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a b s t r a c t 

Introduction: Multivariate time series prediction of infectious diseases is significant to public health, and the deep 

learning method has attracted increasing attention in this research field. 

Material and methods: An adaptively temporal graph convolution (ATGCN) model, which learns the contact 

patterns of multiple age groups in a graph-based approach, was proposed for COVID- 19 and influenza prediction. 

We compared ATGCN with autoregressive models, deep sequence learning models, and experience- based ATGCN 

models in short-term and long-term prediction tasks. 

Results: Results showed that the ATGCN model performed better than the autoregressive models and the deep 

sequence learning models on two datasets in both short-term (12.5% and 10% improvements on RMSE) and long- 

term (12.4% and 5% improvements on RMSE) prediction tasks. And the RMSE of ATGCN predictions fluctuated 

least in different age groups of COVID- 19 (0.029 ± 0.003) and influenza (0.059 ± 0.008). Compared with the 

Ones-ATGCN model or the Pre-ATGCN model, the ATGCN model was more robust in performance, with RMSE 

of 0.0293 and 0.06 on two datasets when horizon is one. 

Discussion: Our research indicates a broad application prospect of deep learning in the field of infectious disease 

prediction. Transmission characteristics and domain knowledge of infectious diseases should be further applied 

to the design of deep learning models and feature selection. 

Conclusion: The ATGCN model addressed the multivariate time series forecasting in a graph-based deep learning 

approach and achieved robust prediction on the confirmed cases of multiple age groups, indicating its great 

potentials for exploring the implicit interactions of multivariate variables. 
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. Introduction 

The struggle between humans and infectious diseases always exists:

nfluenza [1] causes 290,000–650,000 deaths worldwide each year [2] ;

OVID- 19 [3] is prone to spread widely due to unknown causes [4] and

ack of effective treatment options [5] . Multivariate time series predic-

ion [6] of infectious diseases is essential for emergency management of

ublic health: onset time and outbreak size prediction determine the

accination time [7] and the reserve of public health resources [8] ;

hen facing emerging infectious diseases, predicting the epidemic trend

s conducive to formulating prevention and control measures [9] . 

With the rise of big data, the patients’ age, gender, and geographic

ocation can be used for prediction. Many studies have indicated that
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he epidemic prediction of multiple age groups has important research

alue. Firstly, prediction by the age group is conducive to accurate pre-

ention and control measures, because people of different age groups

how immune heterogeneity to the pathogen [ 10,11 ], and their clinical

anifestations and mortality rates are also various [ 33 , 50 ]. For exam-

le, children 0 to 14 years of age are less susceptible to severe acute

espiratory syndrome coronavirus 2 (SARS-CoV-2) infection than adults

5 to 64 years of age, whereas individuals more than 65 years of age

re more susceptible to infection [33] ; Influenza A subtype H3N2 causes

ore cases and deaths [12] in older adults than influenza A subtype

1N1 in America; and children aged 0-2 years are more susceptible to

and, foot and mouth disease (HFMD) than children aged 3–5 years in

hina [13] . 
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More importantly, the contact patterns of multiple age groups can

elp to improve the epidemic predictions, because human social con-

acts largely determine the transmission mode of infectious diseases and

he time series of cases in multiple age groups have implicit associa-

ions. For example, the coresidence patterns of elderly persons in Africa

ncrease their vulnerability to deaths of COVID-19 [14] ; bring of stu-

ents together at the start of the school year can produce annual cycles

n disease transmission [45] ; and gathering for holidays can provide

pportunities for transmission of pneumococcus from children to older

elatives [46] . 

Popular mathematical methods for multivariate time series pre-

iction of infectious disease mainly include time-series autoregression

odels and compartmental disease transmission dynamic models. The

lassical autoregression models contain the autoregressive (AR) model

15] and global autoregressive (GAR) model [17] , which uses obser-

ations from previous time steps as input to a regression equation to

redict the value at the next time step. Such simple idea makes them

ail to exploit latent interdependencies among variables. The vector au-

oregressive (VAR) model [16] can only consider the linear relation-

hip between variables, which overlooks the complex nonlinear inter-

ependencies among variables. Classical compartmental dynamic mod-

ls such as SIR (Susceptible, Infectious, or Recovered) and SEIR (Sus-

eptible, Exposed, Infectious, or Recovered) cannot tackle the age in-

uence on the disease spread. Age-stratified compartmental dynamic

odels [47–49] are a group of models that are widely used to pre-

ict disease transmission dynamics under different intervention scenar-

os by constructing differential equations for each age group indepen-

ently, which also neglect the interdependences between different age

roups. 

Recurrent neural networks (RNNs) are widely applied for multivari-

te time series prediction due to the ability to learn data representations

nd handle the uncertainty and non-linear problems. LSTM model or

idirectional LSTM model learned from the assembled data (e.g., inci-

ence data, google trend, air pollution data, and lockdown measures)

o forecast the epidemic trend [ 18 , 19 ]. Combined with the CNN mod-

le, the CNNRNN-Res model [20] and convolutional LSTM-based spa-

iotemporal model [21] extracted geographic interactions of influenza

r COVID- 19 to improve prediction accuracy. However, the LSTM-based

odel projects interactions among variables into a global hidden state,

hich is implicit and uninterpretable. And the CNN module is only ap-

licable to multivariate time series with geographical adjacency and is

ot suitable for learning the interaction of abstract variables, such as

ultiple age groups. 

