the	first	time	that	the	histone	modification	of	circRNA	has	
played	 an	 important	 role	 in	 epigenetics,	 indicating	 that	
in	 the	 diagnosis	 of	 CRC	 and	 other	 cancers,	 epigenetics	
combined	 with	 histone	 modification	 may	 make	 a	 major	
breakthrough.	However,	it	is	worth	considering	how	m6A	
methylation	 participates	 in	 this	 regulatory	 mechanism,	
which	still	needs	to	be	explored80	(Figure 2).

F I G U R E  2  Mechanisms	and	
biological	functions	of	circRNAs.	(A)	
CircRNAs	can	be	a	sponge	for	miRNAs.	
(B)	CircRNAs	mediate	protein	translation.	
(C)	CircRNAs	interact	with	RBPs.	
(D)	CircRNAs	are	involved	in	histone	
modification

a. CircRNAs can be a sponge for miRNAs.  
b. CircRNAs mediate protein translation. 
c. CircRNAs interact with RBPs.  
d. CircRNAs are involved in histone modification. 
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4 	 | 	 CircRNAs AND CRC

4.1	 |	 CircRNAs mediate the occurrence 
and development of CRC

CircRNAs	 can	 regulate	 the	 maturation	 of	 miRNAs,	 and	
miRNAs	 can	 regulate	 the	 mRNA	 levels	 of	 target	 genes.	
That	is,	through	the	interaction	of	circRNAs–	miRNAs	and	
miRNAs–	mRNAs,	 a	 circRNAs–	miRNAs–	mRNAs	 regula-
tory	 network	 is	 formed	 to	 participate	 in	 the	 occurrence	
and	development	of	CRC.81–	84	Hsa-	circ-	0000284	is	derived	
from	exon	2	of	 linear	HIPK3,	called	circHIPK3,	which	is	
highly	expressed	in	CRC	and	mainly	expressed	in	the	cy-
toplasm.	Therefore,	we	conclude	that	circHIPK3	may	play	
a	positive	regulatory	role	in	the	tumorigenesis	of	CRC	by	
sponging	miR-	1207-	5p,	which	directly	targets	FMNL2.	It	is	
worth	noting	that	overexpression	of	FMNL2	significantly	
increased	the	levels	of	p-	IKKα/β,	p-	IκBα,	and	p65,	thus	ac-
tivating	the	NF-	κB	signaling	pathway.	On	the	other	hand,	
the	Rho	GTPase	pathway,	Wnt	pathway,	G-	protein	pathway,	
and	P53	pathway	were	affected	following	FMNL2	knock-
down,	 indicating	 that	 circHIPK3/miR-	1207-	5p/FMNL2	
orchestrating	multiple	pathways	may	mediate	the	tumori-
genesis	of	CRC.85–	87	JIN	et	al.	confirmed	that	the	protein	
kinase	catalytic	subunit	(PRKDC)	hsa-	circ-	0136666,	called	
circ-	PRKDC,	 is	highly	expressed	 in	CRC.88	On	this	basis,	
circ-	PRKDC	 can	 target	 miR-	198	 through	 the	 sponge	 ac-
tion	of	miR-	198	and	promote	the	expression	of	DDR1	and	
FOXM1 mRNA	and	protein,	 indicating	that	 inhibition	of	
miR-	375	 or	 overexpression	 of	 FOXM1	 can	 effectively	 in-
crease	the	reduction	in	β-	catenin	and	c-	Myc	protein	levels	

