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Abstract

Matrix metalloproteinases (MMPs) play a pivotal role in tissue remodeling by degrading the

extracellular matrix (ECM) components. This mechanism is implicated in a variety of physio-

logical and pathological cellular processes including wound healing. One of the key proteins

involved in this process is the proinflammatory cytokine interleukin-1β (IL-1β, which induces

the expression of MMP-3 mRNA and the secretion of MMP-3 protein by dermal fibroblasts.

In this study, we first investigated the contribution of activating transcription factor 2 (ATF-2)

to IL-1β-induced MMP-3 expression in dermal fibroblasts. Our results showed that in cells

transfected with ATF-2 siRNA or treated with the ATF-2 inhibitor SBI-0087702, IL-1β-

induced MMP-3 mRNA expression was reduced. We also demonstrated that IL-1β stimu-

lates the phosphorylation of ATF-2. These observations suggest that ATF-2 plays an impor-

tant role in IL-1β-induced MMP-3 expression. Next, we investigated the role of MAPK

signaling in ATF-2 activation. In cells treated with the extracellular signal-regulated kinase

(ERK) inhibitor FR180240, as well as in cells transfected with ERK1 and ERK2 siRNAs, IL-

1β-induced MMP-3 mRNA expression was reduced. In addition, we showed that IL-1β
induced the phosphorylation of ERK1/2. These observations suggest that ERK1 and ERK2

are involved in IL-1β-induced MMP-3 expression. However, ERK1 and ERK2 do seem to

play different roles. While the ERK inhibitor FR180204 inhibited IL-1β-induced ATF-2 phos-

phorylation, only in cells transfected with ERK1 siRNA, but not ERK2 siRNA, IL-1β-induced

ATF-2 phosphorylation was reduced. These findings suggest that the ERK1/ATF-2 signal-

ing axis contributes to IL-1β-induced MMP-3 expression in dermal fibroblasts.
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Introduction

Wound healing is a complex biological process consisting of inflammation, the formation of

granulation tissues, re-epithelialization, matrix formation, and remodeling [1, 2]. Numerous

cytokines and growth factors, which contribute to the regulation of wound healing [2], are syn-

thesized and secreted in several kinds of cells such as inflammatory cells, keratinocytes, and

fibroblasts in the wounded skin [2]. Mesenchymal-epithelial interactions are considered

important for epithelial homeostasis and regeneration. In the skin, the communication

between keratinocytes and cells of mesenchyme, predominantly dermal fibroblasts, is involved

in wound healing [3–5]. For example, keratinocyte-derived cytokines have been demonstrated

to provoke the expression of genes involved in the process of wound healing in fibroblasts [3,

5, 6].

Interleukin (IL)-1β is a regulatory factor implicated in wound healing. After skin injury,

polymorphonuclear leukocytes, macrophages, and keratinocytes at the wound edges release

IL-1β, which functions in concert with other soluble factors such as transforming growth fac-

tor (TGF)-β and various chemokines to induce wound repair [1, 2, 7, 8]. Recently, the inflam-

masome, a multiprotein complex of the innate immune system responsible for the activation

and release of IL-1β from several skin cell types, has been implicated in the development of

wounds [9].

Matrix metalloproteinases (MMPs), a family of zinc-dependent and neutral endopepti-

dases, play an important role in the process of tissue remodeling by degrading the extracellular

matrix (ECM) components [10, 11]. In addition, MMPs have been implicated in a variety of

normal and pathological cellular processes [10, 11] including wound healing [12, 13]. MMPs

can be classified broadly by substrate specificity into collagenases, gelatinases, stromelysins,

elastases, membrane-type, and other MMPs [10, 14, 15]. Of these, MMP-3 (stromelysin-1)

degrades a broad array of extracellular substrates such as proteoglycan, laminin, fibronectin,

and the non-fibrillar collagens [16]. MMP-3 has been reported to be involved in skin wound

healing [17–22]. Basal expression and activities of MMPs are usually low in normal physiologi-

cal condition. It has been considered that, in response to various stimuli (e.g., inflammatory

cytokines and growth factors), the expression of MMPs is induced, which is primarily regu-

lated at the transcriptional level via tissue/cell-specific intracellular signaling pathways [23–

25].

Activating transcription factor 2 (ATF-2) is a member of the ATF/cyclic AMP-responsive

element binding protein (CREB) family of transcription factors, which contains the basic/leu-

cine zipper motifs (bZIP), and is involved in inflammation by regulating gene expression [26,

27]. ATF-2 has been demonstrated to contribute to the regulation of expression of MMPs such

as MMP-1 [28, 29], MMP-2 [30], MMP-3 [31], MMP-9 [32] and MMP-13 [33]. In the previous

studies, it has been demonstrated that IL-1β induces MMP-3 expression in dermal fibroblasts

[34–36]. However, the contribution and regulation of ATF-2 in the MMP-3 expression is not

fully characterized.

In this study, we demonstrate the contribution of ATF-2 activation via the extracellular-reg-

ulated kinase 1 (ERK1) signaling to IL-1β-induced MMP-3 expression in dermal fibroblasts.

