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Abstract: Plant cells, tissues and organs are composed of various biomolecules arranged as
structurally diverse units, which represent heterogeneity at microscopic levels. Molecular knowledge
about those constituents with their localization in such complexity is very crucial for both basic
and applied plant sciences. In this context, infrared imaging techniques have advantages over
conventional methods to investigate heterogeneous plant structures in providing quantitative and
qualitative analyses with spatial distribution of the components. Thus, particularly, with the
use of proper analytical approaches and sampling methods, these technologies offer significant
information for the studies on plant classification, physiology, ecology, genetics, pathology and
other related disciplines. This review aims to present a general perspective about near-infrared and
mid-infrared imaging/microspectroscopy in plant research. It is addressed to compare potentialities
of these methodologies with their advantages and limitations. With regard to the organization
of the document, the first section will introduce the respective underlying principles followed by
instrumentation, sampling techniques, sample preparations, measurement, and an overview of
spectral pre-processing and multivariate analysis. The last section will review selected applications
in the literature.
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1. Introduction

Plant structures are composed of primary metabolites: carbohydrates, proteins, lipids, nucleic
acids, various secondary metabolites and other compounds [1]. These biomolecules are arranged as
diverse structural units, which display heterogeneity at different microscopic levels. Such diversity can
be between distinct types of tissues, individual cells, and subcellular structures. Under this complexity,
the knowledge about biomolecules as composites of organs, tissues and cells is critical for both basic
and applied plant sciences. It can be obtained by a variety of analytical methods with microscopic
and separation techniques. However, those measurements can be time-consuming, expensive and
destructive since plant biologists routinely dissect and process the samples to extract biochemical
compounds. In this context, the ability of components of plants to interact with infrared light makes
IR spectroscopy a useful tool for quantitative and qualitative analysis with its advantages such as
being rapid, non-destructive, reproducible, easy to use and cost-effective [2,3]. However, conventional
IR spectroscopy can only provide one average spectrum without any distribution information of
the sample’s chemical composition. Therefore, it is difficult to determine whether the components
of interest are arising from the bulk sample or from a local region of one sample. In other words,
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it does not give information on spatial localization of molecular structures at the tissue, cellular
and subcellular level. As a result, when considering the heterogeneity of plant structures, the data
obtained via this technology may be limited. In this regard, IR imaging/microspectroscopy, which
combines IR spectroscopy with visualization, exhibits great advantages for the comprehensive analysis
on the spatial distribution patterns of plant constituents [4,5]. Especially, with the use of proper
analytical approaches and sampling methods, the techniques provide direct and non-destructive
examination while maintaining native compositions of plant samples without the need of extraction,
purification and separation steps. Despite their advantages, they are not single molecule detection
methods together with requirement of standardization, rigorous data collection and expertise in the
chemometrics analysis of IR spectra.

In addition to IR microspectroscopy, a variety of imaging methodologies including Raman
microspectroscopy, visible light imaging, fluorescence imaging, 3D imaging, laser imaging, and
tomographic imaging (magnetic resonance tomography (MRT), positron emission tomography (PET)
and computed tomography (CT)) are also alternatives to analyze plant structures [3]. Thus, by using
such technologies, it is possible to gain further insight into the basic plant research related to chemical
and physical properties of tissues and samples (e.g., seeds, fruits, grains, leaves, and whole plants) as
well as agricultural and horticultural sciences related to localization and quantification of molecules
for determination of plant diseases, plant stress due to various factors (e.g., temperature, water, and
nutrients). Many reports have appeared in the literature on this topic [4,6–14].

2. Principles of Mid-IR and Near-IR Imaging/Microspectroscopy

The IR region in electromagnetic spectrum is divided into three regions. These areas are defined
as near infrared (near-IR, 13,500–4000 cm−1, 780–2500 nm), mid-infrared (mid-IR, 4000–400 cm−1;
2500–25,000 nm) and far-infrared (far-IR, 400–10 cm−1; 25,000–1,000,000 nm) [15,16]. The wavenumber
(cm−1) value is converted to wavelength (nm) by the following equation;

ν = 1/λ (1)

where ν is the wavenumber (cm−1) and λ is the wavelength (cm = 107 nm).
IR spectroscopy is based on the analysis of IR light interacting with a molecule, which can be

analyzed in three different ways as absorption, emission and reflection. Physical basis and development
of IR spectroscopy has been extensively documented in recent studies [3,15,17–20]. Within the scope of
this review, a basic introduction concerning mid-IR and near-IR imaging will be given in the following
section, but far-IR is outside the focus of the paper.

IR microspectroscopic analysis is the application of IR spectroscopy to obtain spatially resolved
image of irradiated sample on a microscope stage. The underlying principle for acquiring such
spectroscopic data is the interaction of a sample with propagating light so that the information can be
recorded and interpreted from the targeted area. Since an IR spectrum is collected at each pixel in the
image, the method is very suitable for analysis of heterogeneous plant samples due to providing data
about both the distribution and chemical composition of the components [21,22].