in	 the	 Wnt/β-	catenin	 pathway	 caused	 by	 knockdown	 of	
circ-	PRKDC.	Therefore,	we	conclude	that	circ-	PRKDC	and	
FOXM1	 may	 have	 a	 synergistic	 effect	 on	 tumor	 growth,	
thereby	participating	in	the	tumorigenesis	of	CRC	by	regu-
lating	the	miR-	198/DDR1	axis	or	in	combination	with	miR-	
375/FOXM1	and	the	Wnt/β-	catenin	pathway.89,90	Notably,	
ferroptosis	 is	 an	 iron-	dependent	 regulatory	 cell	 death	
mode	discovered	in	recent	years	that	is	mainly	manifested	
by	disorder	of	cellular	 iron	metabolism	and	 induction	of	
mitochondrial	 lipid	peroxides.	However,	 the	 involvement	
of	 circRNAs	 in	 ferroptosis	 can	 also	 effectively	 affect	 the	
occurrence	and	development	of	CRC.91,92	XIAN	et	al.	con-
firmed	 that	 circABCB10	 mainly	 interacts	 with	 miR-	326	
and	C-	C	motif	chemokine	ligand	5	(CCL5),	suggesting	that	
knockdown	 of	 miR-	326	 can	 target	 CCL5	 to	 alleviate	 fer-
roptosis	and	apoptosis	of	CRC	cells	caused	by	circABCB10	
knockdown.	Therefore,	we	conclude	that	circABCB10	may	
participate	in	the	sponge	regulation	of	miR-	326	to	regulate	
CCL5	and	ultimately	promote	the	ferroptosis	and	apopto-
sis	of	CRC	cells,	so	ferroptosis	regulated	by	circABCB10	is	
expected	to	be	a	major	breakthrough	in	the	occurrence	and	
development	of	CRC.93

4.2	 |	 circRNAs participate in clinical 
chemotherapy resistance of CRC

CircRNAs	are	involved	in	metastasis	and	invasion	of	CRC,	
epithelial–	mesenchymal	cell	transformation,	blood	vessel	
formation,	immune	response,	immune	escape,	and	tumor	
chemotherapy	 resistance.32,53,94	 Malignant	 tumors	 often	

F I G U R E  3  The	relationships	of	
circRNAs	and	CRC.	(A)	CircRNAs	
mediate	the	occurrence	and	development	
of	CRC.	(B)	CircRNAs	participate	in	
clinical	chemotherapy	resistance	of	
CRC.	(C)	CircRNAs	are	involved	in	CRC	
recurrence	and	metastasis.	(D)	CircRNAs	
can	be	potential	therapeutic	targets	
for	CRC.	(E)	CircRNAs	can	be	used	as	
biomarkers	for	CRC	treatment

A. CircRNAs mediate the occurrence and development of CRC. 
B. CircRNAs participate in clinical chemotherapy resistance of CRC.  
C. CircRNAs are involved in CRC recurrence and metastasis. 
D. CircRNAs can be potential therapeutic targets for CRC. 
E. CircRNAs can be used as biomarkers for CRC treatment.