Materials and methods

Materials

Canine recombinant IL-1β was purchased from Kingfisher Biotech, Inc. (Saint Paul, MN).

TRIzol, Lipofectamine 2000 and Opti-MEM were purchased from Life Technologies Co.

(Carlsbad, CA). PrimeScript RT Master Mix, SYBR Premix Ex Taq II, Thermal Cycler Dice
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Real Time System II, TP900 Dice Real Time v4.02B, and CELLBANKER 1 plus medium

were obtained from TaKaRa Bio Inc. (Shiga, Japan). Rabbit monoclonal antibodies against

phospho-ERK1/2 (p-ERK1/2, D13.14.4E), total-ERK1/2 (t-ERK1/2, 137F5), phospho-ATF-

2 (p-ATF-2), and total ATF-2 (t-ATF-2, 20F1) were purchased from Cell Signaling Technol-

ogy Japan, K.K. (Tokyo, Japan). Horseradish peroxidase-conjugated (HRP-conjugated),

anti-rabbit IgG antibodies, ECL Western Blotting Analysis System, and ImageQuant LAS

4000 mini, were purchased from GE Healthcare (Piscataway, NJ). Mini-PROTEAN TGX gel

and polyvinylidene difluoride (PVDF) membranes were obtained from Bio-Rad (Hercules,

CA). Complete mini EDTA-free protease inhibitor mixture and Block Ace were purchased

from Roche (Mannheim, Germany). α-Modified Eagle Minimum essential medium (α-

MEM), phenylmethanesulfonyl fluoride (PMSF), sodium fluoride, 4-(2-hydroxyethyl)-

1-piperazineethanesulfonic acid (HEPES), and 4-aminophenylmercuric acetate were pur-

chased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). Fetal bovine serum (FBS)

was obtained from Biowest (France). SB239063, FR180204, SP600125 and SBI-0087702

were purchased from Sigma-Aldrich Inc. (St Louis, MO). SensoLyte 520 MMP-3 Assay Kit

was purchased from AnaSpec EGT Co. (Fremont, CA). StatMate IV was purchased from

ATMS (Tokyo, Japan).

Cell culture

This study was approved by Nihon University Animal Care and Use Committee (AP13B051).

All the experiments were performed in accordance with the relevant guidelines and regula-

tions. Dog dorsal skin samples (n = 3, healthy 3-year-old beagle dogs, male) were collected

after local anesthesia with 1% lidocaine and 10 μg/mL adrenaline. To minimize potential pain

and infection, remifentanil hydrochloride (3 to 5 μg/kg/min; Janssen Pharmaceutical K.K,

Tokyo, Japan) and cefazolin (22 mg/kg; Nichi-Iko Pharmaceutical Co., Ltd, Toyama, Japan)

were administered intravenously before the time of awakening after anesthesia. Dermal fibro-

blasts were isolated by explant culture as reported previously [37]. Briefly, canine dermis from

the dorsal skin was collected and cut into 3-mm2 sections. Each explant was placed into

90-mm Petri dish. The attached explants were maintained in α-MEM supplemented with 10%

FBS, inside a static-culture incubator at 5% CO2 and 37˚C. The medium was changed once a

week and dermal fibroblasts were obtained as outgrowth cells. The cells were harvested using

0.25% trypsin-EDTA once they reached 90–95% confluence. The collected cells were sus-

pended using CELLBANKER 1 supplemented with medium at a density of 2×106 cells/500 μL,

and 500 μL of the cell suspension was placed into a sterilized serum tube. The tubes were then

placed into a freezing vessel and cryopreserved at -80˚C. Before experiments, serum tubes

were removed from the freezing vessel and immersed into a water bath at 37˚C. The thawed-

out cell suspension was transferred into a centrifuge tube containing α-MEM supplemented

with 10% FBS, and then centrifuged at 300 g for 3 min. After removal of the supernatant, the

pellet was suspended in α-MEM 10% FBS and transferred into a 75-cm2 culture flask. Static

cultures were then maintained under the same conditions as before the cryopreservation. Cells

were harvested using 0.25% trypsin-EDTA once they reached approximately 90% confluency.

Then, the detached cells were seeded at a density of 1×106 cells/75-cm2 culture flask. The

fourth-passaged canine dermal fibroblasts were used for all following experiments. Cells from

different animals were used in different experiments. Cells were characterized by detecting the

mRNA expression of chemotropic factors such as: Netrin-1, Netrin-3, Ephrin-A3, Ephrin-A4,

and Semaphorin-4D as reported previously [37]. The mRNA expression of chemotropic fac-

tors in dermal fibroblasts was lower compared to mesenchymal stem cells, confirming that the

cells are dermal fibroblasts.
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Real-time RT-PCR

Total RNA was extracted from canine dermal fibroblasts with TRIzol reagent. The first-strand

cDNA synthesis was carried out with 500 ng of total RNA using PrimeScript RT Master Mix.