On the other hand, graph neural networks (GNNs) are increasingly

sed in feature extraction and prediction of spatial-temporal time series:

Res-RGNN [22] , ASTGCN [23] and STGCN [24] capture graph-based

patial-temporal dependencies jointly for traffic flow prediction. There

re also several studies that use GNN to integrate population migra-

ion data for infectious disease prediction [25–28] . Different from RNNs,

ultivariate time series are processed in a graph structure in GNN, so

he independence of time series can be defined by interaction weights

nd be learned in a data-driven way [29] . 

To this end, inspired by GNN and the epidemic knowledge of age

roups, we innovatively propose an adaptively temporal graph convo-

ution (ATGCN) model. ATGCN mainly overcomes two limitations of ex-

sting methods: (1) different from RNNs, ATGCN models the interactions

f time series into a directed graph, which is explicit and interpretable;

2) ATGCN extends the concept of the geographic adjacency matrix in

NN and GNN modules into the interaction among abstract variables,

.g., the contact patterns of age groups. 

Taking COVID- 19 and influenza as prediction objects, this study

ims to compare the performance of the proposed ATGCN with the au-

oregressive models and deep sequence learning models (models with

NNs as the core module) in short-term and long-term prediction tasks,

nd to explore the consistency of their performance in different age

roups. Our major contributions are as follows: 
312 
1) We propose an adaptively temporal graph convolution model, which

is a novel approach for epidemic prediction; 

2) This paper addresses the multivariate time series prediction in a

graph-based approach to exploit interdependencies among variables;

3) For the first time, this paper incorporates the domain knowledge of

epidemic on multiple age groups to guide the design of the deep

learning model. 

. Material and methods 

.1. Datasets for case studies 

Two multivariate time series datasets, the COVID-19 dataset of Mary-

and, USA and the influenza dataset of Beijing, China are used to com-

are the effectiveness of models in infectious diseases prediction. 

1) The COVID-19 dataset of Maryland, USA . The dataset con-

ists of time series of daily new confirmed cases of COVID-19 of

ultiple age groups, and it is updated every week by the state of

aryland. We downloaded it from the “Dataset Freshness Dashboard ”

 https://opendata.maryland.gov/stories/s/xdqw-5b5w ) on January 1,

021. Specifically, the confirmed cases are divided into nine age groups

ccording to their ages: 0-9, 10-19, 20-29, 30-39, 40-49, 50-59, 60-69,

0-79, and over 80 years old. Because of the delay in data aggregation,

he effect of working days, and other uncertain factors [30] , there are

awtooth fluctuations in the time series of daily new confirmed cases.

o this study carries out seven-day average on the original dataset. And

he final dataset for prediction (from April 5, 2020 to January 1, 2021)

s obtained, as shown in Fig. 1 a. 

2) The influenza dataset of Beijing, China . As shown in Fig. 1 b, the

ataset consists of time series of the weekly number of influenza cases of

ve age groups, which are 0–4, 5–14, 15–24, 25–59 and over 60 years

ld. It spans 263 weeks from September 30, 2013 to October 14, 2018.

he influenza dataset is extracted from the system of influenza-like-

llness (ILI) surveillance, which is conducted by outpatient and emer-

ency departments in all general hospitals in Beijing, reporting for the

eekly number of ILI cases by age groups. The number of influenza cases

s calculated using the reported number of ILI cases from the ILI surveil-

ance system, multiplied by the proportion of ILI cases that are positive

or influenza in each week [31] , and the positive rate for influenza is

rovided by 24 sentinel hospitals through the virological test. 

There are two reasons for choosing these two datasets for case

tudies: 

1) The first reason is that the datasets can reflect two different contact

atterns of multiple age groups: due to the regulation from the gov-

rnment policies, the COVID-19 dataset represents a situation that the

verage work and travel frequency of residents decrease. Meanwhile, on

he contrary, their average social distance increase [50] . While the in-

uenza dataset represents a social situation without non-pharmaceutical

nterventions, and the contact pattern of multiple age groups is more

omplex [33] . 

2) The second reason is that the two datasets have different temporal

haracteristics: The COVID-19 dataset has no obvious periodicity but

ith an upward trend ( Fig. 1 ). There are three peak outbreaks in the

ataset, and the scale of the third round of outbreaks is much higher than

he previous two rounds, indicating that the epidemic in Maryland was

till getting worse at that time. On the contrary, the influenza dataset

as obvious annual periodicity, even though the scale of the outbreak

aries from year to year. These two different temporal characteristics

ould challenge the prediction performance of a model. Because some

odels, e.g., the autoregressive model, are suitable for prediction tasks

ith dataset that has strong autocorrelation [34] , while other models,

uch as RNN model, are adept at periodic time series predictions, we

ant to use these two types of datasets to verify the practicability of

ur proposed model. 

https://opendata.maryland.gov/stories/s/xdqw-5b5w
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Fig. 1. New confirmed cases of COVID-19 and influenza. (a) Daily new confirmed cases of COVID-19 in Maryland, USA; (b) weekly new confirmed cases of 

influenza in Beijing, China. 
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.2. Task definition and basic assumptions 

Our study defines the epidemic prediction problem as a multivariate

ime series prediction task. 𝒙 𝒕 ∈ ℝ 

𝒎 is the multivariate time series pro-

le at time t , whose elements are the new confirmed cases from m age

roups. Further, we denote 𝐗 = [ 𝒙 𝒕 +1 , 𝒙 𝒕 +2 , … , 𝒙 𝒕 + 𝒘 ] as the available in-

ut data in a time-span of size w for model training. And the prediction

arget is the time series profile 𝒀 = 𝒙 𝒕 + 𝒘 + 𝒉 ∈ ℝ 

𝒎 , where h refers to the

orizon of prediction. 

Since the deep learning model learns the dependences of variables

rom historical data and make prediction of future trend based on train-

ng data, our study assumes that the transmissibility of SARS- CoV-

 variants and influenza strains as well as human immunity to the

athogen is similar over the study period, and the human contact pat-

erns of multiple age groups do not significantly change over this period.

