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ABSTRACT Invasive fungal infections in humans are generally associated with high
mortality, making the choice of antifungal drug crucial for the outcome of the pa-
tient. The limited spectrum of antifungals available and the development of drug re-
sistance represent the main concerns for the current antifungal treatments, requiring
alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms
and used as first-line defenses against microbial infections, have emerged as poten-
tial candidates for developing new antifungal therapies, characterized by negligible
host toxicity and low resistance rates. Most of the current literature focuses on pep-
tides with antibacterial activity, but there are fewer studies of their antifungal prop-
erties. This review focuses on AMPs with antifungal effects, including their in vitro
and in vivo activities, with the biological repercussions on the fungal cells, when
known. The classification of the peptides is based on their mode of action: although
the majority of AMPs exert their activity through the interaction with membranes,
other mechanisms have been identified, including cell wall inhibition and nucleic
acid binding. In addition, antifungal compounds with unknown modes of action are
also described. The elucidation of such mechanisms can be useful to identify novel
drug targets and, possibly, to serve as the templates for the synthesis of new antimi-
crobial compounds with increased activity and reduced host toxicity.
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The threat of fungal infections is increasing, caused in part by the recent advances
in health care therapies that have expanded the population of immunosuppressed

patients (1). Unfortunately, the repertoire of effective antifungal agents remains very
limited, with only three classes of drugs available for systemic therapy: the polyenes
(e.g., amphotericin B), triazoles (e.g., fluconazole), and echinocandins (e.g., caspofun-
gin). A few other drugs (e.g., 5-flucytosine) are available for adjunctive treatments.
Furthermore, the limited spectrum and widespread use of antifungal agents have
augmented the emergence of drug-resistant strains of Candida, Cryptococcus, and
Aspergillus (2–4). In addition, a number of fungal pathogens, including the Mucorales,
Candida auris, and some molds, are intrinsically resistant to these agents and difficult
to treat at present, emphasizing the need for alternative antifungal strategies.

Antimicrobial peptides (AMPs) were first described in 1939 by Dubos (5), who
isolated gramicidin from Bacillus brevis and assessed its antibacterial properties against
infections in mice (6). A few years later, in 1948, another peptide family was isolated
from Bacillus subtilis, bacillomycin, with low antibacterial effects but remarkable anti-
fungal activity (7). The immunomodulatory functions of AMPs were later described and,
together with activity against a broad range of microorganisms, aroused interest in
their potential therapeutic applications (8).

While the focus of most of the current studies is on antibacterial peptides, there are
many with antifungal properties, and this review will highlight antifungal peptides as
important potential additions to the antifungal repertoire. Here, we use the term
peptide in a broad sense, including proteins of any length as well as some compounds
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in which peptides are conjugated to non-amino acid moieties. Furthermore, we focus
on the activities and mechanisms of these AMPs; the challenges and benefits of clinical
development of these compounds were recently discussed elsewhere (9).

BIOSYNTHESIS AND STRUCTURE OF AMPs

Antimicrobial peptides are synthesized by three routes (Fig. 1a). Ribosomally coded
AMPs, such as human �-defensins and histatins, are typically short (�50 amino acids),
cationic (net charge of �2 to �9) amphiphilic peptides found in bacteria, insects,
vertebrates, and plants that are produced to fight microbial infections (10). The positive
net charge, mainly due to lysine and arginine residues, promotes disruption of
phospholipid-rich membranes (11). Other AMPs are generated by nonribosomal pep-
tide synthases (NRPSs) (Fig. 1b) (12, 13), which are mainly found in bacteria (Actinomy-
cetes and Bacilli, in particular) and filamentous fungi (13). The NRPS-generated AMPs are
diverse due to the incorporation of nonproteinogenic amino acids into the sequence
(often the D-enantiomers of natural residues) and are often heavily modified through
hydroxylation, glycosylation, lipidation, and cyclization (14). Finally, some AMPs are
generated through proteolytic cleavage of larger proteins with entirely separate func-
tions and hence are called cryptic peptides (Fig. 1c) (15).

The amphiphilic nature of many of the AMPs determines their structural flexibility.
Contact with membranes can induce the formation of secondary structures, such as
�-helices, �-sheets, or a mixture of both, that are critical to antimicrobial activity (16).
Cyclic peptides can be stabilized through intramolecular disulfide bonds and form
helical type II structures, specifically promoted by arginine, histidine, and proline
residues (17), while other peptides maintain a linear configuration (18). Some AMPs,
such as gramicidin A (19) and tritrpticin (20), are rich in tryptophan, a residue common
in transmembrane segments especially close the membrane-water interface. As a result,
they induce the formation of ion channels in the target membranes (21). Other
peptides, such as the defensins, have a core containing two antiparallel �-sheets with
an interposed short turn (22). Another important characteristic of many AMPs is their
hydrophobicity, which is responsible for their membranolytic properties and correlates
with low toxicity and selectivity toward mammalian cells (23).

RESISTANCE TO AMPs

AMPs represent one of the possible options to overcome the issue of antimicrobial
resistance, partly because they are less susceptible than conventional antibiotics to the
evolution of resistance from microorganisms. Although some episodes of resistance
against AMPs were described (24–26), the “mutant selection window” (MSW), the
concentration range in which selective amplification of single-step, drug-resistant
mutants can occur, appears to be narrower than for conventional antibiotics (27). This
results in a higher killing rate (28, 29) and lower probability of developing resistance
(30). In many cases, the mechanism of action is based on fundamental cellular prop-
erties (e.g., negatively charged membranes) that are inherently difficult to change.