Real-time RT-PCR was performed with 2 μL of the first-strand cDNA in 25 μL (total reaction

volume) with SYBR Premix Ex Taq II. Primers were designed for canine MMP-3, while the

house keeping protein TATA box binding protein (TBP), was used as a control. Table 1 shows

the sequences of primers used for real-time RT-PCR. Real-time RT-PCR of no-template con-

trols was performed with 2 μL of RNase- and DNA-free water. In addition, real-time PCR of

no-reverse transcription control was performed with 2 μL of each RNA sample. All PCR reac-

tions were conducted using Thermal Cycler Dice Real Time System II with the following pro-

tocol: 1 cycle of denaturation at 95˚C for 30 s, 40 cycles of denaturation at 95˚C for 5 s and

annealing/extension at 60˚C for 30 s. The results were analyzed by the second derivative maxi-

mum method and the comparative cycle threshold (ΔΔCt) method using the real-time

RT-PCR analysis software. The amplification of TBP from the same amount of cDNA was

used as an endogenous control, while cDNA amplification from canine dermal fibroblasts at

time 0 was used as a calibration standard.

Western blotting

The cells were lysed with a lysis buffer containing 20 mM HEPES, 1 mM PMSF, 10 mM

sodium fluoride, and a complete mini EDTA-free protease inhibitor cocktail at pH 7.4. Protein

concentrations were adjusted using the Bradford method [38]. Extracted proteins were boiled

at 95˚C for 5 min in SDS buffer. Samples were loaded into separate lanes of 12% Mini-PRO-

TEAN TGX gel and separated by electrophoresis. Separated proteins were transferred to

PVDF membranes, treated with Block Ace for 50 min at room temperature, and incubated

with primary antibodies [p-ERK1/2 (1:1000), t-ERK1/2 (1:1000), p-ATF-2 (1:1000), t-ATF-2

(1:1000)] for 120 min at room temperature. After washing, the membranes were incubated

with an HRP-conjugated anti-rabbit or a mouse IgG antibody (1:10000) for 90 min at room

temperature. Immunoreactivity was detected using ECL Western Blotting Analysis System.

Chemiluminescent signals of the membranes were measured using ImageQuant LAS 4000

mini.

MMP-3 activity assay

Canine dermal fibroblasts were seeded at a density of 3.0×105 cells per well in 6-well culture

plates. The cells were treated with IL-1β after starvation for 24 h, and culture supernatants

were collected. To activate pro-MMP, samples were incubated with 4-aminophenylmercuric

acetate at 37˚C for 24 h. MMP-3 activity in the culture supernatant were measured using the

MMP-3 activity kit according to the manufacturer’s instructions. The activity of MMP-3 was

detected by a fluorescence microplate reader (Fluoroskan Ascent FL, Thermo Fisher Scientific

K.K., Kanagawa, Japan) at excitation/emission wavelengths of 360 nm/460 nm.

Table 1. Primers used for Real-time RT-PCR.

Gene Name Gene bank ID Primer sequences

MMP-3 NM_001002967.1 F: 5ʹ- TGACGATGATGAACAATGGACAAG-3ʹ
R: 5ʹ- GCTAGGGTCAGCCGAGTGAAAG-3ʹ

TBP XM_863452 F: 5'-ACTGTTGGTGGGTCAGCACAAG-3'

R: 5'-ATGGTGTGTACGGGAGCCAAG-3'

https://doi.org/10.1371/journal.pone.0222869.t001
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siRNA transfection

Dermal fibroblasts seeded at a density of 1×105 cells/35-mm dish or 5 × 105 cells/90-mm dish,

were transfected using Opti-MEM containing 5 μl/mL Lipofectamine 2000 and 50 nM ATF-2

or scrambled siRNA for 6 h [37]. The sequences of the siRNA are indicated in the Supplemen-

tary Table 2. The efficiency of siRNA was confirmed by western blotting.

Wound healing assay

Culture-Insert 2 Well (ibidi GmbH, Am Klopferspitz, Germany) was placed on the 35-mm

dish. 70 μl of cell suspension (1×106/ml) were applied into each well of the Culture-Insert 2

Well. After the incubation for 24 h, cell culture inserts were carefully removed followed by

stimulation of IL-1β. The phase-contrast images were analyzed using the MRI Wound Healing

Tool for ImageJ [39].

Statistical analysis

The data from these experiments are presented as the mean ± standard error of measurement.

Statistical analysis was performed using StatMate IV. The data from the time course study

were analyzed using two-way analysis of variance, and the data from other experiments were

analyzed using one-way analysis of variance. Tukey’s test was used as post-hoc analysis. P-val-

ues less than 0.05 were considered statistically significant.

