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Abstract: Medical image processing provides core innovation for medical imaging. This paper is focused on recent de-
velopments from science to applications analyzing the past fifteen years of history of the proceedings of the German an-
nual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their 
personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) 
model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and 
(vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with 
clear trends to integrated applications in diagnostics, treatment planning and treatment.  
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1. INTRODUCTION 

Current advances in medical imaging are made in fields 
such as instrumentation, diagnostics, and therapeutic applica-
tions and most of them are based on imaging technology and 
image processing. In fact, medical image processing has 
been established as a core field of innovation in modern 
health care [1] combining medical informatics, neuro-
informatics and bioinformatics [2].  

In 1984, the Society of Photo-Optical Instrumentation 
Engineers (SPIE) has launched a multi-track conference on 
medical imaging, which still is considered as the core event 
for innovation in the field [Methods]. Analogously in Ger-
many, the workshop “Bildverarbeitung für die Medizin 
(BVM)” (Image Processing for Medicine) has recently cele-
brated its 20th annual performance. The meeting has evolved 
over the years to a multi-track conference on international 
standard [3, 4, 5, 6, 7, 8, 9].  

Nonetheless, it is hard to name the most important and 
innovative trends within this broad field ranging from image 
acquisition using novel imaging modalities to information 
extraction in diagnostics and treatment. Ritter et al. recently 
emphasized on the following aspects: (i) enhancement, (ii) 
segmentation, (iii) registration, (iv) quantification, (v) visu-
alization, and (vi) computer-aided detection (CAD) [10]. 

Another concept of structuring is here referred to as the 
“from-to” approach. For instance, 
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• From nano to macro: Co-founded in 2002 by Michael 
Unser of EPFL, Switzerland, The Institute of Electrical 
and Electronics Engineers (IEEE) has launched an inter-
national symposium on biomedical imaging (ISBI). This 
conference is focused in the motto from nano to macro 
covering all aspects of medical imaging from sub-
cellular to the organ level. 

• From production to sharing: Another “from-to” migra-
tion is seen in the shift from acquisition to communica-
tion [11]. Clark et al. expected advances in the medical 
imaging fields along the following four axes: (i) image 
production and new modalities; (ii) image processing, 
visualization, and system simulation; (iii) image man-
agement and retrieval; and (iv) image communication 
and telemedicine. 

• From kilobyte to terabyte: Deserno et al. identified an-
other “from-to” migration, which is seen in the amount 
of data that is produced by medical imagery [12]. To-
day, High-resolution CT reconstructs images with 8000 
x 8000 pixels per slice with 0.7 μm isotropic detail de-
tectability, and whole body scans with this resolution 
reach several Gigabytes (GB) of data load. Also, micro-
scopic whole-slide scanning systems can easily provide 
so-called virtual slices in the rage of 30.000 x 50.000 
pixels, which equals 16.8 GB on 10 bit gray scale. 

• From science to application: Finally, in this paper, we 
aim at analyzing recent advantages in medical imaging 
on another level. The focus is to identify core fields fos-
tering transfer of algorithms into clinical use and ad-
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dressing gaps still remaining to be bridged in future re-
search.  

The remainder of this review is organized as follows. In 
Section 3, we briefly analyze the history of the German 
workshop BVM. More than 15 years of proceedings are cur-
rently available and statistics is applied to identify trends in 
content of conference papers. Section 4 then provides per-
sonal viewpoints to challenging and pioneering fields. The 
results are discussed in Section 5. 

2. THE GERMAN HISTORY FROM SCIENCE TO 

APPLICATION 

Since 1994, annual proceedings of the presented contri-
butions from the BVM workshops have been published, 
which are available electronically in postscript (PS) or the 
portable document format (PDF) from 1996. Disregarding 
the type of presentation (oral, poster, or software demonstra-
tion), the authors are allowed to submit papers with a length 
of up to five pages. In 2012 the length was increased to six 
pages. Both, English and German papers are allowed. The 
number of English contributions increased steadily over the 
years, and reached about 50% in 2008 [8].  