   | 8731ZHANG et al.

produce	ATP	through	aerobic	oxidation	of	glycolysis,	thus	
guaranteeing	the	growth	of	CRC	and	resistance	to	chemo-
therapy.95	The	M2	subtype	of	pyruvate	kinase	(PKM2)	is	
the	main	type	of	cancer	cell	proliferation,	which	indicates	
that	 when	 PKM2	 is	 overexpressed,	 it	 may	 increase	 the	
rate	of	glycolysis	and	produce	a	large	amount	of	ATP,	thus	
promoting	tumor	growth	and	chemotherapy	resistance.96	
It	 is	worth	noting	 that	oxaliplatin	 is	 the	main	 treatment	
for	 CRC;	 however,	 oxaliplatin	 resistance	 has	 emerged	
during	the	treatment	of	CRC.	WANG	et	al.	demonstrated	
that	exosomes	 from	oxaliplatin-	resistant	CRC	cells	were	
delivered	to	monolayer-	sensitive	cells	via	the	transport	of	
hsa-	circ-	0005963,	which	interacted	with	miR-	122	through	
two	potential	binding	regions,	called	ciRS-	122.	Therefore,	
we	 conclude	 that	 ciRS-	122	 in	 serum	 exosomes	 of	 CRC	
patients	 may	 target	 the	 miR-	122	 sponge	 to	 upregulate	
PKM2	 and	 promote	 glycolysis	 and	 chemotherapy	 resist-
ance	 in	 tumors	 and	 increase	 ATP	 production,	 indirectly	
showing	 that	 they	 are	 important	 participants	 in	 the	 tu-
morigenesis	 of	 CRC.97	 XU	 et	 al.	 detected	 circ-	FBXW7	
(circRNA	 F-	box	 and	 containing	 a	 7	 WD	 repeat	 domain)	
in	exosomes,	which	is	mainly	expressed	in	the	cytoplasm.	
Notably,	 circ-	FBXW7  had	 low	 expression	 in	 cells	 or	 tis-
sues	of	oxaliplatin-	resistant	CRC	patients,	indicating	that	
circ-	FBXW7	 in	 exosomes	 can	 induce	 the	 sensitivity	 of	
CRC	 cells	 to	 oxaliplatin,	 induce	 apoptosis,	 and	 inhibit	
the	 transformation	 of	 epithelial–	mesenchymal	 cells.	
However,	 it	 is	 worth	 thinking	 that	 Wnts	 derived	 from	
exosomal	 carcinoma-	associated	 fibroblasts	 can	 inhibit	
CRC	 chemosensitivity,	 which	 requires	 further	 investi-
gation.	 Therefore,	 we	 conclude	 that	 the	 combination	 of	
circ-	FBXW7	delivered	by	exosomes	directly	with	its	target	
miR-	18b-	5p	 may	 improve	 the	 sensitivity	 of	 CRC	 cells	 to	
oxaliplatin	 and	 chemotherapeutic	 resistance,	 suggesting	
that	circ-	FBXW7	delivered	by	exosomes	has	made	a	major	
breakthrough	 in	 the	 field	 of	 oxaliplatin	 clinical	 tumor	
chemotherapy	resistance.98,99