Results

IL-1β induces MMP-3 expression and secretion

We first examined the effect of the inflammatory cytokine IL-1β on MMP-3 protein secretion

in dermal fibroblasts. Cells treated with IL-1β (100 pM) for 24 h showed a time-dependent

increase in MMP-3 activity in the culture medium (Fig 1A). The cells treated with various con-

centration of IL-1β (0–100 pM) for 24 h showed a dose-dependent increase in MMP-3 activity

in the culture medium (Fig 1B). Then, we examined the mRNA expression of MMP-3 using

real-time RT-PCR. Incubation with 100 pM IL-1β enhanced MMP-3 mRNA expression in a

time-dependent manner (Fig 1C) with the maximum effect observed at 6 h, followed by a

decrease in the MMP-3 mRNA expression. The cells treated with various concentration of IL-

1β (0–100 pM) for 6 h showed a dose-dependent induction of the MMP-3 mRNA expression

(Fig 1D), which was similar to the effect of IL-1β on MMP-3 secretion. These observations sug-

gest that IL-1β stimulated MMP-3 secretion by upregulating MMP-3 expression in canine der-

mal fibroblasts.

We checked whether MMP-3 implicated in the cellular biological function, such as cellular

migration. When the cells were treated with IL-1β (100 pM), cell migration occurred in a

time-dependent manner. The MMP-3 inhibitor UK356618 (2 μM, 2 h) significantly inhibited

Table 2. Sequences for siRNA transfection.

Gene Name Gene bank ID siRNA sequences

ATF-2 XM_005640334.2 F: 5'-GUCCAUUUGAGAAUGAAUU-3'

R: 5'-AAUUCAUUCUCAAAUGGAC-3'

ERK1 NM_001252035.1 F: 5'-CCAAUGUGCUCCACCGGGA-3'

R: 5'-UCCCGGUGGAGCACAUUGG-3'

ERK2 NM_001110800.1 F: 5'-CCCAAAUGCUGACUCGAAA-3'

R: 5'-UUUCGAGUCAGCAUUUGGG-3'

https://doi.org/10.1371/journal.pone.0222869.t002
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the IL-1β-induced cell migration (Fig 2A and 2B). These observations suggest that IL-1β con-

tributes to cell migration via MMP-3 expression.

ATF-2 contributes to IL-1β-induced MMP-3 expression

The expression of MMPs has been considered to be primarily regulated at the transcriptional

level, because most members of the MMP family share common cis-elements in their promoter

sequences [23–25]. The transcription factor ATF-2 is known to be involved in the regulation

of numerous proteins and plays a role in the IL-1β-induced increase in their expression [40,

41]. We sought to establish if this previously observed modulatory effect of ATF-2 occurs in

dermal fibroblasts. Fibroblasts pretreated with the ATF-2 inhibitor, SBI-0087702 (10 μM) for

24 h failed to show IL-1β-induced increase in MMP-3 mRNA expression (Fig 3A), suggesting

that ATF-2 facilitates this phenomenon.

Then, we examined ATF-2 phosphorylation in cells treated with IL-1β and found it was

increased with the peak levels occurring 15 min post-treatment, whereas no change in total-

ATF-2 (t-ATF-2) expression was observed. After reaching the peak, the ATF-2 phosphoryla-

tion steadily declined to the basal level within 30 min (Fig 3B). These observations indicate

that ATF-2 was activated by IL-1β stimulation and is likely to contribute to the effect of IL-1β
on MMP-3 expression in dermal fibroblasts. We confirmed that the ATF2 inhibitor SBI-

0087702 reduced IL-1β-induced ATF2 phosphorylation (Fig 3D and 3E).

Fig 1. Time- and dose-dependent IL-1β-induced MMP-3 protein secretion and mRNA expression in dermal

fibroblasts. The cells were incubated with (closed circle) or without (open circle) 100 pM IL-1β for indicated time (a,

c), or with indicated concentrations of IL-1β for 24 h (b) or 6 h (d). At the end of the incubation, protein secretion and

mRNA expression of MMP-3 were detected by ELISA and real-time RT-PCR, respectively. TBP was used as an

internal standard. Values are expressed as the mean ± SE of 3 independent experiments. The F values were 176.78 (a),

20.55 (b), 129.23 (c) and 22.73 (d). The degrees of freedom were 3 (a), 4 (b), 6 (c) and 4 (d). �P< 0.05, compared with

0 h (a, c), 0 pM (b, d).

https://doi.org/10.1371/journal.pone.0222869.g001
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Next we performed ATF-2 knockdown experiment using siRNA transfection. The protein

expression of ATF-2 was significantly reduced in the cells transfected with ATF-2 siRNA, but

not in scramble siRNA-transfected cells (Fig 4A and 4B). In the ATF-2 siRNA-transfected

cells, IL-1β-induced MMP-3 mRNA expression was attenuated (Fig 4C). We confirmed that

IL-1β-induced cellular migration was attenuated in the cells transfected with ATF-2 siRNA

(Fig 4D and 4E). These observations suggest that ATF-2 contributes to IL-1β-induced MMP-3

expression.

ERK signaling pathway is involved in IL-1β-mediated MMP-3 expression

IL-1β has been demonstrated to induce MMP-3 expression via the mitogen-activated protein

(MAPK) signaling pathways [42–44], and ATF-2 has also been shown to be regulated via

MAPK signaling pathways in response to inflammatory cytokines [40, 41, 45, 46]. Then, as the

following study, we examined the relationship between ATF-2 and MAPK signaling pathways.