In order to analyze the content of the on average 124k 
words long proceedings regarding the most relevant topics 
that were discussed on the BVM workshops, the incidence of 
the most frequent words has been assessed for each proceed-

ing from 1996 until 2012. From this investigation, about 300 
common words of the German and English language (e.g. 
and / und, etc.) have been excluded. (Fig. 1) presents a word 
cloud computed from the 100 most frequent terms used in 
the proceedings of the 2012 BVM workshop. The font sizes 
of the words refer to their counted frequency in the text.  

It can be seen, in 2012, “image” was the most frequent 
word occurring in the BVM proceedings (920 incidences), as 
also observed in all the other years (1996-2012: 10,123 inci-
dences). Together with terms like “reconstruction”, “analy-
sis”, or “processing”, medical imaging is clearly recogniz-
able as the major subject of the BVM workshops. 

Concerning the scientific direction of the BVM meeting 
over time, terms such as “segmentation”, “registration”, and 
“navigation”, which indicate image processing procedures 
relevant for clinical applications, have been used with in-
creasing frequencies (Fig. 2, left). The same holds for terms 
like “evaluation” or “experiment”, which are related to the 
validation of the contributions (Fig. 2, middle), constituting a 
first step towards the transition of the scientific results into a 
clinical application. (Fig. 2 right) shows the occurrence of 
the words “patient” and “application” in the contributed pa-
pers of the BVM workshops between 1996 and 2012. Here, 
rather constant numbers of occurrences are found indicating 
a stringent focus on clinical applications.  

 
Fig. (1). Word cloud representing the most frequent 100 terms counted from the 469 page long BVM proceedings 2012 [13].  

 
Fig. (2). Trends from BVM workshop proceedings from important terms of processing procedures (left), experimental verification (middle), 
and application to humans (right). 
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3. VIEWPOINTS FROM SCIENCE TO APPLICATION 

3.1. Multi-modal Image Processing for Imaging and  

Diagnosis 

Multi-modal imaging refers to (i) different measurements 
at a single tomographic system (e.g., MRI and functional 
MRI), (ii) measurements at different tomographic systems 
(e.g., computed tomography (CT), positron emission tomo-
graphy (PET), and single photon emission computed tomo-
graphy (SPECT)), and (iii) measurements at integrated to-
mographic systems (PET/CT, PET/MR). Hence, multi-modal 
tomography has become increasingly popular in clinical and 
preclinical applications (Fig. 3) providing images of mor-
phology and function (Fig. 4).  

 

Fig. (3). PubMed cited papers for search “multimodal AND (im-
aging OR tomography OR image)”. 

Multi-modal image processing for enhancing multi-
modal imaging procedures primarily deals with image recon-
struction and artifact reduction. Examples are the integration 
of additional information about tissue types from MRI as an 
anatomical prior to the iterative reconstruction of PET im-
ages [14] and the CT- or MR-based correction of attenuation 
artifacts in PET, respectively, which is an essential prerequi-
site for quantitative PET analysis [15, 16]. Since these algo-
rithms are part of the imaging workflow, only highly auto-
mated, fast, and robust algorithms providing adequate accu-
racy are appropriate solutions. Accordingly, the whole image 
in the different modalities must be considered. 

This requirement differs for multi-modal diagnostic ap-
proaches. In most applications, a single organ or parts of an 
organ are of interest. Anatomical and particularly pathologi-
cal regions often show a high variability due to structure, 
deformation, or movement, which is difficult to predict and 
is thus a great challenge for image processing. In multi-
modality applications, images represent complementary in-
formation often obtained at different time-scales introducing 
additional complexity for algorithms. Other inequalities are 
introduced by the different resolutions and fields of view 
showing the organ of interest in different degrees of com-
pleteness. From a scientific and thus algorithmic point of 
view, image processing methods for multi-modal images 
must meet higher requirements than those applied to single-
modality images.  

Looking exemplarily at segmentation as one of the most 
complex and demanding problems in medical image process-

ing, the modality showing anatomical and pathological struc-
tures in high resolution and contrast (e.g., MRI, CT) is typi-
cally used to segment the structure or volume of interest 
(VOI) to subsequently analyze other properties such as func-
tion within these target structures. Here, the different resolu-
tions have to be regarded to correct for partial volume effects 
in the functional modality (e.g., PET, SPECT). Since the 
structures to be analyzed are dependent on the disease of the 
actual patient examined, automatic segmentation approaches 
are appropriate solutions if the anatomical structures of in-
terest are known beforehand [17], while semi-automatic ap-
proaches are advantageous if flexibility is needed [18, 19]. 