4.3	 |	 CircRNAs are involved in CRC 
recurrence and metastasis

According	 to	 reports,	 the	 process	 of	 tumor	 metastasis	 is	
multi-	step,	including	invasion,	infiltration,	blood	circula-
tion,	extravasation,	and	colonization.7	A	serious	problem	
in	the	treatment	of	CRC	is	the	recurrence	and	metastasis	
of	cancer,	which	are	all	due	to	the	presence	of	cancer	stem	
cells	 (CSCs)	 in	 the	 tumor.	 For	 circRNAs	 in	 the	 spheri-
cal	cells	of	CRC	rich	in	CSCs,	circRNAs	can	be	involved	
in	 the	 recurrence	 and	 metastasis	 of	 CRC	 by	 mediating	
the	 regulatory	 network	 of	 circRNAs–	miRNAs–	mRNAs.	
Like	most	malignant	 tumors,	 the	metastasis	of	CRC	is	a	
complex	 biological	 process	 involving	 multiple	 signaling	

pathways	and	multiple	mechanisms.	For	example,	the	ex-
pression	 levels	of	hsa-	circ-	0066631	and	hsa-	circ-	0082096	
in	 CRC	 spherical	 cells	 were	 significantly	 upregulated,	
mainly	 concentrated	 in	 the	 nucleus.	 In	 addition,	 they	
can	 target	 the	 sponging	 effect	 of	 miRNAs	 to	 downregu-
late	 miR-	140-	3p,	 miR-	224,	 miR-	382,	 miR-	548c-	3p,	 and	
miR-	579.	 Not	 only	 that,	 mRNA	 encoding	 proteins	 such	
as	 ACVR1C/ALK7,	 FZD3,	 IL6ST/GP130,	 SKIL/	 SNON,	
SMAD2,	 and	 WNT5	 are	 further	 regulated.	 This	 result	
indicates	that	the	encoded	proteins	may	activate	TGF-	β/
SMAD,	 Wnt/β-	catenin,	 and	 other	 signaling	 pathways	 to	
participate	in	CRC	recurrence	and	metastasis.100	CircLgr4	
is	 highly	 expressed	 in	 CRC	 stem	 cells	 and	 may	 interact	
extensively	 with	 other	 molecules,	 including	 microRNA,	
chromatin	 remodeling	 complex,	 and	 RNA	 polymerase	
II.	 Finally,	 we	 conclude	 that	 circLgr4	 may	 mediate	 self-	
renewal	of	CSCs	in	CRC	for	recurrence	and	metastasis,	in-
dicating	that	circLgr4	may	have	a	positive	effect	on	tumor	
growth.57	Hsa-	circ-	0000598	is	composed	of	the	B2M	gene	
on	chromosome	15,	also	known	as	hsa-	circ-	001680,	which	
is	highly	expressed	 in	CRC	globular	cells.	Among	them,	
hsa-	circ-	001680	was	mainly	concentrated	in	the	cytoplasm	
and	enhanced	the	expression	of	downstream	target	gene	
BMI1	by	inhibiting	miR-	340	with	sponges.	Therefore,	we	
conclude	that	hsa-	circ-	001680	and	BMI1	may	play	a	coor-
dinated	role	in	the	recurrence	and	metastasis	of	tumors,	
indicating	 that	 knockdown	 of	 hsa-	circ-	001680	 could	 re-
verse	the	overexpression	of	BMI1	caused	by	knockdown	of	
miR-	340.101,102	It	is	worth	noting	that	hsa-	circ-	001680	can	
increase	the	proportion	of	CRC	stem	cells	and	increase	the	
expression	of	stem	cell	markers	such	as	SOX2,	CD44,	and	
CD133	 from	mRNA	and	protein	 levels,	 in	which	cancer	
cells	with	surface	markers	CD44+/CD133+	can	develop	
their	stem	cell	properties.	However,	CRC	stem	cells	also	
have	the	function	of	regulating	drug	resistance	to	chemo-
therapy,	indicating	that	hsa-	circ-	001680	may	induce	drug	
resistance	 of	 CRC	 to	 irinotecan	 and	 reduce	 apoptosis	 of	
CRC	 cells	 by	 upregulating	 the	 expression	 of	 stem	 cells.	
The	results	show	that	breakthroughs	have	been	made	in	
the	 development	 of	 new	 irinotecan-	resistant	 treatment	
strategies.	 Therefore,	 circRNA	 enriched	 in	 cancer	 stem	
cells	 will	 have	 a	 significant	 impact	 in	 the	 field	 of	 CRC	
recurrence,	 metastasis,	 and	 irinotecan	 chemotherapy	
resistance.101,103