Fig 2. IL-1β-induced cellular migration in dermal fibroblasts. (a, b) After the pretreatment with (open and closed

square) or without (open and closed circle) the MMP-3 inhibitor UK356618 (2 μM) for 2 h, the cells were incubated

with (closed circle and square) or without (open circle and square) 100 pM IL-1β for indicated time. The

representative images of the cell migration with 100 pM IL-1β for 0–3 days (a) and the time-dependent changes of

wound area (b) were shown. Values are expressed as the mean ± SE of 3 independent experiments. The F values were

11.23 (b, 1 day) 109.93 (b, 2 day) and 36.00 (b, 3 day). The degrees of freedom were 3 (b, 1–3 day). �P< 0.05.

https://doi.org/10.1371/journal.pone.0222869.g002
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Regarding MAPK signaling on IL-1β-induced MMP-3 expression, we investigated the effects

of inhibitors of ERK, c-Jun N-terminal kinase (JNK), and p38 MAPK, which are the enzymes

representing the three main MAPK pathway [47, 48]. In the cells treated with the ERK inhibitor

FR180204 (25 μM) for 1 h, IL-1β failed to induce MMP-3 mRNA expression, whereas

SB203963 (20 μM) and SP600125 (10 μM), inhibitors of p38 MAPK and JNK, respectively,

showed less effects on IL-1β-induced MMP-3 mRNA expression (Fig 5A). Since activated

MAPKs subsequently phosphorylate and activate downstream targets such as transcription fac-

tors and regulators of cell functions, we next examined whether IL-1β activated ERK by detect-

ing the phosphorylation status using immunoblotting with an anti-phospho-ERK1/2 (p-ERK1/

2) antibody. The cells stimulated with 100 pM IL-1β showed an increase in p-ERK1/2 but not

total-ERK1/2 (t-ERK1/2) expression (Fig 5B and 5C). The maximum phosphorylation levels

were observed 5 min after stimulation and then they gradually decreased.

To confirm the contribution of ERK1/2 in IL-1β-induced MMP-3 mRNA expression, we

performed ERK1/2 knockdown experiment using siRNA transfection. The protein expression

of ERK1 or ERK2 was significantly reduced by the transfection with respective siRNAs, but

not with scramble siRNA as a control (Fig 6A–6C). IL-1β-induced MMP-3 mRNA expression

Fig 3. Suppression of IL-1β-induced MMP-3 mRNA expression by an ATF-2 inhibitor and IL-1β-induced ATF-2

phosphorylation. (a) After incubation in the presence or absence of the ATF-2 inhibitor SBI-0087702 (10 μM) for 24

h, the cells were stimulated with 100 pM IL-1β or control for 6 h. At the end of the incubation, MMP-3 mRNA

expression was measured. (b, c) The cells were exposed to 100 pM IL-1β for indicated time intervals. At the end of the

incubation, total (t-) and phosphorylated (p-) ATF-2 were detected by western blotting. For the western blotting, cell

lysate (10 μg protein) was applied to each lane. Representative results of p- and t-ATF-2 expression (b) and the relative

density of p-ATF-2 expression in the cells stimulated with 100 pM IL-1β compared to the results at time point 0 (c) are

shown. (d, e) After incubation in the presence or absence of the ATF-2 inhibitor SBI-0087702 (10 μM) for 24 h, the

cells were stimulated with 100 pM IL-1β or control for 15 min. At the end of the incubation, t- and p-ATF-2 were

detected by western blotting. Representative results of p- and t-ATF-2 expression (d) and the relative density of p-ATF-

2 expression are shown (e). Values are expressed as the mean ± SE of 3 independent experiments. The F values were

53.31 (a), 53.50 (c) and 17.62 (e). The degrees of freedom were 3 (a), 5 (c) and 3 (e). �P< 0.05, compared with 0 h.

https://doi.org/10.1371/journal.pone.0222869.g003
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was attenuated in the ERK1 and ERK2 siRNA-transfected cells compared with the scramble

siRNA-transfected cells (Fig 6D). Subsequently, we performed the experiments with ERK1 and

ERK2 siRNAs together. In the ERK1 and 2 double-knockdown cells, IL-1β-induced MMP-3

mRNA expression was also attenuated (Fig 6D). We observed that IL-1β-induced cellular migra-

tion was attenuated in the cells transfected with siRNA for ERK1 or ERK2. In the ERK1 and 2

double-knockdown cells, IL-1β-induced cellular migration was also attenuated. However, there

is no significant difference between the cells transfected with siRNA for ERK1, ERK2 and ERK1/

Fig 4. Attenuation of IL-1β-induced MMP-3 mRNA expression in fibroblasts transfected with ATF-2 siRNA. (a)

In the cells transfected with ATF-2 and scrambled siRNAs, t-ATF-2 and β-actin were detected by western blotting.