CLASSIFICATION OF ANTIFUNGAL PEPTIDES

The following paragraphs describe known antifungal peptides based on the mech-
anism of action: (i) peptides interacting with membranes, which usually form pores and
can have broad-spectrum activity against bacteria as well as well as fungi, (ii) peptides
targeting the cell wall, which are usually more specific toward fungi, (iii) nucleic acid
inhibitors, and (iv) other peptides, which have either unique or unknown mechanisms
of action (31). Relevant features of many of the peptides described below are summa-
rized in Table S1 in the supplemental material and illustrated graphically in Fig. 2.

PORE-FORMING PEPTIDES

This class of peptides is the most common among all the AMPs found in nature,
characterized by a broad range of activity toward different microorganisms and rela-
tively high toxicity compared to that of other antimicrobials with bacterium- or
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FIG 1 Biosynthesis of antimicrobial peptides. The figure describes the three routes adopted for the production of the
AMPs: classical ribosomal synthesis (a), the nonribosomal pathway (b), and the cryptic peptides (c). In ribosomal

(Continued on next page)
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fungus-specific targets (32). Their mechanisms of action can be described using differ-
ent models of their effects on the target membranes with which they interact (22).

Barrel-stave model. In the “barrel-stave model,” peptides aggregate and form
barrel-shaped pores in the membranes, with the peptide helices acting as staves (33).
Amphotericin B (AmB) is a polyene macrolide antibiotic produced by Streptomyces
nodosus via a polyketide synthase and is, to date, the only natural product with
antifungal effects exerted through this mechanism (34). It was long believed that
binding of ergosterol in the fungal membrane resulted in pore formation, a rapid
leakage of potassium and magnesium, and, ultimately, cell death (35). More recently, a
secondary mechanism in which amphotericin physically extracts ergosterol from lipid
bilayers was shown to contribute to the fungicidal activity (36, 37). It remains to be seen
which of these two mechanisms is more responsible for cidal activity, and it might differ
from species to species. Accumulation of reactive oxygen species (ROS) also contributes
to the antifungal effect of the drug (38).

Carpet model. In the “carpet model,” peptides accumulate on the membrane in a
carpet-like manner, attracted by electrostatic interactions (39). At high concentrations
of the peptide, the membranes are disrupted and form micelles, with similar effects to
treatment with detergents (40). The amphipathic dermaseptin peptides, produced by
phyllomedusine frog skin, use this mechanism (39) and are active against fungi,
bacteria, protozoa, and viruses (41, 42). In Candida albicans, dermaseptin-S1 inhibits
growth and filamentation, confirmed by downregulation of several hypha-associated
genes (43).

Also belonging to this group are the lipopeptides of the syringomycin family,
secreted by the plant-associated bacterium Pseudomonas syringae, which are particu-
larly active against several filamentous fungi and yeasts, including Candida, Cryptococ-
cus, and Aspergillus strains (44). In addition to the formation of pores, they also induce
passive ion fluxes, which generate an electrochemical gradient that alters the pH
gradient across the membrane (45).

Cecropins, found in insects, are active against many fungi, including Aspergillus and
Fusarium species (especially F. moniliforme [verticillioides] and F. oxysporum) (46). In
particular, cecropin A induces apoptosis associated with disrupted ion balances and
intracellular glutathione redox states in C. albicans (47).

Toroidal pore model. In the “toroidal pore model” the peptides insert into the
membranes, forming pores and tilting the lipid layers in the fashion of a toroidal hole
(48). One of the most studied AMPs in humans, LL-37 (CRAMP in mice), is part of this
group (49). This cathelicidin-related peptide is produced by neutrophils and other cells
of the innate immune system on epithelial surfaces, where they represent one of the
first lines of defense against fungi (50, 51). LL-37 interacts with the cell wall carbohy-
drates (the main mediators of Candida adhesion) and permeabilizes the plasma mem-
brane, with subsequent ROS accumulation (52). Induced expression of CRAMP resulted
in a reduction of C. albicans gastrointestinal (GI) colonization and a 50% decrease in
mortality in antibiotic-treated mice, demonstrating its key role in innate immunity (53).

Protegrins are cathelicidin-related cationic peptides that form toroidal pores on the
plasma membranes of several microorganisms, causing K� imbalance and cell death
(54, 55). One of these compounds, the porcine protegrin-1 (PG-1), was particularly