Transferring research into diagnostic application software 
requires a graphical user interface (GUI) to parameterize the 
algorithms, 2D and 3D visualization of multi-modal images 
and segmentation results, and tools to interact with the visu-
alized images during the segmentation procedure. The Medi-
cal Interaction Toolkit [20] or the MevisLab [21] provide the 
developer with frameworks for multi-modal visualization, 
interaction and tools to build appropriate GUIs, yielding an 
interface to integrate new algorithms from science to appli-
cation.  

Another important aspect transferring algorithms from 
pure academics to clinical practice is evaluation. Phantoms 
can be used for evaluating specific properties of an algo-
rithm, but not for evaluating the real situation with all its 
uncertainties and variability. Thus, the most important step 
of migrating is extensive testing of algorithms on large 
amounts of real clinical data, which is a great challenge par-
ticularly for multi-modal approaches, and should in future be 
more supported by publicly available databases. 

3.2. Analysis of Diffusion Weighted Images 

Due to its sensitivity to micro-structural changes in white 
matter, diffusion weighted imaging (DWI) is of particular 
interest to brain research. Stroke is the most common and 
well known clinical application of DWI, where the images 
allow the non-invasive detection of ischemia within minutes 
of onset and are sensitive and relatively specific in detecting 
changes triggered by strokes [22]. The technique has also 
allowed deeper insights into the pathogenesis of Alzheimer’s 
disease, Parkinson disease, autism spectrum disorder, 
schizophrenia, and many other psychiatric and non-
psychiatric brain diseases. DWI is also applied in the imag-
ing of (mild) traumatic brain injury, where conventional 
techniques lack sensitivity to detect the subtle changes oc-
curring in the brain. Here, studies on sports-related traumata 
in the younger population have raised considerable debates 
in the recent past [23].  

Methodologically, recent advances in the generation and 
analysis of large-scale networks on basis of DWI are particu-
larly exciting and promise new dimensions in quantitative 
neuro-imaging via the application of the profound set of 
tools available in graph theory to brain image analysis [24]. 
DWI sheds light on the living brain network architecture, 
revealing the organization of fiber connections together with 
their development and change in disease.  

Big challenges remain to be solved though: Despite many 
years of methodological development in DWI post-
processing, the field still seems to be in its infancy. The reli-
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able tractography-based reconstruction of known or patho-
logical anatomy is still not solved. Current reconstruction 
challenges at the 2011 and 2012 annual meetings of the 
Medical Image Computing and Computer Assisted Interven-
tion (MICCAI) Society have demonstrated the lack of meth-
ods that can reliably reconstruct large and well-known struc-
tures like the cortico-spinal tract in datasets of clinical qual-
ity [25]. Missing reference-based evaluation techniques hin-
der the well-founded demonstration of the real advantages of 
novel tractography algorithms over previous methods [26]. 
The mentioned limitations have obscured a broader applica-
tion of DWI tractography, e.g. in surgical guidance. Even 
though the application of DWI e.g. in surgical resection has 
shown to facilitate the identification of risk structures [27], 
the widespread use of these techniques in surgical practice 
remains limited mainly by the lack of robust and standard-
ized methods that can be applied multi-centered across insti-
tutions and comprehensive evaluation of these algorithms. 

However, there are numerous applications of DWI in 
cancer imaging, which bridge imaging science and clinical 
application. The imaging modality has shown potential in the 
detection, staging and characterization of tumors (Fig. 5), the 
evaluation of therapy response, or even in the prediction of 
therapy outcome [28]. DWI was also applied in the detection 
and characterization of lesions in the abdomen and the pel-
vis, where increased cellularity of malignant tissue leads to 

restricted diffusion when compared to the surrounding tissue 
[29]. The challenge here again will be the establishment of 
reliable sequences and post-processing methods for the 
wide-spread and multi-centric application of the techniques 
in the future. 