.3. Framework of ATGCN model 

To discover the contact patterns among age groups, the ATGCN

odel treats their contact relationship as a directed graph 𝑮 = ( 𝑉 , 𝐸 ) ,
here 𝑉 is the set of nodes and the 𝐸 is the set of edges. 𝜐𝑖 ∈ 𝑉 denotes a

ode, which represents an age group in our study. And 𝑒 𝑗,𝑖 ∈ 𝐸 denotes

 weighted edge pointing from 𝜐𝑖 to 𝜐𝑗 , which means the contact weight

rom the age group i to the age group j . The adjacency matrix 𝐀 ∈ ℝ 

𝑁×𝑁 

s a mathematical representation of G , with 𝑨 𝑗,𝑖 = 𝑒 𝑗,𝑖 . Because of the

eterogeneity of immunity to the virus in different age groups [35] , we

ssume that 𝑒 𝑗,𝑖 ≠ 𝑒 𝑖,𝑗 in epidemic prediction tasks. 
313 
The diagram of the ATGCN model proposed in our study is shown in

ig. 2 . The model is composed of an adaptive graph learning module, a

STM module, a two-layer GCN module and two linear transformation

ayers as output module. By calculating the similarity among multivari-

te time series, the adaptive graph learning module computes a graph

djacency matrix 𝐀 , which is used later as an input to the GCN module.

t the same time, the LSTM module extracts the long-distance periodic

eature H from the input 𝐗 in the time domain. Then, combined with A ,

 is converted from a Euclidean structure to a directed graph structure

 , which works as the input of the two-layer GCN module. In addition,

he trend of the time series itself cannot be ignored: the linear predic-

ion ( ̂𝐗 1 ) of 𝐗 is calculated through the linear transformation module.

inally, 𝐗̂ 1 and the output of the GCN module 𝐗̂ 2 are summed up to

btain the final prediction result 𝒀̂ . 

Python 3.7.3 and the deep learning platform PyTorch 1.7.1 are used

o build the ATGCN model, and its key components are illustrated in

etail in the following: 

(1) The adaptive graph learning module. Constructing the graph adja-

ency matrix A is the premise of GCN operation. There are explicit or

atent dependencies among multiple time series. For example, in the traf-

c flow prediction, there is a fixed topological relationship among the

oads [34] . In the prediction of confirmed cases in multiple age groups,

he contact pattern of multiple age groups is simultaneously affected by

ontact frequency, immune heterogeneity and other factors, so there are

o explicit dependencies among age groups. If the model can automat-

cally extract the contact pattern among multiple age groups, the latent
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Fig. 2. The structure of the adaptively temporal graph convolution model . 
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ependencies of multivariate time series can be combined to improve

he prediction. Our study adopts the adaptive graph learning module

29] , which is illustrated as follows: 

 1 = 𝑡𝑎𝑛ℎ 
(
𝛼𝑬 1 𝚯1 

)
, 

 2 = 𝑡𝑎𝑛ℎ 
(
𝛼𝑬 2 𝚯2 

)
, 

 = ReLU 

(
tanh 

(
α
(
𝑴 1 𝑴 

𝑇 
2 − 𝑴 2 𝑴 

𝑇 
1 
)))
, 

here 𝑬 1 , 𝑬 2 represent randomly initialized node embeddings, which

re learnable during training; 𝚯1 , 𝚯2 are model parameters; 𝛼 is a hyper-

arameter for controlling the saturation rate of the activation function.

he adaptive graph learning module measures the similarity between

he embeddings of each node and computes the matrix A of the directed

raph 𝑮 . 

(2) The LSTM module. The LSTM module aims to extract the long-

istance periodic feature H from the input 𝐗 in the time domain. For

ach element in the input sequence, each layer computes the following

unction: 

 𝑡 = 𝜎
(
𝑾 𝑖𝑖 𝒙 𝑡 + 𝑏 𝑖𝑖 + 𝑾 ℎ𝑖 𝒉 𝑡 −1 + 𝑏 ℎ𝑖 

)
, 

 𝑡 = 𝜎
(
𝑾 𝑖𝑓 𝒙 𝑡 + 𝑏 𝑖𝑓 + 𝑾 ℎ𝑓 𝒉 𝑡 −1 + 𝑏 ℎ𝑓 

)
, 

 𝑡 = 𝑡𝑎𝑛ℎ 
(
𝑾 𝑖𝑔 𝒙 𝑡 + 𝑏 𝑖𝑔 + 𝑾 ℎ𝑔 𝒉 𝑡 −1 + 𝑏 ℎ𝑔 

)
, 

 𝑡 = 𝜎
(
𝑾 𝑖𝑜 𝒙 𝑡 + 𝑏 𝑖𝑜 + 𝑾 ℎ𝑜 𝒉 𝑡 −1 + 𝑏 ℎ𝑜 

)
, 

 𝑡 = 𝒇 𝑡 ⊙ 𝒄 𝑡 −1 + 𝒊 𝑡 ⊙ 𝒈 𝑡 , 

 𝑡 = 𝒐 𝑡 ⊙ 𝑡𝑎𝑛ℎ 
(
𝒄 𝑡 
)
, 

here 𝒉 𝑡 is the hidden state at time t , 𝒄 𝑡 is the cell state at time t , 𝒙 𝑡 is

he input at time t , 𝒉 𝑡 −1 is the hidden state of the layer at time t- 1 or the

nitial hidden state at time 0, and 𝒊 𝑡 , 𝒇 𝑡 , 𝒈 𝑡 , 𝒐 𝑡 are the input, forget,

ell, and output gates, respectively. σ is the sigmoid function, and ⊙ is

he hadamard product. 