ATF-2 siRNA-transfection, but not scramble siRNA-transfection, decreased the protein expression of ATF-2. β-actin

was used as an internal standard. (b) Relative density of ATF-2 protein expression in siRNA-transfected cells,

compared to that of scrambled siRNA transfected cells, is illustrated. (c) After the transfection with ATF-2 and

scrambled siRNAs, the cells were incubated with or without 100 pM IL-1β for 6 h. At the end of the incubation, MMP-

3 mRNA expression was determined. TBP was used as an internal standard. IL-1β-induced MMP-3 mRNA expression

was attenuated in cells transfected with ATF-2 siRNA compared with those transfected with scrambled siRNA. (d, e)

After the transfection with ATF-2 or scrambled siRNAs, the cells were incubated with or without 100 pM IL-1β for 3

days. The representative images of the cell migration (d) and the calculated wound area (e) were shown. Results are

presented as mean ± SE from 3 independent experiments. Values are expressed as the mean ± SE of 3 independent

experiments. The T values was 31.66 (b). The F value was 137.16 (c) and 142.01 (e). The degrees of freedom were 2 (b),

3 (c) and 3 (e). �P< 0.05.

https://doi.org/10.1371/journal.pone.0222869.g004
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2 (Fig 7A and 7B). These observations strongly suggest that the ERK1/2 activation contributes to

the upregulation of MMP-3 mRNA expression induced by IL-1β in dermal fibroblasts.

ATF-2 contributes to IL-1β-induced MMP-3 expression as a downstream

target of ERK1

In the following study, we examined whether ERK signaling regulated the activation of ATF-2

in IL-1β-treated dermal fibroblasts. We first confirmed that the ERK inhibitor FR180204

Fig 5. Inhibition of IL-1β-induced MMP-3 mRNA expression by an ERK inhibitor and IL-1β-induced ERK1/2

phosphorylation. (a) After incubation in the presence or absence of ERK, p38 and JNK inhibitors (FR180204 (25 μM),

SB203963 (20 μM) and SP600125 (10 μM), respectively), for 1 h, the cells were treated with 100 pM IL-1β for 6 h or left

untreated. At the end of the incubation, MMP-3 mRNA expression was detected. TBP was used as an internal

standard. (b, c) The cells were treated with 100 pM IL-1β for indicated time. At the end of the incubation,

phosphorylated (p-) and total (t-) ERK1/2 were detected by western blotting. Cell lysate (10 μg protein) was applied to

each lane. Representative results of p- and t-ERK1/2 expression (b), and the relative density of p-ERK1/2 expression

compared to the results at time point 0 (c), are shown. Values are expressed as the means ± SE of 3 independent

experiments. The F values were 9.68 (b) and 16.64 (c). The degrees of freedom were 7 (b) and 5 (c). �P< 0.05,

compared with 0 h.

https://doi.org/10.1371/journal.pone.0222869.g005

ERK1/ATF-2 signaling axis and interleukin-1β-induced MMP-3 expression

PLOS ONE | https://doi.org/10.1371/journal.pone.0222869 September 19, 2019 10 / 20

https://doi.org/10.1371/journal.pone.0222869.g005
https://doi.org/10.1371/journal.pone.0222869


(25 μM) reduced IL-1β-induced ERK1/2 phosphorylation (Fig 8A). In the cells treated with

the ERK inhibitor, the phosphorylation of ATF-2 induced by IL-1β was attenuated (Fig 8B).

To examine the contribution of ERK subtypes to ATF-2 phosphorylation, we performed

ERK1/2 knockdown experiment. IL-1β-induced ATF-2 phosphorylation was clearly inhibited

Fig 6. Attenuation of IL-1β-induced MMP-3 mRNA expression in the fibroblasts transfected with ERK1 and

ERK2 siRNAs. (a-c) In the cells transfected with ERK1, ERK2, and scrambled siRNAs, expression of t-ERK1, t-ERK2,

and β-actin was detected by western blotting. ERK1 and ERK2 siRNA-transfection decreased the expression of ERK1

or ERK2, respectively, while scrambled siRNA-transfection did not alter their expression. β-actin was used as an

internal standard. Representative results (a) and relative density of ERK1 or ERK2 protein expression in siRNA-

transfected cells compared to those in scrambled siRNA- transfected cells (b, c) are shown. (d) After the transfection

with ERK1, ERK2 and scrambled siRNAs, the cells were incubated with or without 100 pM IL-1β for 6 h. At the end of

the incubation, MMP-3 mRNA expression was determined. TBP was used as an internal standard. ERK1 and 2 siRNA-

transfection clearly inhibited IL-1β-induced MMP-3 mRNA expression while scrambled siRNA-transfection did not.

The IL-1β-induced MMP-3 mRNA expression was also attenuated in ERK1 and 2 double knockdown cells. Values are

expressed as the mean ± SE of 3 independent experiments. The F values were 675.8 (b), 10.69 (c) and 9.66 (d). The

degrees of freedom were 2 (b), 2 (c) and 7 (d). �P< 0.05.

https://doi.org/10.1371/journal.pone.0222869.g006
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by ERK1 siRNA transfection, but not by scramble siRNA transfection (Fig 8B and 8D). We

also observed that ERK2 siRNA had no effect on IL-1β-induced ATF-2 phosphorylation.