3.3. Model-Based Image Analysis 

As already emphasized in the previous viewpoints, there 
is a big gap between the state of the art in current research 
and methods available in clinical application, especially in 
the field of medical image analysis [30]. Segmentation of 
relevant image structures (tissues, tumors, vessels etc.) is 
still one of the key problems in medical image computing 
lacking robust and automatic methods. The application of 
pure data-driven approaches like thresholding, region grow-
ing, edge detection, or enhanced data-driven methods like 
watershed algorithms, Markov random field (MRF)-based 
approaches, or graph cuts often leads to weak segmentations 
due to low contrasts between neighboring image objects, 
image artifacts, noise, partial volume effects etc.  

Model-based segmentation integrates a-priori knowledge 
of the shapes and appearance of relevant structures into the 
segmentation process. For example, the local shape of a ves-
sel can be characterized by the vesselness operator [31], 
which generates images with an enhanced representation of 

 

Fig. (4). Morphological and functional imaging in clinical and pre-clinical applications. 
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vessels. Using the vesselness information in combination 
with the original grey value image segmentation of vessels 
can be improved significantly and especially the segmenta-
tion of a small vessel becomes possible (e.g. [32]).  

In statistical or active shape and appearance models [33, 
34], shape variability in organ distribution among individuals 
and characteristic gray value distributions in the neighbor-
hood of the organ can be represented. In these approaches, a 
set of segmented image data is used to train active shape and 
active appearance models, which include information about 
the mean shape and shape variations as well as characteristic 
gray value distributions and their variation in the population 
represented in the training data set. Instead of direct point-to-
point correspondences that are used during the generation of 
classical statistical shape models, Hufnagel et al. have sug-
gested probabilistic point-to-point correspondences [35]. 
This approach takes into account that often inaccuracies are 
unavoidable by the definition of direct point correspon-
dences between organs of different persons. In probabilistic 
statistical shape models, these correspondence uncertainties 
are respected explicitly to improve the robustness and accu-
racy of shape modeling and model-based segmentation. Inte-
grated in an energy minimizing level set framework, the 
probabilistic statistical shape models can be used for en-
hanced organ segmentation [36].  

In contrast thereto, atlas-based segmentation methods 
(e.g., [37]) realize a case-based approach and make use of 
the segmentation information contained in a single seg-

mented data set, which is transferred to an unseen patient 
image data set. The transfer of the atlas segmentation to the 
patient segmentation is done by inter-individual non-linear 
registration methods. Multi-atlas segmentation methods us-
ing several atlases have been proposed (e.g. [38]) and show 
an improved accuracy and robustness in comparison to sin-
gle atlas segmentation methods. Hence, multi-atlas ap-
proaches are currently in the focus of further research [39, 40]. 

In future, more task-oriented systems integrated into di-
agnostic processes, intervention planning, therapy and fol-
low-up are needed. In the field of image analysis, due the 
limited time of the physicians, automatic procedures are of 
special interest to segment and extract quantitative object 
parameters in an accurate, reproducible and robust way. Fur-
thermore, intelligent and easy-to-use methods for fast correc-
tion of unavoidable segmentation errors are needed. 

3.4. Registration of Section Images 

Imaging techniques such as histology [41] or auto-
radiography [42] are based on thin post-mortem sections. In 
comparison to in-vivo imaging, e.g. positron emission tomo-
graphy (PET), magnetic resonance imaging (MRI), or DWI 
(as addressed in the previous viewpoint, cf. Section 4.1), 
several properties are considered advantageous. For instance, 
tissue can be processed after sectioning to enhance contrast 
(e.g. staining) [43], to mark specific properties like receptors 
[44] or to apply laser ablation studying the spatial element 
distribution [45]; tissue can be scanned in high-resolution 
[43]; and tissue is thin enough to allow optical light trans-
mission imaging, e.g. polarized light imaging (PLI) [46]. 
Therefore, section imaging results in high space-resolved 
and high-contrasted data, which supports findings such as 
cytoarchitectonic boundaries [47], neuronal fiber directions 
[48], and receptor or element distributions [45].  

Restacking of 2D sections into a 3D volume followed by 
the fusion of this stack with an in-vivo volume is the chal-
lenging task of medical image processing on the track from 
science to application. The 3D section stacks then serve as an 
atlas for a large variety of applications. Sections are non-
linearly deformed during cutting and post-processing. Addi-
tionally, discontinuous artifacts like tears or enrolled tissue 
hamper the correspondence of true structure and tissue im-
aged.  