(3) The GCN module. The two-layer graph convolution module can ef-

ectively convolve the second-order neighborhoods of the nodes to han-

le spatial dependencies in a graph. The graph convolutional operator

s illustrated as follows: 

 

′ = 𝑫̂ 

−1∕2 
𝑨̂ ̂𝑫 

−1∕2 
𝑯 𝚯, 
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here 𝑨̂ = 𝑨 + 𝑰 denotes the adjacency matrix with inserted self-loops

nd 𝑫̂ 𝑖𝑖 = 

∑
𝑗=0 

𝑨̂ 𝑖𝑗 its diagonal degree matrix. 

Its node-wise formulation is given by: 

 

′
𝑖 
= 𝚯

∑
𝑗∈ ( 𝑣 ) ∪{ 𝑖 } 

𝑒 𝑗,𝑖 √ 

𝑑 𝑗 𝑑 𝑖 

𝒉 𝑗 , 

ith 𝑑 𝑖 = 1 + 

∑
𝑗∈ ( 𝑖 ) 

𝑒 𝑗,𝑖 , where 𝑒 𝑗,𝑖 denotes the edge weight from source

ode j to target node i . 

(4) The output module. The LSTM module and GRU module learn

o capture the long-term dependence and the latent interaction among

ariables, but the historical information of the input sequence cannot

e ignored. So, one linear transformation layer in the output module is

pplied to the input 𝐗 : 

̂
 1 = 𝑿 𝑪 

𝑇 + 𝒃 , 

here 𝑿̂ 1 denotes the linear prediction, 𝑪 

𝑇 is the learnable weights, and

 is the learnable bias of the linear transformation layer. Similarly, the

utput 𝑯 

′ of the GRU module is dimensionally transformed by another

inear transformation layer to obtain 𝐗̂ 2 : 

̂
 2 = 𝑯 

′𝑪 

𝑇 

2 + 𝒃 2 , 

The final prediction result of the ATGCN model is the sum of 𝑿̂ 1 
nd 𝑿̂ 2 : 

̂
 = 𝑿̂ 1 + 𝑿̂ 2 . 

.4. Baseline models 

The performance of the ATGCN model is evaluated by comparing

ith baseline models, which are summarized as follows: 

.4.1. Autoregressive models 

The AR model, VAR model, and GAR model have been the most pop-

lar models in time series prediction. Their core idea is to predict the

uture state using the linear combination of historical states, so the au-

oregressive models are suitable for predicting time series with obvious

rends, e.g., the COVID-19 dataset of Maryland, USA. 
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The AR model treats the new confirmed cases of different age groups

ndependently, i.e., it assumes different age groups are not correlated.

he AR model is formalized as follows: 

̂ 
( 𝑖 ) 
𝑡 + ℎ = 

𝑤 −1 ∑
𝑝 =0 

𝛼( 𝑖 ) 
𝑝 
𝑥 
( 𝑖 ) 
𝑡 − 𝑝 + 𝜀 𝑡 + ℎ + 𝑐 ( 𝑖 ) , 

here p is the order of AR, w is the length of input window, 𝑥 
( 𝑖 ) 
𝑡 

is the

nput signal from the i -th age group, and 𝛼
( 𝑖 ) 
𝑝 is the weight parameter.

 𝑡 + ℎ denotes the random noise at time t + h , and 𝑐 ( 𝑖 ) is the intercept term.

VAR can model the dependencies across different age groups, and it

s more complex and expressive. VAR is formalized as follows: 

̂  𝑡 + ℎ = 

𝑤 −1 ∑
𝑝 =0 

𝑊 𝑝 𝒙 𝑡 − 𝑝 + 𝜺 𝑡 + ℎ + 𝒄 

here 𝒙 𝑡 is the input vector containing the historical sequences of all

ge groups, and 𝑊 𝑝 is the parameter matrix to capture the correlation

mong age groups. 

The GAR model is a simplification of the AR model. GAR only uses

ne set of 𝛼𝑝 and 𝑐 to predict different age groups, and it is suitable for

cenarios where the training data is limited and the multivariate time

eries exhibit similar patterns. GAR is formalized as follows: 

̂  𝑡 + ℎ = 

𝑤 −1 ∑
𝑝 =0 

𝛼𝑝 𝒙 𝑡 − 𝑝 + 𝜀 𝑡 + ℎ + 𝑐. 

.4.2. Deep sequence learning models 

We apply the recurrent neural network (RNN) model, convolutional

NN (CNNRNN) model, and residual CNNRNN (CNNRNN-Res) model

20] to learn the long-term dependencies among age groups. These three

odels all rely on RNN as the core module for sequence learning and

rediction, which are suitable for predicting time series with obvious

eriodicity, e.g., the influenza dataset of Beijing, China. 

Our study utilizes the gated recurrent unit (GRU) in our RNN model.

nlike the LSTM module described above, GRU contains fewer param-

ters, and its iterative speed is faster: 

 𝑡 = 𝜎
(
𝑾 𝑖𝑟 𝒙 𝑡 + 𝑏 𝑖𝑟 + 𝑾 ℎ𝑟 𝒉 𝑡 −1 + 𝑏 ℎ𝑟 

)
, 

 𝑡 = 𝜎
(
𝑾 𝑖𝑧 𝒙 𝑡 + 𝑏 𝑖𝑧 + 𝑾 ℎ𝑧 𝒉 𝑡 −1 + 𝑏 ℎ𝑧 

)
, 

 𝑡 = 𝑡𝑎𝑛ℎ 
(
𝑾 𝑖𝑛 𝒙 𝑡 + 𝑏 𝑖𝑛 + 𝒓 𝑡 ⊙

(
𝑾 ℎ𝑛 𝒉 𝑡 −1 + 𝑏 ℎ𝑛 

))
, 

 𝑡 = 

(
1 − 𝒛 𝑡 

)
⊙ 𝒏 𝑡 + 𝒛 𝑡 ⊙ 𝒉 𝑡 −1 , 

here 𝒓 𝑡 , 𝒛 𝑡 , and 𝒏 𝑡 are the reset, update, and new gates, respectively. 