In mid-IR and near-IR imaging, sample absorbance is recorded at each wavelength. Absorptions
in mid-IR spectroscopy correspond to fundamental vibrations of the chemical bonds associated with
the atoms of the molecules. Chemical bonds will vibrate more energetically when molecule interacts
with IR light, thus causing vibrational and rotational changes in the molecule. However, atoms are
constrained by quantum mechanics so that only a few specific energy levels are allowed. The possible
rotations are around the axis of symmetry for a given molecule or for either of the two perpendicular
axes. If there are only two atoms, the only vibration will be seen as a stretching. When three or
more atoms are involved, bonds can also bend [23,24]. Typical mid-IR spectra represent numerous
absorbance peaks due to fundamental transitions and is approximately divided into four regions
generalized as the X–H stretching region (4000–2500 cm−1), the triple-bond region (2500–2000 cm−1),
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the double-bond region (2000–1500 cm−1) and the fingerprint region (1500–600 cm−1). Finger print
region is normally a complex area showing many bands specific to molecular structure of the sample,
frequently overlapping each other. Figure 1 shows the absorptions of functional groups in mid-IR
region in a plant sample [25].
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Figure 1. Representative mid-infrared (mid-IR) spectrum of yellow canola (Brassica napus) seed.
Reproduced with permission from [25], published by Elsevier, 2014.

The peaks in mid-IR spectrum from the vibrations in different functional groups appear in
characteristic frequencies of IR (Table 1) [26]. This further facilitates easy band assignment and
interpretation with the support of a comprehensive references library of spectra of pure components.
In particular, a shifting in band frequency is related to the structural change in molecules under
analysis [27]. Thus, plant cell and tissue constituents can be effectively characterized with wide and
common use of this technique (qualitative analysis) [26]. In addition, the quantitative information
can be obtained from mid-IR spectra since the proportionality of the absorbance (band height or
more accurately band area) to the number of functional groups by following the law of Lambert–Beer.
This has been previously confirmed by analytical methods for lipid peroxidation products [28] and
for some plant constituents [10]. However, it is worth mentioning that despite additional features to
conventional IR such as Fourier transform method acquisition that improves the quality of IR spectra,
some plant substances in very low concentrations are difficult to be determined by this technique.

Table 1. General band assignments of mid-IR spectrum of plants based on the literature.

Frequency (cm−1) Definition of the Spectral Assignments

3500−3200 O-H and N-H stretch: carbohydrates, proteins, alcohols and phenolic compounds
2960−2950 CH3 asymmetric stretching: mainly lipid with a little contribution from protein, carbohydrate, and nucleic acid
2930−2920 CH2 asymmetric stretch: mainly lipid with a little contribution from protein, carbohydrate, and nucleic acid
2875−2870 CH3 symmetric stretch: mainly protein with a little contribution from lipid, carbohydrate, and nucleic acid
2860−2840 CH2 symmetric stretch: mainly lipids with a little contribution from protein, carbohydrate, and nucleic acid
1745−1730 Saturated ester C=O stretch: phospholipid, cholesterol ester, hemicellulose, pectin, lignin, suberin/cutin esters
1650−1630 Amide I (C=O stretch): protein, pectin, water associated cellulose or lignin, alkaloids
1630−1620 C=C stretch: phenolic compound
1610−1590 C=O aromatic stretch: lignin, alkaloid
1560−1540 Amide II (C=N and N–H stretch): mainly protein
1515−1505 C=C aromatic stretch: lignin
1460−1455 Amide III (aromatic hydrocarbons): mainly protein
1455−1440 C–H asym bending of CH2 and CH3: cell wall polysaccharide, lipid and protein
1430−1420 O–H bend: cell wall polysaccaride, alcohol, and carboxylic acid
1380−1370 C–H sym bending of CH2 and CH3: cell wall polysaccharide, lipid and protein
1375−1365 C–H bend: cellulose and hemicellulose
1250−1240 C=O stretch: pectic substances, lignin, hemicellulose, suberin/cutin esters
1235 Amide IV (C=N and N–H stretching): mainly protein
1235−1230 C–O stretch: lignin, xylan
1205−1200 O–H in plane bend: cellulose
1170−1160 C–O–C asym stretch: cutin
1160−1150 Symmetric bonding of aliphatic CH2, OH, or C–O stretch of various groups: cell wall polysaccaride
1145−1140 C–O–C asym stretch: cellulose (β-1.4 glucan)
1110−1105 C–O–C sym stretch: cutin
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Table 1. Cont.