The so-called “problem of the digitized banana” [41] 
prohibits the section-by-section registration without 3D ref-
erence. Smoothness of registered stacks is not equivalent to 
consistency and correctness. Whereas the deformations are 
section-specific, the orientation of the sections in comparison 
to the 3D structure depends on the cutting direction and, 
thus, is the same for all sections. In this tangled situation the 
question rises, if it is better to (i) restack the sections first, 
register the whole stack afterwards and correct for deforma-
tions at last (volume-first approach) or (ii) to register each 
section individually to the 3D reference volume while cor-
recting deformations at the same time (section-first ap-
proach). Both approaches combine 
• Multi-modal registration: The need of a 3D reference 

and the application to correlate high-resolution section 
imaging findings with in-vivo imaging are sometimes 

 

Fig. (5). Depiction of fiber tracts in the vicinity of a grade IV 
glioblastoma. The volumetric tracking result (yellow) was overlaid 
on an axial T2-FLAIR image. Red and green arrows indicate the 
necrotic tumor core and peritumoral hyperintensity, respectively. In 
the frontal parts, fiber tracts are still depicted, whereas in the dorsal 
part, tracts seem to be either displaced or destructed by the tumor. 
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solved at the same time. If possible, the 3D in-vivo mo-
dality itself is used as a reference.  

• Multi-resolution registration: One of the most interest-
ing features of section imaging is its high resolution in 
the x- and y-direction. The z-resolution is determined by 
the section thickness (25 μm – 150 μm) and the number 
of sections. Registration has to address non-equidistant 
sectioning (Fig. 6). 

Due to the variety of difficulties, missing evaluation pos-
sibilities and section specifics like post-processing, embed-
ding, cutting procedure and tissue type there is not just one 
best approach to come from 2D to 3D. But careful work in 
this field is paid off by cutting edge applications. Not least 
within the European flagship, The Human Brain Project 
(HBP), further research in this area of medical image proc-
essing is demanded. The state-of-the-art review of HBP 

states in the context of human brain mapping: “What is miss-
ing to date is an integrated open source tool providing a 
standard application programming interface (API) for data 
registration and coordinate transformations and guaranteeing 
multi-scale and multi-modal data accuracy” [49]. Such a tool 
will narrow the gap from science to application. 

3.5. From Images to Information in Digital Endoscopy  

Basic endoscopic technologies and their routine applica-
tions (Fig. 7, bottom layers) still are purely data-oriented, as 
the complete image analysis and interpretation is performed 
solely by the physician. If content of endoscopic imagery is 
analyzed automatically, several new application scenarios for 
diagnostics and intervention with increasing complexity can 
be identified (Fig. 7, upper layers). As these new possibilities 
of endoscopy are inherently coupled with the use of comput-

 

Fig. (6). Characteristic flow chart of volume-first approach and volume generation with (gray boxes) or without blockface images as inter-
mediate reference modality (Column I). Either the in-vivo volume is post-processed to generate a pseudo-high-resolution volume with propa-
gated section gaps (Column II) or the section volume is post-processed to get a low-resolution stack with filled gaps (Column III) [42]. 
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ers, these new endoscopic methods and applications can be 
referred to as computer-integrated endoscopy [50]. Informa-
tion, however, is referred to on the highest of the five levels 
of semantics (Fig. 7):  
1. Acquisition: Advancements in diagnostic endoscopy were 

obtained by glass fibers for the transmission of electric 
light into and image information out of the body. Besides 
the pure wire-bound transmission of endoscopic imagery, 
in the past 10 years wireless broadcast came available for 
gastroscopic video data captured from capsule endo-
scopes [51]. 

2. Transportation: Based on digital technologies, essential 
basic processes of endoscopic still image and image se-
quence capturing, storage, archiving, documentation, an-
notation and transmission have been simplified. These 
developments have initially led to the possibilities for 
tele-diagnosis and tele-consultations in diagnostic endo-
scopy, where the image data is shared using local net-
works or the internet [52].  