FIG 1 Legend (Continued)
synthesis, the gene for the AMP is harbored by a cluster that is translated into the mature peptide via ribosomal
synthesis of common amino acids, which can undergo structural modifications, such as glycosylation in the case of
leucinostatin A. The compounds produced via the nonribosomal route, unlike the previous-described pathway, are
assembled by large enzymes, referred to as nonribosomal peptide synthases (NRPS). They incorporate nonproteino-
genic amino acids and also catalyze other structural modifications, such as lipidation and cyclization. For example, as
shown here, the gramicidin synthases I and II (encoded by grsA and grsB, respectively), produce the cyclic decapeptide
gramicidin S. GS1 modules (blue) consist of three domains in total, responsible for the reactions of adenylation,
thiolation, and epimerization. GS2 contains four modules, each containing condensation, adenylation, and thiolation,
with a thioesterase at the end. The cryptic peptides originate from the proteolytic digestion of proteins with other
functions, such as the histone H2A of the Asian toad. In the toad’s stomach, the enzymatic activity of pepsin C
produces buforin I, which in turn is processed by an endopeptidase to generate buforin II.
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FIG 2 Schematic representation of the targets of the antimicrobial peptides with antifungal activity. The peptides
are listed according to the putative target within the fungal cell. The asterisk following some of the peptides
indicates the target has only been hypothesized according to the data present in literature.
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active against a broad range of fungi, including several Candida species (including
drug-resistant strains) and Cryptococcus neoformans, whereas Aspergillus species were
more resistant (56). In the same study, other cathelicidin peptides were tested, includ-
ing an ovine (SMAP-29) and two bovine �-helical (BMAP-27 and BMAP-28) peptides,
which were as effective as PG-1 but at generally higher MICs, particularly for Candida
tropicalis, Candida glabrata, and Candida parapsilosis (56).

Melittin is a cationic amphipathic peptide found in the venom of the honey bee Apis
mellifera (57). Its effect on Candida involves (toroidal) pore formation (58), caspase- and
mitochondrion-dependent apoptotic mechanisms with ROS generation, disruption of
mitochondrial membrane potential, and Ca2� release from the endoplasmic reticulum
(59, 60). The effect on other fungi is less clear, with other components in the venom
potentially responsible for the antimycotic properties (61).

Peptaibols are linear lipopeptides mainly produced as fungal secondary metabolites
by NRPSs found in the Trichoderma, Hypocrea, Emericellopsis, and Boletus genera, some
containing nonproteinogenic amino acids (62). They include many compounds with
antifungal activity (reviewed in reference 63). Their mechanism of action is mainly
through alteration of membrane permeability by pore formation, which is the reason
why they have such a wide range of targets (viruses, protozoa, helminths, and insects)
and different degrees of toxicity to mammalian cells dependent on the particular
compound (64). Some examples include heptaibin, which has inhibitory activity on the
growth of C. albicans, C. neoformans, and Aspergillus fumigatus (65), hyporientalin A,
with promising candidacidal activity and relatively low toxicity (66), atroviridins (A, B, C),
effective against Aspergillus niger and F. oxysporum (67), longibrachins, displaying
anti-Aspergillus effects (68), and septocylindrins (A and B), inhibiting C. albicans (69).

OTHER MEMBRANE-ACTIVE PEPTIDES

A number of antifungal AMPs exert their activity through interactions with mem-
branes, though it is not clear whether they form pores (or what kind of pores) or disrupt
membrane integrity through other mechanisms.

Plant defensins are highly stable cysteine-rich peptides with widespread activity
against bacteria and fungi that have been extensively studied (see, for instance,
reference 61 for a review). Several have antifungal activity, hypothesized to act through
either a carpet or toroidal pore model (70). Two members of this family, RsAFP2 and
heliomycin, were shown to interact with the glucosylceramides on the plasma mem-
brane of C. albicans and Pichia pastoris, inducing cell death by membrane permeabi-
lization (71). Similarly, NaD1 displays candidacidal activity, activating the high-
osmolarity glycerol (HOG) pathway due to ROS production and oxidative damage (72).
PvD1, isolated from Phaseolus vulgaris seeds (73), has antifungal activity against Fus-
arium species (F. oxysporum, F. solani, and F. lateritium) and Candida species (C. albicans,
C. tropicalis, C. parapsilosis, and C. guilliermondii) (74). Other plant defensins with
antifungal effects exerted through membrane permeabilization include Dm-AMP1 (75)
and the hevein-like Pn-AMP1 and Pn-AMP2 (76).

Pr-1, from pumpkin, inhibits the growth of many fungi, including F. oxysporum, F.
solani, and C. albicans, through membrane permeabilization yet did not show hemolytic
activity on human red blood cells (77).

Thionins, with a structure similar to that of plant defensins, exert antifungal activity
via an unclear mechanism (78). For example, the Capsicum annuum thionin (CaThi)
caused membrane permeabilization in C. albicans, C. parapsilosis, and C. tropicalis,
where it also induced oxidative stress (79). Yet, the intracellular localization of this
peptide in C. albicans and C. tropicalis suggested a possible nuclear target (79).
Similar findings were observed with F. solani, where the peptide also showed a
synergistic effect with fluconazole (80).

The mechanisms of interaction of the human defensins with membranes are not as
well characterized as those of their plant relatives. Some members of this family, which
are produced by neutrophils and epithelial cells, have antifungal activity, including
�-defensins HBD-1 and HBD-3 and �-defensins HNP-1 and HNP-2 (81). These com-
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pounds, detected in salivary glands and secretions, cause membrane permeabilization
in fungal pathogens but with different mechanisms: HBD-1 and HBD-2 deploy an
ATP-independent mechanism, involving membrane permeabilization, whereas HNP-1
and HNP-2 stimulate cytotoxicity by an efflux of cellular ATP, similarly to histatin 5 (82,
83). Another member of the defensin family, rhesus �-defensin 1 (RTD-1), displayed
fungicidal activity against Candida species, including multidrug-resistant C. auris,
through cell permeabilization associated with ATP release and intracellular ROS accu-
mulation, similarly to histatins, though it was more rapid and did not require mito-
chondrial ATP production (84).