Frequency (cm−1) Definition of the Spectral Assignments

1105−1100 Antisymmetric in-phase: pectic substance
1085−1075 C–O deformation: secondary alcohol, aliphatic ester
1075−1070 C–O ring stretch: rhamnogalactorunan, b-galactan
1065−1060 C–O stretch: cell wall polysaccarides (glucomannan)
1045−1030 O–H and C–OH stretch: cell wall polysaccarides (arabinan, cellulose)
990−980 C–O stretch: cutin
900−890 C–H deformation: arabinan
895−890 C–O valence vibration: galactan
875−870 C–O stretch: β–D-fructose

Near-IR region is divided into three regions: Region I (13,500–8500 cm−1), Region II (8500–5500 cm−1)
and Region III (5500–4000 cm−1) [29]. The spectral range is narrower than the mid-IR range; therefore,
molar absorptivity in near-IR is typically quite small but there is more increased penetration depth
of the samples [15,19]. It relies on the vibrations of the molecules described by harmonic and
anharmonic motions due to electronic transitions, which categorizes this technique as electronic
as well as vibrational spectroscopy. The prominent absorptions in near-IR region are generated by
two processes: overtones and combinations of fundamental vibrations of –CH, –NH, –OH (and –SH)
functional groups [30]. While the number of possible overtones from a group of absorptions in a
molecule is limited to a few, a very large number of combinations are observed [31]. All molecules
containing hydrogen atom have a measurable near-IR spectrum, resulting in a larger range of organic
materials in plant samples to be suitable for near-IR analysis in comparison to mid-IR [15]. Figure 2
demonstrates the main absorptions in near-IR region in a plant sample.

Molecules 2017, 22, 168 4 of 19 

 

1085−1075 C–O deformation: secondary alcohol, aliphatic ester 
1075−1070 C–O ring stretch: rhamnogalactorunan, b-galactan 
1065−1060 C–O stretch: cell wall polysaccarides (glucomannan) 
1045−1030 O–H and C–OH stretch: cell wall polysaccarides (arabinan, cellulose) 
990−980 C–O stretch: cutin 
900−890 C–H deformation: arabinan 
895−890 C–O valence vibration: galactan 
875−870 C–O stretch: β–D-fructose 

Near-IR region is divided into three regions: Region I (13,500–8500 cm−1), Region II (8500–5500 
cm−1) and Region III (5500–4000 cm−1) [29]. The spectral range is narrower than the mid-IR range; 
therefore, molar absorptivity in near-IR is typically quite small but there is more increased 
penetration depth of the samples [15,19]. It relies on the vibrations of the molecules described by 
harmonic and anharmonic motions due to electronic transitions, which categorizes this technique as 
electronic as well as vibrational spectroscopy. The prominent absorptions in near-IR region are 
generated by two processes: overtones and combinations of fundamental vibrations of –CH, –NH,  
–OH (and –SH) functional groups [30]. While the number of possible overtones from a group of 
absorptions in a molecule is limited to a few, a very large number of combinations are observed [31]. 
All molecules containing hydrogen atom have a measurable near-IR spectrum, resulting in a larger 
range of organic materials in plant samples to be suitable for near-IR analysis in comparison to  
mid-IR [15]. Figure 2 demonstrates the main absorptions in near-IR region in a plant sample.  

 
Figure 2. Mean near-spectra of artichoke samples from three different Spanish origins: Castellon 
(Alcachofa de Benicarló), Valencia and Murcia. Reproduced with permission from [32] published by 
Elsevier, 2016. 

The most characteristic near-IR bands of some primary (e.g., carbohydrates, lipids, and proteins) and 
secondary (e.g., phenolic substances, terpenoids, and alkaloids) metabolites are shown in Table 2 [33]. 

Table 2. General band assignments of near-IR spectrum of plants based on the literature. 
 
Wavenumber 

(cm−1) 
Wavelengths 

(nm) 
Definition of the Spectral Assignments 

8403 1190 C–H str. first overtone: carbohydrates 
8251 1212 C–H str. second overtone: carbohydrates 
7375 1356 2 C–H str. + C–H def.: carbohydrates 
7168 1395 2 C–H str. + C–H def.: carbohydrates 
6983 1432 N–H str. second overtone: proteins 
6748 1482 O–H str. first overtone: carbohydrates 
6662 1501 N–H str. first overtone: carbohydrates 
6494 1540 O–H str. first overtone (intermol. H-bond): starch 
6394 1564 N–H str. first overtone: proteins 

Figure 2. Mean near-spectra of artichoke samples from three different Spanish origins: Castellon
(Alcachofa de Benicarló), Valencia and Murcia. Reproduced with permission from [32] published by
Elsevier, 2016.

The most characteristic near-IR bands of some primary (e.g., carbohydrates, lipids, and proteins)
and secondary (e.g., phenolic substances, terpenoids, and alkaloids) metabolites are shown in
Table 2 [33].