4.4	 |	 CircRNAs can be 
potential therapeutic targets for CRC

As	an	important	tumor	regulator	in	CRC,	circRNAs	are	
expected	to	become	potential	drug	treatment	targets	for	
CRC.	 Circ-	0000392	 was	 originated	 from	 exons	 2–	4	 of	
the	YAF2	gene,	with	a	splicing	length	of	approximately	
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326 bp,	mainly	located	in	the	cytoplasm.	For	the	mech-
anism,	we	conclude	that	circ-	0000392	further	regulates	
the	 expression	 of	 PIK3R3	 through	 acting	 as	 a	 sponge	
of	miR-	193a-	5p	and	thereby	may	affect	the	AKT-	mTOR	
pathway	in	the	CRC	tumor	microenvironment.104	This	
result	 indicates	 that	 knocking	 down	 miR-	193a-	5p	 can	
alleviate	 the	 reduction	 of	 PIK3R3	 mRNA	 and	 protein	
levels	and	 the	 reduction	of	AKT	and	mTOR	phospho-
rylation	levels	caused	by	knocking	down	circ-	0000392.	
Among	 them,	 the	 mTOR	 protein	 can	 regulate	 the	
phosphatidylinositol	3-	kinase.	However,	abnormal	ac-
tivation	of	 the	AKT-	mTOR	siganling	pathway	may	in-
dicate	 the	malignant	occurrence	of	CRC.	Therefore,	 it	
can	be	seen	that	circ-	0000392	may	become	a	potential	
clinical	 treatment	 target	 for	 CRC.13	 CircRUNX1	 was	
derived	 from	 exons	 2	 and	 3	 of	 the	 RUNX1	 gene,	 with	
a	 base	 sequence	 length	 of	 approximately	 297  bp,	 and	
it	is	mainly	located	in	the	cytoplasm.	As	an	oncogene,	
circRUNX1	was	positively	correlated	with	tumor	stag-
ing,	 lymph	 node	 metastasis,	 and	 distant	 metastasis	 in	
CRC	 patients.	 It	 is	 worth	 noting	 that	 circRUNX1	 can	
competitively	 bind	 to	 miR-	145-	5p	 to	 upregulate	 IGF1.	
Among	them,	the	insulin-	like	growth	factor	(IGF)	plays	
an	 important	regulatory	role	 in	CRC	and	other	malig-
nant	tumors,	indicating	that	circRUNX1	can	be	used	as	
a	tumor	promoter	and	is	expected	to	become	a	potential	
drug	treatment	target	for	CRC.105–	109	In	CRC,	circPVT1	
is	 upregulated	 and	 participates	 in	 the	 proliferation	
and	metastasis	of	CRC.	However,	it	is	noteworthy	that	
overexpression	of	miR-	145	significantly	reverses	the	ef-
fect	of	upregulated	circPVT1	on	the	metastasis	of	CRC,	
suggesting	 that	 miR-	145	 is	 a	 key	 downstream	 effector	
of	 circPVT1-	mediated	 CRC	 metastasis.	 Therefore,	 we	
conclude	that	the	circPVT1/miR-	145	axis	may	become	
a	new	drug	therapy	target	 for	 the	treatment	of	CRC.37	
Hsa-	circ-	0006990	 (circVAPA)	 is	 highly	 expressed	 in	
CRC	 tissues,	 mainly	 in	 the	 cytoplasm.	 Not	 only	 that,	
circVAPA	 can	 also	 be	 detected	 in	 plasma	 and	 saliva,	
indicating	 that	 it	 may	 become	 a	 promising	 biomarker	
for	CRC.	In	addition,	the	upregulation	of	miR-	101	can	
significantly	 inhibit	 the	 effect	 of	 overexpression	 of	
circVAPA	on	CRC,	suggesting	that	circVAPA	engulfed	
miR-	101.	 However,	 it	 is	 worth	 noting	 that	 circVAPA	
may	also	mediate	CRC	by	regulating	the	expression	of	
VAPA,	among	them,	the	VAPA	can	act	as	a	ceRNA	to	
regulate	 phosphatase	 and	 tensin	 homolog	 (PTEN)	 to	
play	 a	 tumor	 suppressor	 effect.	 However,	 it	 is	 worth	
considering	 that	 the	 joint	 regulation	 mechanism	 of	
circVAPA	 and	 VAPA	 needs	 to	 be	 further	 explored.	
Therefore,	 we	 conclude	 that	 circVAPA	 may	 promote	
the	progress	of	CRC	and	is	expected	to	become	a	poten-
tial	drug	target.14