The CNNRNN model adds a CNN layer before the GRU. CNN layer

erforms a two-dimensional convolution operation [36] on the input

 𝑡 to fuse multivariate time series. We can distinguish the difference

etween the CNN and GCN module from the perspective of multiple age

roups: CNN processes data in the Euclidean structure, so it can only

ntegrate the contact information between adjacent age groups. While

CN processes data in a graph structure, it can integrate the contact

nformation among any two age groups, e.g., patients aging between 60–

9 and 20–29, as long as there are interaction weights between them. 

To avoid overfitting, the CNNRNN-Res model adopts residual links

37] on the basis of the CNNRNN model. The residual links bypass some

f the intermediate modules, which can effectively mitigate the gradient

anishing phenomenon during training. For more details of the three

eep sequence learning models, please refer to the research paper by

MU [20] . 

.4.3. Experience-driven ATGCN models 

In order to verify the effectiveness of the adaptive graph learning

odule in the ATGCN model, we replace the graph learning module
315 
ith two experience-driven adjacency matrices and input them into the

TGCN model. The two experience-driven matrices are: 

1) A square matrix 𝐴 1 ∈ ℝ 

𝒎 ×𝒎 whose elements are one. The setting of

 1 is based on the simplest assumption that the contact patterns be-

ween all age groups are the same. And the ATGCN model based on 𝐴 1 
s abbreviated as Ones-ATGCN. 

2) A matrix that records the contact frequency of multiple age groups

n China or USA, which is obtained through social contact surveys. For

he prediction of the COVID-19 dataset of Maryland, we use the matrix

predefined- 𝐴 2 ∈ ℝ 

𝒎 ×𝒎 ) of the contact frequency of people in multiple

ge groups in Maryland, calculated based on human mobility surveil-

ance system during the COVID- 19 epidemic and previous social survey

esults [32] (please refer to supplementary material 1 for the detailed

alculation process of 𝐴 2 ). As for the prediction of the influenza dataset

f Beijing, we adopt a contact matrix (predefined- 𝐴 3 ∈ ℝ 

𝒎 ×𝒎 ) of mul-

iple age groups in Shanghai during the normal period [33] , assuming

hat the population contact frequency in Shanghai and Beijing is similar

in supplementary material 2). And the ATGCN model based on these

wo predefined matrices is abbreviated as Pre-ATGCN. 

.5. Experimental setting 

All datasets are split into three sets: training set (60%), validation

et (20%), and test set (20%) in chronological order. We tune the input

indow size for all models from the set {4, 8, 16, 32}. For three deep

equence learning models, we tune the hidden dimension of GRU from

5, 10, 20, 40}. The number of residual links is searched from set {4,

, 16}. The parameter optimization algorithm is Adam, and its learning

ate is searched from {0.01, 0.015, 0.02}. All models iterate 300 times

n the training set, with prediction horizon = {1, 2, 4, 6, 8}, respectively.

inally, we select the model that performs best on the validation set to

ake predictions on the test set. In this paper, the predictive period

anges from one day or one week (short-term prediction) to 8 days or 8

eeks (long-term prediction). The long-term period (8 days or 8 weeks)

s relative to short-term period (1 day or 1 week). Thus, the ATGCN

odel is accurate in both within-year and inter-annual prediction. 

We adopt three metrics for comparison: Root Mean Square Error

RMSE), Mean Absolute Error (MAE), and R- squares (R2). The calcula-

ion of them is defined as follows: 

𝑀𝑆𝐸 = 

√ √ √ √ 

1 
𝑛 

𝑛 ∑
𝑖 =1 

(
𝑦 𝑖 − 𝑦̂ 𝑖 

)2 
, 

𝐴𝐸 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

||𝑦 𝑖 − 𝑦̂ 𝑖 
||, 

 

2 = 1 − 

∑𝑛 

𝑖 =1 
(
𝑦 𝑖 − 𝑦̂ 𝑖 

)2 
∑𝑛 

𝑖 =1 
(
𝑦 𝑖 − 𝑦̄ 𝑖 

)2 , 

here n denotes the number of data points in the test set, 𝑦 𝑖 denotes the

rue value, and 𝑦̂ 𝑖 denotes the predicted value. The best possible score

f R2 is 1.0, and it can be negative (because the model can be arbitrarily

orse). And if an R2 score is close to 0, then the model always predicts

n expected value of y, disregarding the input features. 

. Results 

Table 1 provides the experimental results of ATGCN model and base-

ine models. ATGCN model achieves state-of-the-art results on most of

he tasks, whether it is the COVID-19 dataset with obvious trends or the

nfluenza dataset with periodicity. In the following, we will discuss the

xperimental results of the two datasets, respectively. 

.1. Predictions of the COVID-19 

From Table 1 , we observe that the ATGCN model has the highest

verall prediction accuracy for the COVID-19 dataset (12.5% and 12.4%
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Table 1 

Baseline comparison for the COVID-19 dataset prediction and the influenza dataset prediction . 