Iturin A is a lipopeptide produced by NRPSs in Bacillus species and is effective
against Candida, Trichosporon, Fusarium, and Aspergillus spp. (7, 85, 86) via a pore-
dependent mechanism, causing cell wall damage, ROS accumulation, and Hog1-
mitogen-activated protein kinase (MAPK) activation (87, 88). Despite potent hemotoxic
effects (89, 90), mice infected with C. albicans and treated with iturin A and AmB
survived better than those treated with either agent alone (85).

Skin-PYY is an antibacterial and antifungal peptide found on the skin extract of the
arboreal frog Phyllomedusa bicolor, displaying similar pharmacological and structural
properties as neuropeptide Y (NPY) and polypeptide Y (PPY) found in the brains and
intestines, respectively, of multiple vertebrates (91). This amphibian peptide showed
moderate effects on Aspergillus species (A. fumigatus and A. niger) but higher efficacy
against C. albicans, Microsporum canis, Trichophyton rubrum, and Arthroderma simii and
appeared to be cidal rather than static (92). Promisingly, a low toxicity was observed for
mammalian erythrocytes and macrophages at concentrations severalfold above the
MIC for C. albicans (92).

Aureobasidin A (AbA) is a cyclic nonribosomal depsipeptide produced by the black
mold Aureobasidium pullulans that exhibits a strong fungicidal activity against Candida
species, C. neoformans, Blastomyces dermatitidis, and Histoplasma capsulatum but not
Aspergillus spp. (93–95). The antifungal effect is exerted through the noncompetitive
inhibition of the inositol phosphorylceramide (IPC) synthase, responsible for the sph-
ingolipid biosynthesis in fungi and essential for cell viability (94, 96). Toxicity is low due
to the absence of the target enzyme in mammalian cells (97). Some fungi, such as A.
fumigatus and Aspergillus flavus, are resistant as a result of increased efflux, confirmed
by the reduced sensitivity of AbA on the Saccharomyces cerevisiae strain overexpressing
Pdr16, a phosphatidylinositol transfer protein (98).

Zeamatin is a 22-kDa peptide isolated from Zea mays seeds, but compounds of the
same family have been isolated from Avena sativa, Sorghum bicolor, and Triticum
aestivum (99). Its membrane-permeabilizing activity was effective on C. albicans, but
Mucorales species were resistant (99). Synergistic activity with nikkomycin Z and
clotrimazole was detected in a Candida vaginitis mouse model (100). It binds �-1,3-
glucan, which could be an important step in exerting its membrane-related function
and could explain the resistance of Mucorales spp., which lack this carbohydrate (101).

HP 2-20 is a cryptic peptide with antifungal and antibacterial properties derived
from the N terminus of the ribosomal protein L1 (Rpl1) of Helicobacter pylori (102) and
disrupts membranes via pore formation (103). Promisingly, the peptide’s hemolytic
activity against mammalian cells was low (103). These effects were tested only on C.
albicans and Trichosporon beigelii, with a strong reduction of mortality observed in mice
injected with a lethal dose of C. albicans (104, 105).

Cm-p1 is a small hydrophilic peptide identified from the crude extract of the marine
snail Cenchritis muricatus (106). The protein from which this is produced is not known,
since another sequence (Cm-p2), sharing 70% similarity with Cm-p1, was also found as
part of a larger protein in the same organism (106). The low hydrophobicity likely
correlates with the lack of toxicity toward human red blood cells and RAW 264.7 cells
as well as with the absence of antibacterial activity, although it exhibited broad-
spectrum antifungal activity against C. albicans, T. rubrum, A. niger, and F. oxysporum
(106). Cm-p5 is a synthetic peptide derived from Cm-p1, with an increased fungistatic
effect on C. albicans and C. parapsilosis but with little toxicity to mammalian cell lines
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(107). The improved activity was due to the affinity toward phospholipids of fungal
membranes (phosphatidylserine and phosphatidylethanolamine) but low interaction
with ergosterol and mammalian membranes (108).

AMPs TARGETING THE CELL WALL
Glucan synthesis inhibitors. �-Glucan, the major polysaccharide of the fungal cell

wall, is a polymer of glucose moieties linked by �-(1,3)- or �-(1,6)-glycosidic bonds that
form a branched network conferring strength to the cell wall (109). �-Glucan is of
extreme importance for recognition of fungal pathogens by the host innate immune
system via dectin-1, a specific receptor for �-(1,3)-glucan, which is essential for fungal
recognition and induction of the immune response (110, 111). The echinocandin drugs,
in clinical use for almost 20 years, are synthetically optimized derivatives of several
nonribosomal AMPs, including pneumocandins and echinocandin B, produced by some
fungal species as secondary metabolites (112). They are noncompetitive inhibitors of
�-(1,3)-glucan synthase, critical to generating the cell wall in most fungal pathogens
(113). The noncompetitive inhibition of the catalytic subunit of this enzyme, encoded
by the GSC and FKS genes, can be overcome by point mutations, found commonly
among echinocandin-resistant isolates (114).