4.5	 |	 CircRNAs can be used as 
biomarkers for CRC treatment

At	present,	although	imaging	examination	and	endoscopy	
are	relatively	common	and	reliable	methods	for	the	detec-
tion	 of	 CRC,	 the	 accuracy	 of	 screening	 is	 often	 reduced	
due	to	poor	patient	compliance,	high	price,	and	intrusive	
characteristics,	so	it	is	not	suitable	for	the	examination	of	
critically	 ill	patients.	 In	addition,	compared	with	nonin-
vasive	biomarkers	for	CRC	screening,	including	CEA	and	
fecal	occlusive	blood	test	(FOBT),	circRNAs	have	higher	
accuracy,	sensitivity,	and	specificity,	indicating	that	they	
can	 often	 be	 used	 as	 biomarkers	 for	 the	 diagnosis	 and	
treatment	of	CRC.16,110–	113	ZHANG	et	al.	detected	the	ex-
pression	levels	of	circRNAs	in	the	serum	of	CRC	patients	
and	 healthy	 people.	 It	 is	 concluded	 that	 the	 expression	
levels	of	circ-	FMN2,	circ-	LMNB1,	and	circ-	ZNF609	were	
higher	than	those	of	the	healthy	control	group,	their	ex-
pression	was	positively	correlated	with	histological	grade,	
lymph	node	metastasis,	and	TNM	staging,	suggesting	that	
circ-	FMN2,	 circ-	LMNB1,	 and	 circ-	ZNF609	 are	 likely	 to	
be	 biomarkers	 for	 the	 diagnosis	 of	 CRC.16	 For	 the	 qual-
ity	control	of	circRNAs	and	miRNAs	in	serum	or	plasma	
samples,	it	is	worth	noting	here	that	the	hemolyzed	sam-
ple	has	little	effect	on	the	concentration	of	circRNAs	and	
miRNAs,	and	there	is	no	correlation.	In	addition,	plasma	
or	serum	samples	are	separated	from	peripheral	blood	and	
transferred	 to	a	1.5 ml	RNase-	free	 tube,	 stored	 in	 liquid	
nitrogen,	without	 repeated	 freezing	and	 thawing,	which	
truly	 reflect	 the	expression	of	circRNAs	and	miRNAs	 in	
vivo.16,114–	118	 LI	 et	 al.	 screened	 out	 specific	 circRNAs	 in	
plasma	of	CRC	patients,	evaluated	the	clinical	value	of	cir-
cRNAs	in	plasma,	finally	determined	that	the	expression	of	
hsa-	circ-	0001900,	hsa-	circ-	0001178,	and	hsa-	circ-	0005927	
in	 plasma	 of	 CRC	 patients	 was	 upregulated	 relative	 to	
that	 of	 healthy	 controls,	 indicating	 that	 these	 circRNAs	
are	expected	to	be	used	as	biomarkers	for	CRC.	It	is	worth	
noting	 that	 the	 combination	 of	 circRNAs	 and	 CEA	 has	
a	 higher	 diagnostic	 accuracy	 rate	 than	 CEA.	 Therefore,	
we	conclude	that	circRNAs	can	significantly	increase	the	
sensitivity	and	specificity	of	diagnosis	by	combining	clas-
sic	 biomarkers,	 indicating	 that	 co-	diagnosis	 is	 expected	
to	be	a	key	breakthrough	in	the	progression	of	CRC	and	
other	 tumors.110	 HAO	 et	 al.	 screened	 out	 a	 highly	 ex-
pressed	hsa-	circ-	0003315	in	CRC	from	Golgi	glycoprotein	
1	 mRNA,	 with	 a	 length	 of	 approximately	 477	 nucleo-
tides,	which	was	 formed	by	reverse	splicing	of	exon	5–	8	
of	GLG1	gene,	 called	circ-	GLG1.	 In	addition,	 circ-	GLG1	
can	absorb	miR-	622,	regulating	the	expression	of	KRAS	at	
the	mRNA	and	protein	levels.	However,	it	is	worth	noting	
that	by	inhibiting	miR-	622,	the	decrease	in	KRAS	mRNA	
and	 protein	 levels	 caused	 by	 knocking	 down	 circ-	GLG1	
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can	be	reversed.	Meanwhile,	the	suppression	of	CRC	pro-
liferation	and	invasion	can	also	be	alleviated.	This	result	
indicates	 that	 circ-	GLG1	 and	 KRAS	 may	 synergistically	
promote	the	invasion	and	metastasis	of	CRC	and	are	ex-
pected	 to	 become	 biomarkers	 involved	 in	 the	 diagnosis	
and	treatment	of	CRC119	(Figure 3;	Table 1).