Therefore, we examined the effect of ERK1 and ERK2 double knockdown on IL-1β-induced

ATF-2 phosphorylation. In the cells transfected with ERK1 and ERK2 siRNAs, IL-1β-induced

ATF-2 phosphorylation was reduced compared with a control (Fig 8C and 8D). Taken

together, it is most likely that ERK1 signaling is dominantly involved in the activation of ATF-

2 in IL-1β-induced MMP-3 expression.

Discussion

Several observations suggest that MMP-3 has an important role in wound healing [49]. It was

shown that the expression of MMP-3 in wound effluent of patients with impaired wound heal-

ing was lower than in those with normal wound healing [50]. Additionally, In MMP-3 null

mice, delayed wound healing has been demonstrated. Finally, in MMP-3-deficient fibroblasts,

the ability of fibroblasts to contract collagen gels was reduced. Moreover, MMP-3 has been

also demonstrated to contribute to type I collagenolysis [17]. In this study, we observed that

IL-1β failed to induce cellular migration in the presence of UK356618, a specific inhibitor for

protease activity of MMP-3, suggesting that the protease activity of MMP-3 plays a crucial role

Fig 7. Attenuation of IL-1β-induced cellular migration in the fibroblasts transfected with ERK1 and ERK2

siRNAs. After the transfection with ERK1, ERK2 or scrambled siRNAs, the cells were incubated with or without 100

pM IL-1β for 3 days. The representative images of the cell migration (a) and the calculated wound area (b) were

shown. When the cells were transfected with ERK1 and 2 siRNA, IL-1β-induced cellular migration was clearly

attenuated, while scrambled siRNA-transfection did not. The IL-1β-induced celluar migration was also attenuated in

ERK1 and 2 double knockdown cells. Values are expressed as the mean ± SE of 3 independent experiments. The F

values was 8.40 (b). The degrees of freedom was 7 (b). �P< 0.05.

https://doi.org/10.1371/journal.pone.0222869.g007
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in dermal fibroblasts. Therefore, MMP-3 is considered to have a key role in wound contraction

and tissue remodeling during wound repair [51, 52].

In this study, we demonstrated that the ATF-2 inhibitor SBI-0087702 inhibited IL-1β-

induced MMP-3 mRNA expression and that IL-1β failed to induce MMP-3 mRNA expression

in ATF-2 knockdown cells. Taken together, these observations strongly suggest that ATF-2 is

Fig 8. Attenuation of IL-1β-induced ATF-2 phosphorylation in fibroblasts transfected with ERK1 siRNA but not

with ERK2 siRNA. (a, b) After incubation in the presence or absence of ERK inhibitor FR180204 (25 μM) for 1 h, the

cells were treated with 100 pM IL-1β for 15 min. At the end of the incubation, phosphorylated (p-) and total (t-) ATF-2

(a) and ERK1/2 (b) were detected by western blotting. For the western blotting, cell lysate (10 μg protein) was applied

to each lane. Representative results of p- and t-ATF-2 (a; upper panel) or p- and t-ERK1/2 expression (b; upper panel)

and the relative density of p-ATF-2 (a; lower panel) and p-ERK1/2 expression (b; lower panel) compared to non-

treated cells are illustrated. (c, d) The cells transfected with ERK1, ERK2 and scrambled siRNAs were incubated in the

absence and presence of 100 pM IL-1β for 15 min. Representative results of expression of p- and t-ATF-2 and t-ERK

(c) and the relative density of p-ATF-2 expression compared to scramble siRNA-transfected cells (d) are shown.

siRNA-transfection clearly inhibited the IL-1β-induced ATF-2 phosphorylation compared with scramble or ERK2

siRNA-transfection. The IL-1β-induced ATF-2 phosphorylation was also attenuated in ERK1 and 2 double

knockdown cells. Values are expressed as the mean ± SE of 3 independent experiments. The F values were 9.16 (a),

22.71 (b) and 49.48 (d). The degrees of freedom were 3 (a), 3 (b) and 7 (d). �P< 0.05.

https://doi.org/10.1371/journal.pone.0222869.g008
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involved in IL-1β-stimulated MMP-3 expression in dermal fibroblasts. In unstimulated cells,

ATF-2 is maintained in a transcriptionally inactive form by an intramolecular inhibitory inter-

action. Namely, the DNA binding domain is folded and binds to the amino-terminal transacti-

vation domain [53]. In response to stimuli, N-terminal phosphorylation has been demonstrated

to release the intramolecular inhibition and lead to the activation of ATF-2 [54–56]. Activated

ATF-2 regulates gene expression through homo- or hetero-dimerization with other AP-1 family

members, such as the CREB, Fos, Maf, or Jun family transcription factors [57, 58]. Additionally,

the phosphorylation of ATF-2 has also been demonstrated to control its degradation [59]. It is

possible that such mechanisms can influence MMP-3 expression induced by IL-1β, because IL-

1β induces ATF-2 phosphorylation in dermal fibroblasts.