Pneumocandins are produced by Zalerion arboricola (115); pneumocandin A0 had
potent fungicidal activity against C. albicans but also high hemolytic activity and lacks
efficacy against A. flavus, A. fumigatus, C. neoformans, and other Candida species (116).
Echinocandin B is a fungal lipopeptide isolated from Aspergillus nidulans with potent
anti-Candida activity (117). To reduce the high toxicity of these compounds on mam-
malian cells, mainly caused by the hemolytic activity, semisynthetic analogues with
much reduced toxicity to mammalian cells but similar antifungal activity, such as
cilofungin, have been generated (118).

Three synthetic derivatives emerged from clinical development in the 1990s: caspo-
fungin, anidulafungin, and micafungin (119). These drugs addressed most of the
drawbacks of their natural progenitors, providing broader activity and lower toxicity
(120–123). The extended-spectrum echinocandins showed fungicidal activity against
Candida species, including those that are resistant to amphotericin B or fluconazole,
and had fungistatic activity against Aspergillus species (124). Currently approved echi-
nocandins have limitations related to emerging drug resistance and the need for
intravenous delivery. Potential next-generation echinocandins such as SCY-078 (ibrexa-
fungerp; Scynexis, Inc.), an intravenous and orally bioavailable glucan synthase inhib-
itor, may solve these problems (125). Additionally, it retains in vitro activity against
echinocandin-resistant isolates of Candida species (126, 127).

Other compounds of the same family of echinocandins, which could drive the
development of new synthetic antifungals, include papulacandins (128, 129), mu-
lundocandins (130), fusacandins (131), corynecandins (132), pestiocandins (133),
and WF11899 (134). Although effective as antifungals (122, 135–137), these lipo-
peptides were never clinically approved because of lower activity and/or higher
toxicity then extended-spectrum echinocandins (138). Aculeacins also belong to
this group of antifungal peptides but have lower toxicity as well as lower efficacy
against filamentous fungi (139).

Chitin inhibitors. Chitin is another essential component of the fungal cell wall. It is
composed of N-acetylglucosamine moieties connected by �-(1,4) linkages (109), and it
is important for cell viability and modulation of the host immune response (140). The
amount of chitin in the wall varies according to the cell morphology: for example, C.
albicans hyphae can have up to 10 times more N-acetylglucosamine than yeast cells
(141, 142). Increased content of chitin in the wall has also been linked with resistance
to echinocandin drugs (143).

Nikkomycin Z, a dipeptide with a nucleoside sidechain synthesized by Streptomyces
tendae, is a competitive inhibitor of chitin synthases (144). The inhibitory activity of
nikkomycin Z was demonstrated on a variety of different organisms, including fungal
plant pathogens (145). It is active against B. dermatitidis and Coccidioides immitis in vitro
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and in animal models, although a lower efficacy was seen for Histoplasma capsulatum
(146–148). It has modest efficacy against A. fumigatus alone but synergizes with
echinocandins, generating more successful outcomes (149, 150). Similar results were
obtained for the melanized fungus Alternaria infectoria, involved in opportunistic
human infections and respiratory allergies (151). Nikkomycin Z also synergizes with
caspofungin or micafungin against Candida biofilms, in particular, C. albicans and C.
parapsilosis (152–154). In fact, the response to caspofungin involves a compensatory
increase in chitin synthesis (155–157), and so the ability of nikkomycin Z to target chitin
synthesis is a plausible mechanism to explain the synergy between these two drugs
(155). Other combinatorial effects were observed with the azoles, in particular, flucona-
zole and itraconazole against C. albicans and C. parapsilosis and itraconazole versus C.
immitis and A. fumigatus (147, 158). The efficacy of this AMP in combinatorial therapy
with existing antifungal drugs may improve outcomes and reduce the development of
resistance. This peptide is under development as an orphan product for treatment of
coccidioidomycosis, with phase I studies successfully completed and demonstrating
excellent safety in healthy humans (159).

Similar to Nikkomycin Z, the polyoxins (A to L) are nucleoside-tripeptide antibiotics
produced by the actinomycete Streptomyces cacaoi that inhibit chitin synthases (160,
161). They are effective not only against phytopathogenic fungi, such as Botrytis cinerea
and Alternaria kikuchiana (162), but also against human pathogens such as C. albicans
and C. neoformans (163). In particular, polyoxin D causes altered cell morphology in C.
albicans, with hyphal inhibition, swollen cells, sensitivity to osmotic changes, and a
weakened cell wall, especially at the septum, resulting in an inability to bud (163).
Similar effects were observed for C. neoformans, with a greater fungistatic activity
detected when incubated with 2 mM polyoxin D, which completely depleted growth
(163).

Rabbit defensins NP-3b, NP-4, and NP-1 were shown to be highly active against C.
albicans, with NP-5 able to potentiate their effects, whereas only NP-1 was found
effective against other medically important fungi, such as C. neoformans, with a much
lower MIC for acapsular strains (164). NP-1 also has activity against Rhizopus oryzae as
well as hyphae and germinating conidia of C. immitis and A. fumigatus, though not
resting conidia (165–167). NP-2 also killed A. fumigatus hyphae (165). The action of this
peptide family was hypothesized to be related to chitin sequestration, since their
preincubation with purified chitin reduced activity against A. fumigatus (165).

Arthrichitin and FR-90403 are produced by Arthrinium phaeospermum and Kernia
spp., respectively, and, similarly to nikkomycin Z, bind and inhibit chitin synthases Chs1
and Chs2 in C. albicans (168, 169).