Dataset COVID-19 Influenza 

Models Metrics 

Horizon (day) Horizon (week) 

1 2 4 6 8 1 2 4 6 8 

AR RMSE 0.0378 0.0615 0.1379 0.1914 0.2388 0.0845 0.1321 0.2114 0.2401 0.2465 

MAE 0.0295 0.0489 0.1159 0.1615 0.2040 0.0431 0.0663 0.1091 0.1316 0.1413 

R 2 0.9452 0.8546 0.2696 -0.408 -1.190 0.8804 0.7076 0.2516 0.0352 -0.017 

VAR RMSE 0.0616 0.1042 0.2483 0.2958 0.3307 0.0863 0.1129 0.2030 0.2350 0.2436 

MAE 0.0473 0.0863 0.2093 0.2550 0.2970 0.0455 0.0636 0.1298 0.1383 0.1497 

R 2 0.8542 0.5827 -1.368 -2.360 -3.201 0.8754 0.7866 0.3101 0.0753 0.0068 

GAR RMSE 0.0335 0.0532 0.0910 0.1465 0.1798 0.0838 0.1260 0.2086 0.2368 0.2461 

MAE 0.0253 0.0415 0.0738 0.1207 0.1501 0.0417 0.0628 0.1062 0.1296 0.1366 

R 2 0.9569 0.8914 0.6819 0.1755 -0.242 0.8825 0.7342 0.2713 0.0615 -0.014 

RNN RMSE 0.1096 0.1736 0.2023 0.2657 0.3097 0.0890 0.1095 0.1554 0.2415 0.2829 

MAE 0.0872 0.1416 0.1723 0.2382 0.2868 0.0389 0.0527 0.0825 0.1456 0.1538 

R 2 0.5386 -0.158 -0.572 -1.711 -2.683 0.8675 0.7994 0.5957 0.0236 -0.340 

CNNRNN RMSE 0.2100 0.2013 0.1949 0.3108 0.3055 0.0745 0.1017 0.1592 0.2155 0.2779 

MAE 0.1708 0.1630 0.1662 0.2439 0.2494 0.0336 0.0481 0.0857 0.1244 0.1764 

R 2 -0.694 -0.557 -0.460 -2.709 -2.585 0.9071 0.8269 0.5756 0.2227 -0.293 

CNNRNN-Res RMSE 0.1047 0.1094 0.1292 0.1947 0.2667 0.0669 0.0937 0.1603 0.2252 0.2363 

MAE 0.0821 0.0856 0.1078 0.1652 0.2329 0.0313 0.0466 0.0868 0.1349 0.1388 

R 2 0.5791 0.5407 0.3588 -0.456 -1.731 0.9251 0.8529 0.5699 0.1509 0.0655 

Ones-ATGCN RMSE 0.0311 0.0488 0.0907 0.1362 0.1784 0.0743 0.1120 0.1802 0.2247 0.2431 

MAE 0.0241 0.0394 0.0740 0.1114 0.1471 0.0380 0.0555 0.0868 0.1394 0.1493 

R 2 0.9627 0.9087 0.6842 0.2878 -0.223 0.9075 0.7899 0.4561 0.1544 0.0105 

Pre-ATGCN RMSE 0.0300 0.0488 0.0900 0.1327 0.1722 0.0796 0.1168 0.1760 0.2201 0.2473 

MAE 0.0234 0.0396 0.0754 0.1088 0.1418 0.0413 0.0601 0.0936 0.1152 0.1426 

R 2 0.9655 0.9084 0.6889 0.3232 -0.139 0.8939 0.7717 0.4811 0.1889 -0.024 

ATGCN RMSE 0.0293 0.0461 0.0809 0.1253 0.1575 0.0600 0.0911 0.1511 0.2143 0.2242 

MAE 0.0226 0.0374 0.0671 0.1035 0.1357 0.0332 0.0461 0.0840 0.1273 0.1342 

R 2 0.9670 0.9184 0.7487 0.3971 0.0469 0.9397 0.8611 0.6176 0.2308 0.1585 

Notes: The bold font represents the best prediction under a horizon, and the underline font represents the sub-optimal prediction 

under a horizon. 
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mprovement compared with GAR on RMSE when h = 1 and 8), followed

y the experience-driven ATGCN models and autoregressive models,

hile the deep sequence learning models have the worst prediction per-

ormance. 

Among the three autoregressive models, the GAR model performs

est, especially in the short-term prediction (h = 1, 2, 4). When h = 6 or

, R2 of AR (-0.408 and - 1.19) and VAR (-2.36 and -3.201) show that the

redictions of them are significantly lagged. Although the VAR model

ntegrates information from other age groups, its accuracy is the worst.

his may be because the strong consistency of the time series is benefi-

ial to the GAR model, while the VAR model only linearly combines the

eatures of each age group, and its modeling ability is insufficient. 

As for the three deep sequence learning models, CNNRNN-Res has

he highest accuracy, but it is still much lower than the GAR model and

he ATGCN model. The negative R 

2 indicates that the predictions of

NN and CNNRNN models have poor correlation with the test dataset

n both short-term and long- term prediction. This may be because the

OVID-19 data set has no obvious periodicity, and the distribution of the

raining set and the test set are quite different, which is not conducive

o the training of the deep learning model with RNN as the core module.