MAPK pathways have been reported to phosphorylate ATF-2. In response to stimuli

including inflammatory cytokines, JNK and p38 MAPK, phosphorylate ATF-2 at amino acids

Thr69 and Thr71 [45, 55, 60]. ERK1/2 was also reported to phosphorylate ATF-2 at Thr71 in

the ultraviolet response [61]. In cells stimulated with growth factors such as insulin and epider-

mal growth factor, the cooperative interaction between ERK and p38 pathways has been sug-

gested as a two-step mechanism, in which the Ras-Raf-MEK-ERK pathway triggers ATF-2

Thr71 phosphorylation, and the Ras-Ral-Src-p38 pathway subsequently stimulates Thr69

phosphorylation [62]. In our study, the ERK inhibitor significantly inhibited IL-1β-induced

MMP-3 mRNA expression, but not p38 and JNK inhibitors, and attenuated IL-1β-induced

ATF-2 phosphorylation. Therefore, it is likely that ATF-2 Thr71 phosphorylation is involved

in IL-1β-induced MMP-3 expression in dermal fibroblasts.

Multiple MAPK signaling pathways are activated by several stimuli including cytokines

such as IL-1β [48]. In the previous study, it has been reported that three major MAPK signal-

ing pathways, ERK, JNK, and p38 MAPK, are activated in IL-1β-treated periadipocytes [63].

In cardiac fibroblasts, IL-1β-induced p38 MAPK activation was reported to contribute to

MMP3 expression [64]. In human dermal fibroblasts, ultraviolet B induces the activation of

JNK and p38 MAPK [65]. We previously reported that IL-1β activated ERK, JNK and p38

MAPK and subsequently induced COX-2 expression in feline synovial fibroblasts [66]. On the

other hand, in canine dermal fibroblasts, we observed that IL-1β induced COX-2 expression

via the activation of ERK signaling [37]. These observations strongly suggest that the response

of MAPKs is highly dependent on the cellular context. ERK1 and ERK2, ERK isoforms, possess

83% amino acid identity and are co-expressed in most tissues [67, 68]. These two isoforms are

generally co-activated in cells stimulated with multiple extracellular stimuli [69–71]. Recently,

the functional differences between the two isoforms were demonstrated using antisense tech-

niques or siRNA transfection [66, 68, 72–76]. Here, we performed ERK-knockdown experi-

ments by treatment with ERK isoform-specific siRNA. Both in ERK1 and ERK2 knockdown

cells, IL-1β-induced MMP-3 mRNA expression was attenuated. However, IL-1β-induced

ATF-2 phosphorylation was attenuated in ERK1 knockdown cells, but not in ERK2- knock-

down cells. These results suggest that ERK1 contributes to MMP-3 expression via transcrip-

tional activation of ATF-2 in dermal fibroblasts. On the other hand, transcriptional regulation

of MMP-3 via ERK2 pathway remained unclear, which appears to cause the partially inhibitory

effect of ATF-2 inhibitor on IL-1β-induced MMP-3 mRNA expression.

In cells treated with an ATF-2 inhibitor and transfected with ATF-2 siRNA, IL-1β-induced

MMP-3 mRNA expression was partially inhibited. These results suggest that other transcrip-

tion factors may probably contribute to IL-1β-induced MMP-3 mRNA expression as well as

ATF-2. Genes of MMP family including MMP-3 contain several cis-elements in their pro-

moter sequences, which allow a tight control of cell-specific MMP gene expression by a diverse

set of trans-activators, such as polyomavirus enhancer-A binding protein-3 (PEA3) and NF-

κB, as well as ATF-2 [24, 77]. In this study, in cells treated with an ERK1/2 inhibitor and

ERK1/ATF-2 signaling axis and interleukin-1β-induced MMP-3 expression
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transfected with ERK1 or 2 siRNA, the effect of IL-1β on MMP-3 mRNA expression was inhib-

ited. However, the IL-1β-induced ATF2 phosphorylation was attenuated in the cells trans-

fected ERK1 siRNA, but not ERK2 siRNA. Therefore, ERK2 pathway appears to be necessary

for activating other transcription factors in fully MMP-3 expression induced by IL-1β.

Fig 9. ERK1/ATF-2 signaling axis contributes to IL-1β-induced MMP-3 expression in dermal fibroblasts. In

dermal fibroblasts, ERK1 contributes to IL-1β evoked the activation of ERK1/ATF-2 signaling axis, which contributes

to cellular migration via MMP-3 expression. ERK2 pathway appears to be necessary for activating other transcription

factors in fully MMP-3 expression induced by IL-1β.

https://doi.org/10.1371/journal.pone.0222869.g009
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Currently our laboratory is trying to further clarify the role of such transcription factors regu-

lated by ERK2.

Conclusions

In conclusion, the findings of this study are significantly helping the understanding of the

ERK1 MAPK signaling axis, and the role of transcription factor ATF-2, in respect to IL-1β-

induced MMP-3 expression in dermal fibroblasts (Fig 9). Such mechanism regulating MMP-3

expression, appears to be important for the occurrence of wound healing in the skin.
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