5 	 | 	 CONCLUSION AND 
PERSPECTIVE

At	present,	although	the	clinical	 treatment	effect	of	CRC	
has	 improved,	 due	 to	 its	 poor	 prognosis	 and	 high	 recur-
rence	rate	and	metastasis	rate,	morbidity	and	mortality	are	
still	increasing	year	by	year.	In	2020,	approximately	1.9 mil-
lion	new	CRC	cases	and	935,000	CRC-	related	deaths	were	
reported	globally,	accounting	for	10%	of	the	global	cancer	
morbidity	rate	and	9%	of	the	mortality	rate.	According	to	
the	prediction	of	the	development	of	human	diseases,	the	
global	population	of	CRC	cases	will	reach	more	than	3 mil-
lion	 in	 the	 next	 20  years.120,121	 Therefore,	 the	 key	 to	 the	
treatment	of	CRC	 is	early	detection,	early	diagnosis,	and	
early	treatment.	As	special	noncoding	RNA	molecules	 in	
eukaryotes,	circRNAs	are	formed	by	irregular	reverse	splic-
ing	 sequences	 in	 pre-	mRNA	 through	 specific	 upstream	
and	 downstream	 splicing	 sites.	 Compared	 with	 linear	
RNAs,	circRNAs	have	no	5'	cap	structure	and	3'	polyA	tail	
and	 are	 not	 affected	 by	 RNA	 exonuclease	 and	 actinomy-
cin	 D,	 which	 are	 highly	 conserved,	 widely	 distributed	 in	
human	cells	and	have	gene	regulation	potential.	To	a	large	
extent,	 circRNAs	 are	 better	 than	 linear	 RNAs,	 indicating	
that	circRNAs	may	play	important	roles	in	tumorigenesis,	
invasion,	metastasis,	and	other	processes	and	can	become	
drug	targets	and	clinical	biomarkers	for	cancer	treatment.	
However,	due	to	their	low	abundance,	circRNAs	have	not	
attracted	wide	attention.	Currently,	with	the	introduction	
and	improvement	of	high-	throughput	sequencing	technol-
ogy,	new	circRNAs	will	continue	to	be	discovered	and	have	
a	significant	impact	in	many	areas.	The	specific	details	are	
as	 follows:	 hsa-	circ-	000984	 and	 circLONP2	 have	 broad	
application	 prospects	 in	 the	 emerging	 field	 of	 molecular	
markers	in	the	antimetastasis	therapy	of	CRC.	Meanwhile,	
circMRPS35	lays	a	solid	foundation	for	tumor	intervention,	
which	may	be	a	major	breakthrough	in	regulating	tumors	
at	 the	 level	of	histone	acetylation.	 In	addition,	circEgg	 is	
the	 first	 time	 that	 the	 histone	 modification	 of	 circRNA	
has	 played	 an	 important	 role	 in	 epigenetics,	 indicating	
that	in	the	diagnosis	of	CRC	and	other	cancers,	epigenet-
ics	combined	with	histone	modification	may	make	a	major	
breakthrough.	It	is	worth	noting	that	ferroptosis	regulated	
by	circABCB10	is	expected	to	be	a	major	breakthrough	in	
the	occurrence	and	development	of	CRC.	Moreover,	circ-	
FBXW7	delivered	by	exosomes	has	made	a	breakthrough	

in	 the	 field	 of	 oxaliplatin	 clinical	 tumor	 chemotherapy	
resistance,	and	circRNAs	enrichment	in	cancer	stem	cells	
will	 have	 a	 significant	 impact	 in	 the	 field	 of	 CRC	 recur-
rence,	 metastasis,	 and	 irinotecan	 chemotherapy	 resist-
ance.	 Furthermore,	 circRNAs	 can	 significantly	 increase	
the	 sensitivity	 and	 specificity	 of	 diagnosis	 by	 combining	
classic	biomarkers,	indicating	that	codiagnosis	is	expected	
to	be	a	key	breakthrough	 in	 the	progression	of	CRC	and	
other	 tumors.	 However,	 in	 the	 clinical	 immunotherapy	
and	 interventional	 therapy	of	 tumors,	 the	mechanism	of	
action	and	biological	function	of	exosomal-	transported	cir-
cRNAs	remain	to	be	explored,	and	how	m6A	methylation	
participates	in	the	regulatory	mechanism	still	needs	to	be	
explored.	 It	 is	worth	 thinking	about	how	circPACRGL	in	
tumor-	derived	 exosomes	 regulates	 miRNAs	 and	 TGF-	β1	
to	affect	CRC;	how	miR-	17-	5p	is	assembled	into	exosomes	
and	 how	 circLONP2	 participates	 in	 regulation	 have	 not	
been	 explored.	 Wnts	 derived	 from	 exosomal	 carcinoma-	
associated	 fibroblasts	 can	 inhibit	 CRC	 chemosensitivity,	
which	 requires	 further	 investigation.	 Finally,	 this	 review	
summarizes	 that	 circRNAs	 can	 participate	 in	 the	 spong-
ing	 of	 miRNAs,	 RNA	 transcription,	 protein	 translation,	
and	direct	binding	to	promote	the	invasion	and	metastasis	
of	CRC	and	participate	in	the	chemotherapy	resistance	of	
CRC,	providing	new	drug	therapeutic	targets	and	biomark-
ers	for	the	clinical	treatment	of	CRC.
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