3. Enhancement: Methods and applications for image en-
hancement include intelligent removal of honey-comb 
patterns in fiberscopic recordings [53], temporal filtering 
for the reduction of ablation smoke and moving particles 
[54], image rectification for gastroscopes. Additionally, 
besides having an increased complexity, they have to 
work in real time with a maximum delay of 60 millisec-
onds, to be acceptable for surgeons and physicians. 

4. Augmentation: Image processing enhances endoscopic 
views with additional type of information. Examples of 
this type are artificial working horizon, key-hole views to 
endoscopic panorama-images [55], 3D surfaces com-
puted from point clouds obtained by special endoscopic 
imaging devices such as stereo endoscopes [56], time-of-
flight endoscopes [57], or shape-from polarization ap-
proaches [58]. This level also includes the possibilities of 
visualization and image fusion of endoscopic views with 
preoperative acquired radiological imagery such as angi-
ography or CT data [59] for better intra-operative orien-
tation and navigation, as well as image-based tracking 
and navigation through tubular structures [60]. 

5. Content: Methods of content-based image analysis con-
sider the automated segmentation, characterization and 

classification of diagnostic image content. Such methods 
describe computer-assisted detection (CADe) [61] of le-
sions (such as e.g. polyps) or computer-assisted diagnos-
tics (CADx) [62], where already detected and delineated 
regions are characterized and classified into, for instance, 
benign or malign tissue areas. Furthermore, such methods 
automatically identify and track surgical instruments, e.g. 
supporting robotic surgery approaches. 
On the technical side the semantics of the extracted im-

age contents increases from the pure image recording up to 
the image content analysis level. This complexity also relates 
to the expected time axis needed to bring these methods from 
science to clinical applications.  

From the clinical side, the most complex methods such as 
automated polyp detection (CADe) are considered as most 
important. However, it is expected that computer-integrated 
endoscopy systems will increasingly enter clinical applica-
tions and as such will contribute to the quality of the pa-
tient’s healthcare.  

3.6. Virtual Reality and Robotics 

Virtual reality (VR) and robotics are two rapidly expand-
ing fields with growing application in surgery. VR creates 
three-dimensional environments increasing the capability for 
sensory immersion, which provides the sensation of being 
present in the virtual space. Applications of VR include sur-
gical planning, case rehearsal, and case playback, which 
could change the paradigm of surgical training, which is es-
pecially necessary as the regulations surrounding residencies 
continue to change [63]. Surgeons are enabled to practice in 
controlled situations with preset variables to gain experience 
in a wide variety of surgical scenarios [64]. 

With the availability of inexpensive computational power 
and the need for cost-effective solutions in healthcare, medi-
cal technology products are being commercialized at an in-
creasingly rapid pace. VR is already incorporated into sev-
eral emerging products for medical education, radiology, 
surgical planning and procedures, physical rehabilitation, 
disability solutions, and mental health [65]. For example, VR 
is helping surgeons learn invasive techniques before operat-
ing, and allowing physicians to conduct real-time remote 
diagnosis and treatment. Other applications of VR include 

 

Fig. (7). Modules to build computer-integrated endoscopy, which enables information gain from image data. 
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the modeling of molecular structures in three dimensions as 
well as aiding in genetic mapping and drug synthesis. 

In addition, the contribution of robotics has accelerated 
the replacement of many open surgical treatments with more 
efficient minimally invasive surgical techniques using 3D 
visualization techniques. Robotics provides mechanical as-
sistance with surgical tasks, contributing greater precision 
and accuracy and allowing automation. Robots contain fea-
tures that can augment surgical performance, for instance, by 
steadying a surgeon’s hand or scaling the surgeon’s hand 
motions [66]. Current robots work in tandem with human 
operators to combine the advantages of human thinking with 
the capabilities of robots to provide data, to optimize local-
ization on a moving subject, to operate in difficult positions, 
or to perform without muscle fatigue. Surgical robots require 
spatial orientation between the robotic manipulators and the 
human operator, which can be provided by VR environments 
that re-create the surgical space. This enables surgeons to 
perform with the advantage of mechanical assistance but 
without being alienated from the sights, sounds, and touch of 
surgery [67].  