Mannan-binding peptides. Mannan represents the outermost layer of the fungal
cell wall and it is composed of mannan fibrils formed from heavily glycosylated
proteins, with �- and �-linked oligomannosyl residues (170). These mannoproteins
are involved in many processes, including biofilm formation, virulence, and adhe-
sion (171–173).

One family of secondary metabolites that includes pradimicins and benanomicins
targets cell wall mannan. Pradimicins (A to E) are polyketides produced by the actino-
mycete Actinomadura hibisca (174, 175), whereas benanomicins were isolated from
Actinoallomurus spadix (176). They demonstrated a moderate in vitro antifungal activity
against a broad spectrum of organisms, including Candida and Aspergillus species and
C. neoformans, but a remarkable in vivo efficacy in healthy and immunocompromised
mice infected with C. albicans, C. neoformans, and A. fumigatus (175, 177). Moreover,
benanomicin A was also successful for in vivo treatment of Pneumocystis carinii pneu-
monia (178). Pradimicin A also showed fungicidal effects against pulmonary candidiasis
and aspergillosis, vaginal candidiasis, and skin Trichophyton mentagrophytes infection in
mice with intravenous or topical treatment (177). The antifungal activity of this family
of nonribosomal peptides recognizes D-mannose in a manner similar to that for lectins
in the presence on calcium (179, 180), ultimately leading to cell death (181). In S.
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cerevisiae pradimicin A induced an apoptosis-like cell death through ROS accumulation
(182). To date, no ribosomally produced AMPs are known to target mannans.

NUCLEIC ACID INHIBITORS

The AMPs in this section specifically target nucleic acid biosynthesis and metabo-
lism. Although some of them have been proven to bind DNA, the antimicrobial
mechanisms are not completely clear. For example, the activity of buforin II is associ-
ated with its specific interaction with the major groove of DNA, but how this is
antifungal remains unclear (183). For their capacity to bind nucleic acids, these peptides
are also used as antineoplastics (e.g., actinomycin D) and can therefore have significant
host effects (e.g., indolicidin). In some cases, the toxicity issue can be overcome by
using different formulations, such as liposomes or nanoparticles, which reduces the
adverse effects for the host but preserves the activity of the compound.

Various species of Streptomyces synthesize actinomycins, a family of chromopeptide
lactones with antifungal activity (184). In particular, activity against C. albicans was
described for actinomycin D, RSP 01, and RSP 02 (185, 186). Actinomycin D is clinically
useful as an antineoplastic and exerts its antifungal function by intercalating the DNA.
The other two have been tested with promising results but are not used clinically. Both
have structural similarity to actinomycin D and therefore could function in a similar
manner (185).

Indolicidin is a tridecapeptide amide of the cathelicidin family, isolated from cyto-
plasmic granules of bovine neutrophils, with strong antifungal activity against T.
beigelii, C. albicans, Candida krusei, and A. flavus but has only modest effects on P. carinii
and C. glabrata (187–189). Its structure, characterized by 39% tryptophan and 23%
proline, was initially thought to target only the cell membrane (189), but later studies
showed that it binds DNA and possibly affects DNA processing enzymes and repair
mechanisms (190, 191). Although its nonselective activity causes toxicity in humans,
liposomal formulations of indolicidin reduced toxicity in mice 100-fold and allowed
sufficiently high dosing to successfully treat mice infected systemically with A. fumiga-
tus (192). Other formulations, such as indolicidin-conjugated gold nanoparticles, were
effective against fluconazole-resistant C. albicans (193). A graphene-indolicidin nano-
composite formulation treated disseminated candidiasis as effectively as fluconazole in
mice (194).

Buforins are cryptic peptides isolated from the stomachs of toads and originate from
pepsin-directed proteolysis of histone H2A (195). Buforin II is derived from buforin I and
has greater antimicrobial potential, with activity against C. albicans and C. neoformans
(196). Initially believed to cause membrane permeabilization (195), further studies
demonstrated that buforin II penetrates membranes without forming pores (197), and
a possible interaction with nucleic acids was suggested (183).

OTHER ANTIFUNGAL PEPTIDES

This final section lists the peptides with alternative and incompletely characterized
antifungal mechanisms from the sections listed before. Some of them include disrup-
tion of the cell integrity (e.g., histatins and cystatins), modulatory properties (e.g., EntV
and alpha melanocyte-stimulating hormone [�-MSH]), surface interactions (e.g., surfac-
tins, VLL-28, and psoriasin).

The mechanisms of histatins, and in particular, histatin 5 (Hst5), have been the
subject of debate but seem to have an intracellular target (198). Hst5 is a human
salivary cationic peptide with fungicidal activity against Candida species other than C.
glabrata (including C. albicans, C. krusei, C. tropicalis, C. parapsilosis, and C. guilliermon-
dii) (199). In C. albicans, Hst5 binds to Ssa1/2 proteins (the Hsp70 orthologs) present in
the cell wall and, once internalized by translocation, induces the formation of reactive
oxygen species (ROS) within the cell and the efflux of ATP and ions in a manner
dependent on the plasma membrane Trk1 potassium transporter (200–203). Hst5-
induced osmotic stress also contributes to cytotoxicity. Zinc binding potentiates the
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cytotoxic effects of Hst5 P113, a 12-amino-acid proteolytic product of Hst5 that retains
substantial anti-Candida activity (204, 205).