The ATGCN model and the experience-driven ATGCN models per-

orm similarly in the prediction of the COVID-19 data set. However,

ince the two static adjacency matrices based on expert experiences can-

ot be adjusted adaptively, the prediction performance of Ones-ATGCN

nd Pre-ATGCN is not as robust as the ATGCN model. Although the

STM modules in these three models learn the periodicity of time se-

ies, similar to the function of the RNN module discussed above, the

erformances of the three ATGCN-based models are not greatly affected,

ecause they have linear transformation layers directly connected from

he input to the output module. 
316 
.2. Predictions of the influenza 

As shown in Table 1 , in the prediction of the influenza dataset which

s periodic, the ATGCN model still achieves the best accuracy most of

he time. (10% and 5% improvement compared with CNNRNN-Res on

MSE when h = 1 and 8). The prediction results of the ATGCN model

re well correlated with the test set, and its R 

2 is much higher than

he suboptimal result. When h = 1, 4, or 6, the MAEs (0.0332, 0.084,

.1273) of ATGCN are slightly higher than the corresponding deep se-

uence learning models (0.0313 of CNNRNN-Res, 0.0825 of RNN, and

.1244 of CNNRNN). 

Different from the results of the COVID-19 dataset, the performance

f the deep sequence learning models this time is more accurate than

hat of the autoregressive models. The reason for this performance

hanges is that the CNNRNN-Res model and the ATGCN model are more

uitable for forecasting seasonal infectious diseases. However, the GCN

odule in the ATGCN models the multiple age groups as a directed

raph, which can learn the contact propagation between any two age

roups; while the CNN module in the CNNRNN-Res can only learn the

ontact relationship between the adjacent age groups. Obviously, the

TGCN model is more in line with the actual transmission mode of in-

ectious diseases. 

.3. Predictions on multiple age groups 

Because the models predict the number of confirmed cases for mul-

iple age groups simultaneously, in the following, whether their predic-

ion effect for each age group is consistent is compared. We select the

AR, CNNRNN-Res, and ATGCN model as representatives for analysis,

ecause these three models perform best in their respective categories. 
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Fig. 3. The prediction error (RMSE) of GAR, CNNRNN-Res and ATGCN for 

each age group when horizon is 1 . (a) RMSE for the COVID-19 dataset; (b) 

RMSE for the influenza dataset. 
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For the COVID-19 dataset, as shown in Fig. 3 a, the RMSE of the GAR

odel and the ATGCN model of the nine age groups remains within

he range of 0.033 ± 0.003 and 0.029 ± 0.003, while the RMSE of the

NNRNN-Res model is much higher and unstable (0.094 ± 0.045). Fig. 4

hows the prediction results of the three models on the test set in detail.

he ATGCN model and GAR model closely fit the real curves. However,

he CNNRNN-Res model has lagged predictions on the onset time and

ower predicted values of the outbreak size for age groups of 0–9 and

0–29, or larger predicted outbreak size for age groups of 30–39, 40–49,

nd above 80. 

As for their performances on the influenza dataset ( Fig. 3 b), the AT-

CN model has the most robust performances on the five age groups,

nd its RMSE is in the range of 0.059 ± 0.008. Consistent with the re-

ults in Table 1 , the effect of the GAR model on influenza decreases, in

he range of 0.083 ± 0.011 (RMSE). Though the prediction performance

f CNNRNN-Res improves, with RMSE in the range of 0.064 ± 0.020, its

rediction accuracy for each age group still fluctuates the most. In Fig. 5 ,

t can be found that ATGCN has the most accurate predictions on the on-

et time, while the lagged predictions of the GAR model are the most

bvious, especially in age groups of 0–5 and 25–59. As for the predic-

ion of peak size, the ATGCN model achieves good accuracy for each

ge group, except for the age group of 15–24. 

The above results show that the prediction accuracy of CNNRNN-Res

or different age groups fluctuates greatly. It cannot effectively integrate

he interactive information of multiple age groups maybe for the reason

hat its CNN module only extracts the time series features of adjacent

ge groups. The RMSE of the GAR model on the two datasets fluctuates

ittle because it uses the same parameter modeling for each age group,

nd the time series trends of each age group are similar. The ATGCN

odel performs most robustly in age groups because it uses the GCN

odule to effectively integrate the interactive information of different

ge groups. 

.4. Contact patterns of multiple age groups 

Graph adjacency matrix A is produced by the adaptive graph learn-

ng module of the ATGCN model. A represents the contact patterns of

ultiple age groups, which are related not only to the frequency of con-

acts among age groups, but also to the immunity of age groups to the

irus. So, the cell of 𝑨 , 𝐴 𝑖𝑗 , represents the risk of transmission from

he 𝑗th age group to the 𝑖 th age group. 

Fig. 6 shows the graph adjacency matrices of the two datasets with

 = 1 or 8. For the influenza dataset Fig. 6 a, b, both matrices show con-

istent contact patterns. In the five age groups, adolescents aged 0–15

ears are more susceptible to infections from people aged 15 and older.

n the contrary, children aged 0–15 years present a low risk of trans-

ission to the higher age group, and their impact is obvious only to the

djacent age group (i.e., 0.99 and 1 in the first row of Fig. 6 a). This may

e related to the low immunity of the younger age group to influenza

irus and the relatively strong immunity of the older age group. 

Since there are 9 age groups in the COVID- 19 dataset, it is not easy

o observe obvious patterns in Fig. 6 a, b. So, we sum the rows or columns
317 
f the matrix: the sum of the rows represents the total risk of infection of

ne age group received from the others; the sum of the columns repre-

ents the total risks of transmission of one age group to other age groups.

hen h = 1, there is no obvious difference between the influence of one

ge group on other age groups, which are evenly distributed between 3

nd 4. This is due to the ATGCN’s short-term forecast for the COVID19

ataset being closer to the autocorrelation forecast. When h = 8, the influ-

nce of incubation period is more obvious among different age groups:

lder people over 50 with low immunity are more likely to be infected

the sums of the first four rows are 4, 4.7, 4.2, and 5 in Fig. 6 d), while

oung and middle-aged people under 40 are more likely to infect others

the sum of the four three columns are 3.08, 5, 4, and 4 in Fig. 6 d),

ecause young people have more active social contacts. 