After many years of research and development, Japanese 
scientists recently presented an autonomous robot which is 
able to realize surgery within the human body [68]. They 
send a miniature robot inside the patient’s body, perceive 
what the robot saw and touched before conducting surgery 
by using the robot’s minute arms as though as it were the 
one’s of the surgeon. 

While the possibilities – and the need – for medical VR 
and robotics are immense, approaches and solutions using 
new applications require diligent, cooperative efforts among 
technology developers, medical practitioners and medical 
consumers to establish where future requirements and de-
mand will lie. Augmented and virtual reality substituting or 
enhancing the reality can be considered as multi-reality ap-
proaches [69], which are already available in commercial 
products for clinical applications. 

4. DISCUSSION 

In this paper, we have analyzed the written proceedings 
of the German annual meeting on Medical Imaging (BVM) 
and presented personal viewpoints on medical image proc-
essing focusing on the transfer from science to application. 
Reflecting successful clinical applications and promising 
technologies that have been recently developed, it turned out 
that medical image computing has transferred from single- to 
multi-images, and there are several ways to combine these 
images: 
• Multi-modality: Figs. 2 and 3 have emphasized that 

medical image processing has been moved away from 
the simple 2D radiograph via 3D imaging modalities to 
multi-modal processing and analyzing. Successful appli-
cations that are transferrable into the clinics jointly 
process imagery from different modalities. 

• Multi-resolution: Here, images with different properties 
from the same subject and body area need alignment and 
comparison. Usually, this implies a multi-resolution ap-
proach, since different modalities work on different 
scales of resolutions.  

• Multi-scale: If data becomes large, as pointed out for 
digital pathology, algorithms must operate on different 
scales, iteratively refining the alignment from coarse-to-
fine. Such algorithmic design usually is referred to as 
multi-scale approach.  

• Multi-subject: Models have been identified as key issue 
for implementing applicable image computing. Such 
models are used for segmentation, content understand-
ing, and intervention planning. They are generated from 
a reliable set of references, usually based on several sub-
jects.  

• Multi-atlas: Even more complex, the personal view-
points have identified multi-atlas approaches that are 
nowadays addressed in research. For instance in seg-
mentation, accuracy and robustness of algorithms are 
improved if they are based on multiple rather than a sin-
gle atlas. Both, accuracy and robustness are essential re-
quirements for transferring algorithms into the clinical 
use. 

• Multi-semantics: Based on the example of digital endo-
scopy, another “multi” term is introduced. Image under-
standing and interpretation has been defined on several 
levels of semantics, and successful applications in com-
puter-integrated endoscopy are operating on several of 
such levels. 

• Multi-reality: Finally, our last viewpoint has addressed 
the augmentation of the physician’s view by means of 
virtual reality. Medical image computing is applied to 
generate and superimpose such views, which results in a 
multi-reality world. 

Andriole, Barish, and Khorasani also have discussed is-
sues to consider for advanced image processing in the clini-
cal arena [70]. In completion of the collection of “multi” 
issues, they emphasized that radiology practices are experi-
encing a tremendous increase in the number of images asso-
ciated with each imaging study, due to multi-slice, multi-
plane and/or multi-detector 3D imaging equipment. Com-
puter-aided detection used as a second reader or as a first-
pass screener will help maintaining or perhaps improving 
readers' performance on such big data in terms of sensitivity 
and specificity. 

Last not least, with all these “multies”, the computational 
load of algorithms again becomes an issue. Modern comput-
ers provide enormous computational power and yield a revis-
iting and applications of several “old” approaches, which did 
not find their way into the clinical use yet, just because of 
the processing times. However, combining many images of 
large sizes, processing time becomes crucial again. Scholl et 
al. have recently addressed this issue reviewing applications 
based on parallel processing and usage of graphical proces-
sors for image analysis [12]. These are seen as multi-
processing methods. 

In summary, medical image processing is a progressive 
field of research, and more and more applications are becom-
ing part of the clinical practice. These applications are based 
on one or more of the “multi” concepts that we have ad-
dressed in this review. However, effects from current trends 
in the Medical Device Directives that increase the efforts 
needed for clinical trials of new medical imaging procedure, 
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cannot be observed until today. It will hence be an interest-
ing point to follow the trend of the translation of scientific 
results of future BVM workshops into clinical applications. 
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