Cystatins are a family of peptides with antifungal properties on Candida and
Aspergillus species (206, 207). These compounds are naturally found in vertebrates,
invertebrates, and plants and exert a competitive inhibition on cysteine proteases (208).
The inhibitory effect on fungal species is not characterized but seems to be indepen-
dent from the protease inhibitory activity observed against bacteria (209). The cystatin
purified from chicken egg white displayed fungicidal effects on C. albicans, C. parap-
silosis, and C. tropicalis, with only milder influence on C. glabrata, in a similar fashion to
that of histatin 5 (206). A recombinant amaranth cystatin showed inhibition of spore
germination and growth of A. niger and Aspergillus parasiticus (207). The altered cell
morphology and organelle integrity suggest a possible correlation of the fungicidal
activity with disruption of cell integrity (207).

The cyanobacterial genera Lyngbya, Nostoc, and Hassallia produce hassallidins and
lyngbyabellins (e.g., hectochlorin), which are two distinct families of cyclic peptides that
showed potent activity against C. albicans and C. krusei (210, 211). Both of these peptide
families have significant toxicity in mammalian cells: hectochlorin hyperpolymerizes
actin (212), while hassallidin A disrupts membranes (213), and so their potential as
therapeutics is limited.

Cepacidines (A1 and A2), are glycopeptides produced by Burkholderia cepacia dis-
playing antifungal properties superior to those of AmB (31). These glycopeptides were
found to be active against several Candida species and other fungal pathogens,
including C. neoformans, A. niger, M. canis, F. oxysporum, and T. rubrum, but the
presence of human serum (50%) strongly reduced the antifungal effect, precluding
their utilization as antifungals (214).

EntV is a 68-amino-acid AMP produced by Enterococcus faecalis that showed inhib-
itory effects on biofilm formation for C. albicans, C. tropicalis, C. parapsilosis, and C.
glabrata (215). It also causes a strong reduction (�50%) of preformed C. albicans
biofilms. It conferred protection against C. albicans in nematode infection and oropha-
ryngeal candidiasis murine models (215). It is ribosomally produced and undergoes
several processing events after secretion (216). However, its mechanism of action is still
unclear. It does not affect fungal viability at all, only hyphal morphogenesis, and
therefore is considered to have an antivirulence effect (214).

Leucinostatin A, produced by Penicillium (Purpureocillium) lilacinum, is a peptide
antibiotic that, despite displaying antifungal activity against Candida spp. (including C.
albicans, C. krusei, C. tropicalis, and C. guilliermondii) (217), is unsuitable for clinical use
due to substantial host toxicity (218). More recently, it has received renewed interest
due to its antitrypanosomal and antitumoral activities (219, 220). Two other fungal
products, helioferins A and B, synthesized by the parasitic fungus Mycogone rosea, as
well as trichopolyns A and B, secreted by Trichoderma polysporum, showed inhibitory
activity against Candida, but their mode of action is unknown (221, 222) and they
exhibit significant cytotoxicity in mammalian cells (222, 223).

Fengycins and surfactins are families of nonribosomal cyclic lipopeptides produced
by Bacillus amyloliquefaciens, some of which have antifungal action, especially against
C. albicans, C. tropicalis, and some Rhizopus and Fusarium species (224–226). Reduced
growth, spore germination, and germ tube formation were some of the observed
effects, and efficacy was enhanced when combined with ketoconazole (225, 227).
Furthermore, it was shown that some fengycin compounds were able to remove 25%
to 100% of C. albicans biofilms grown on polystyrene plates (228). The mechanisms of
action of the various surfactins and fengycins are diverse and not completely under-
stood. Studies with different peptides have suggested they disrupt the membrane or
cell wall, inhibit DNA synthesis, or lead to mitochondrial disruption (224, 225, 229). The
hypothesis that surfactins are membrane-active substances was also supported by the
inhibition of membrane fusion during invasion of epithelial cells by enveloped viruses
(230).

The alpha melanocyte-stimulating hormone (�-MSH) is a neuroendocrine-immune
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regulatory peptide with antimicrobial potential found in mammals as well as in
organisms that lack adaptive immunity (231). Its precursor is expressed in phagocytes
(232) and epithelia (233), but posttranslational proteolytic processing is required to
convert it to the active form (231). While in vitro antifungal activity against C. albicans
was reported, including reduction of cell viability and germ tube formation (231), others
observed only very mild effects on growth (234). Synthetic analogues have shown
increased antifungal potency combined with an augmented half-life and only moderate
hemolytic activity that would be necessary for realistic clinical use (235). The immuno-
modulatory effects of �-MSH include the regulation of nitric oxide production in
macrophages and reduced chemotaxis in neutrophils (236, 237). Its immunomodula-
tory and antimicrobial properties could be exploited for treatment of disorders in which
inflammation and infection coexist (238).

Ib-AMPs are cysteine-rich AMPs, found in Impatiens balsamina seeds, comprising
four closely related peptides (Ib-AMP1 to -4) derived from a single precursor protein
(239). The structure, which is only 20 amino acids long, is characterized by intramolec-
ular disulfide bridges important for retaining antifungal activity, as shown for Ib-AMP1
and -4 when tested against C. albicans and A. flavus (240, 241). The mechanism of action
is still unknown, but a distinct target in the plasma membrane was hypothesized (240).