. Discussion 

With COVID-19 and influenza as the case study objects, the ATGCN

odel is more accurate than the autoregressive models and the deep

equence learning models in both short-term and long-term prediction

asks. ATGCN accurately predicts the onset time and outbreak size of

oth datasets, and its accuracies fluctuate least in different age groups.

ompared with the Ones-ATGCN model or Pre-ATGCN model which are

ased on expert experiences, the ATGCN model with the adaptive graph

earning module is more adaptable to scene changes and more robust in

erformance. 

Based on the above research results, two issues need to be further

iscussed: 

First, a suitable model should be selected when predicting infectious

iseases with various transmission characteristics. In this study, COVID-

9 is an emerging infectious disease. Though the pathogenic virus SARS-

oV-2 has the behavior of a seasonal respiratory virus [38] , the popu-

ation is generally susceptible to the virus [39] , so at this stage, the

emporal characteristics of COVID-19 are more affected by the govern-

ent intervention measures [40] . While seasonal influenza occurs in

pring and winter every year, and the number of onset cases has obvi-

us periodicity. The experimental results show that the autoregressive

odels are more suitable for predicting the COVID-19 dataset, while

he deep sequence learning models have better performance on the in-

uenza dataset. Because the ATGCN combines the characteristics of two

equence modules (the LSTM module and a linear transformation layer),

ts performance on the two datasets is both optimal. However, in the ex-

sting papers studying the prediction of infectious diseases, few of them

ave discussed the difference in the temporal characteristics of time se-

ies caused by the various rules of disease transmission. Accordingly, in

ractical application, more attention should be paid in selecting the ap-

ropriate forecasting models according to the temporal characteristics

f infectious disease. Or a fusion model which can dynamically combine

he advantages and adjust the weight of basic models [ 41 , 42 ] should be

eveloped. 

Secondly, domain knowledge of the infectious diseases should be

urther applied to the design of deep learning models and the feature

election, for the fusion of domain knowledge can improve the accu-

acy and interpretability of a model. As observed from this study, since

he contact pattern of multiple age groups is an important factor for

rediction, we chose the GCN module and the adaptive graph learning

odule as the core functional modules to learn the interaction relation-

hip between multiple age groups. The experimental results also prove

ur choice that the graph neural network is more suitable for the learn-

ng contact pattern than the recurrent neural network. And with the

xpansion of the available infectious disease data, such as age, gender,

nd population movement trajectory, more deep learning models with

pidemiological characteristics can be designed, based on the immune

eterogeneity, age distribution, family residence pattern and other fea-

ures of the susceptible population. 

The limitations of the ATGCN model still exist: first, the adaptive

raph learning module only updates the adjacency matrix A within the
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Fig. 4. Prediction results of GAR model, CNNRNN-Res model and ATGCN model on the COVID-19 dataset (horizon = 1 day) . (a) Age group of 0–9; (b) age 

group of 10–19; (c) age group of 20–29; (d) age group of 30–39; (e) age group of 40–49; (f) age group of 50–59; (g) age group of 60–69; (h) age group of 70–79; (i) 

age group of above 80. 

Fig. 5. Prediction results of GAR model, CNNRNN-Res model and ATGCN model on the influenza dataset (horizon = 1 week) . (a) Age group of 0–5; (b) age 

group of 5–14; (c) age group of 15–24; (d) age group of 25–59; (e) age group of above 60. 

318 
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Fig. 6. Graph adjacency matrices of multiple age groups from ATGCN . (a) the graph adjacency matrix of the influenza dataset with horizon = 1; (b) the graph 

adjacency matrix of the influenza dataset with horizon = 8; (c) the graph adjacency matrix of the COVID-19 dataset with horizon = 1; (d) the graph adjacency matrix 

of the COVID-19 dataset with horizon = 8. 
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ime range of the training dataset, and when predicting the test dataset,

he parameters of the ATGCN model are fixed and no longer updated.

herefore, the adjacency matrix A used for test dataset prediction can

nly represent the historical multiple age group contact patterns, which

ill lead to a decrease in the accuracy of the ATGCN model. This is

lso the limitation of the basic assumption of our study: the contact

attern of the crowd is actually dynamic, rather than stable. Secondly,

he ATGCN model cannot give the uncertainty of the prediction results

nd this is a common problem with deep learning models. However,

ncertainty is important in public health management [ 43 , 44 ], because

ecision makers need to estimate the credibility of the results based

n the upper and lower bounds, so as to plan the redundancy of public

ealth resources. In addition, the limitation of data is a common problem

n epidemic prediction. Neither the public available COVID- 19 dataset

or the influenza dataset obtained through public health surveillance

an truly reflect the scales of outbreak and the age structure of cases.

he adjustment of diagnostic criteria, inadequate diagnosis capacity and

symptomatic infections can influence the patients’ healthcare-seeking

ehavior, leading to misdiagnosed or left untreated, especially in the

arly stage of an emerging epidemic, when the symptoms of the disease

re poorly understood. 

. Conclusion 

In this paper, we introduce a novel framework for time series predic-

ion of multiple age groups, integrating graph convolution and adaptive

raph learning module to combine the contact pattern of people into

pidemic prediction. It addresses the multivariate time series forecasting

n a graph-based deep learning approach and achieves robust prediction

n the confirmed cases of multiple age groups. Experiments show that

ur model outperforms the state-of-the-art methods on two epidemic

atasets, indicating its great potentials in exploring the implicit interac-

ions of abstract multivariate variables. And our method demonstrates

hat integrating the domain knowledge of infectious diseases into the
319 
esign of the deep learning framework can effectively improve the ac-

uracy and applicability of the model. 
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