Psoriasin is an AMP isolated from skin lesions of patients with psoriasis (242), with
orthologues found in amphibians (243) and cattle (244). In fact, it is the most prominent
antibiotic peptide found on the skin of these individuals, who are rarely affected by
bacterial and fungal infections (245, 246). It is effective in vivo in a mouse lung model
for A. fumigatus infection and in a guinea pig tinea pedis model for T. rubrum skin
infection (242). Furthermore, in vitro experiments showed activity against other der-
matophytes, such as T. mentagrophytes, M. canis, and Epidermophyton floccosum (247),
which are currently difficult to treat. The target of this AMP is currently unknown, but
its activity was inhibited by elevated zinc, suggesting that this compound interferes
with zinc homeostasis and its sequestration could be a possible antimicrobial mecha-
nism (242, 248). Surprisingly, this AMP was not effective in killing C. albicans, although
it was able to bind �-glucan and inhibit adhesion to surfaces (249).

VL-2397 (formerly ASP2397) is a cyclic hexapeptide isolated from Acremonium
persicinum, which exhibited potent in vitro fungicidal activity against Aspergillus species
(var. fumigatus, nidulans, flavus, and terreus), C. neoformans, C. glabrata, Candida kefyr,
and Trichosporon asahii (250). Its mechanism of action is related to its structure, which
resembles ferrichrome, an iron-chelating siderophore, and results in arrest of hyphal
elongation. In a model of invasive pulmonary aspergillosis, immunocompromised mice
treated with this compound survived longer and had lower lung fungal burdens than
control animals (251, 252). It was also efficacious against invasive candidiasis in neu-
tropenic mice caused by drug-resistant C. glabrata (253). Moreover, a phase I study
showed promising results regarding its safety and tolerability in healthy individuals
(254).

VLL-28 is the first AMP isolated from the archaeal kingdom and is produced by
proteolysis of a transcription factor of Sulfolobus islandicus (255). This cryptic peptide
displays the same chemophysical and functional properties of typical AMPs, including
broad-spectrum antibacterial and antifungal activities, particularly against C. albicans
and C. parapsilosis via inhibition of growth and biofilm formation, including reduction
of preformed biofilms (256). The antifungal mechanism is unknown, although the
peptide seems to interact with the cell surface, either the wall and/or membrane,
though in bacteria, it binds nucleic acids in the cytoplasm (255).

Scorpion venom is the source of a great number of peptides with antifungal activity,
with similar characteristics, such as cationic character and structural flexibility (257).
TistH is an alpha-helical peptide found in the venom of the scorpion Tityus stigmurus,
part of the hypotensin family (258). It has moderate effects on C. albicans, C. tropicalis,
T. rubrum, and A. flavus, with great strain-to-strain variability in susceptibility. It is
characterized by the absence of cytotoxicity and in vivo inflammatory activity (258), but its
mechanism is otherwise unknown. The maximum efficacy of this compound was obtained
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by incorporation within chitosan particles, providing improved antifungal effects (including
on cell viability and biofilm formation), a prolonged released profile, and maintenance of
biocompatibility (259). ToAP2 and NDBP5.7 are another two peptides produced by the
scorpions Tityus obscurus and Opisthacanthus cayaporum, respectively, with remarkable
antifungal activity on C. albicans (260). Some of the effects include membrane permeabi-
lization with cell wall alteration, disruption of ultracellular structure, and inhibition of
filamentation on early phase and mature biofilms (260). The therapeutic potential of the
ToAP2 compound was supported by the protective activity in Galleria mellonella infection
model and its synergism with AmB and fluconazole (260).

FUTURE PROSPECTS

The current antimycotic therapies are limited by the restricted choice of available
compounds, and the increasing resistance of fungal pathogen further narrows the
therapeutic options. The diversity of AMPs expands the development space for future
antifungal therapeutics. Although escape strategies from the antifungal activity of the
AMPs were described, including secretion of peptide effectors, AMP efflux pumps, and
regulation of signaling pathways (261), they are, in fact, less prone to the development
of resistance due to the rapid effect and the pharmacodynamic properties in compar-
ison to conventional drugs (262).

However, the challenges to antimicrobial drug development are well known, as
recently reviewed (9), and there are only a few examples of antifungal peptides being
brought to clinical trials, including nikkomycin Z, aureobasidin A, and VL-2397 (263).
The biochemical and cell biological processes of the fungal pathogens are more closely
related to those of the host compared to those of bacteria, representing one of the
main scientific challenges of antifungal drug development but also presenting an
opportunity that these complex molecules might be more specific and thus some may
have low host toxicity. In addition to these scientific challenges, the design of clinical
trials for antifungals poses several difficulties, including the costs related to the
difficulty of finding eligible patients in a timely and unequivocal fashion (264).

As with small molecule antifungals, there is significant potential to use in silico
peptide optimization to either design novel peptides de novo or improve naturally
occurring ones (265). Further investigations on AMPs and their mechanisms of action
are therefore required to elucidate novel antifungal strategies and pathogenicity
mechanisms. The advancements in computational approaches, with predictions of
drug target (266) and resistance development (267), and the design of synthetic
and semisynthetic peptides (268) represent a valid and inexpensive strategy to
reduce the costs related to antifungal compound discovery and design.
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