As demonstrated in Figure 2, peaks are comparatively broader and do overlap. This makes
near-IR spectra difficult to interprete during near-IR imaging, making it less useful for qualitative
analysis. Nevertheless, there are significant differences among near-IR positions of different functional
groups which can often be utilized for quantitative information. However, for such analysis, additional
methodologies are required to extract the relevant data while reducing the irrelevant ones [15,34].
In other words, such technique depends on reference methods to separate spectral signatures of sample
components and to develop calibration method. The calibration procedure involves acquiring both
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reference and near-IR data on each sample and deriving a calibration equation by using chemometrics.
Once calibration model is developed, a variety of measurement such as moisture content and chemical
composition of the sample (e.g., carbohydrates, protein, and lipid) can be obtained from even a
single spectrum. As a result, near-IR imaging stands for as a more practical quantitative analytical
technique. This contributes to its often more favored usage over mid-IR and other analytical methods
employing chemicals, such as gas chromatography (GC) and high performance liquid chromatography
(HPLC) [15,24].

Table 2. General band assignments of near-IR spectrum of plants based on the literature.

Wavenumber
(cm−1)

Wavelengths
(nm) Definition of the Spectral Assignments

8403 1190 C–H str. first overtone: carbohydrates
8251 1212 C–H str. second overtone: carbohydrates
7375 1356 2 C–H str. + C–H def.: carbohydrates
7168 1395 2 C–H str. + C–H def.: carbohydrates
6983 1432 N–H str. second overtone: proteins
6748 1482 O–H str. first overtone: carbohydrates
6662 1501 N–H str. first overtone: carbohydrates
6494 1540 O–H str. first overtone (intermol. H-bond): starch
6394 1564 N–H str. first overtone: proteins
6196 1614 C–H str. first overtone: carbohydrates
6053 1652 C–H str. first overtone: carbohydrates
5896 1696 C–H str. first overtone: carbohydrates
5627 1777 C–H str. first overtone: plant fiber composed of cellulose, lignin and other carbohydrates
5507 1816 O–H str. + 2 C–O str.: plant fiber composed of cellulose, lignin and other carbohydrates
5120 1953 C–O str. second overtone: carbohydrates
4878 2050 N–H sym. str. + amide II: proteins
4824 2073 O–H str. + O–H def.: alcohols
4643 2154 Amide I + amide III: proteins
4439 2253 O–H str. + O–H def.: starch
4363 2292 N–H str. + CO str.: proteins

str.: stretching, def.: deformation.

2.1. Instrumentation

Mid-IR and near-IR imaging systems are composed of four main parts as shown in Figure 3.

• Light source. A single polychromatic thermal source is heated to 1500–2200 K as light source.
Silicon-carbide is used in mid-IR and a tungsten filament in near-IR. Here, it should be
mentioned that conventional IR thermal sources only provides a spatial resolution of many tens of
micrometers, thus restricting the analysis to tissue level [35,36]. In the case of requiring a resolution
of better than 10 micrometers, a synchrotron IR source can be implemented due to emitting 100
to 1000 times brighter IR radiation than conventional sources [37]. Hence, an enhanced spatial
resolution and a high signal-to-noise ratio by synchrotron imaging bring greater contrast between
adjacent pixels as well as the refinement of having smaller pixel size [13,22].

• Splitter. Fourier transforms (FT) interferometers, tunable filters, and diffraction grating
spectrometers are three main types used in IR imaging. FT interferometers record information
from several wavelengths simultaneously [38] and offer rapid spectral acquisition at high
resolution. Filters are used to focus on specific wavelengths and dispense with moving parts in the
spectrometer. Tunable filter, as an alternative filter, electronically controls spectral transmission
by applying a voltage [39]. The liquid crystal tunable filter is the popular tool for global imaging
and mainly used in near-IR hyperspectral imaging. A diffraction grating has a large number of
parallel slits separated by a distance comparable to the wavelength of light. Line detectors enable
several wavelengths to be acquired at the same time [40]. Narrow slits can reduce the amount
of signal reaching the detector whereas large slits might decrease the spectral resolution of the
spectrometer. High detector sensitivity and high source intensity in the near-IR range render it
suitable for near-IR applications [41].
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• Detector. Photon detectors are used to record signal after wavelength separation. In near-IR
imaging, lead sulfide, indium antimonide, and uncooled indium gallium arsenide are commonly
used, while cadmium telluride and mercury are used in mid-IR imaging due to wide spectral
sensitivity [38,42].

• Optics. Typically, 6×, 15×, and 32× objectives are implemented in mid-IR or near-IR
microscope [43].
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2.2. Sampling Techniques

Mid-IR and near-IR microspectroscopy sampling techniques can be categorized as transmission
and reflection. In transmission measurement, the sample is illuminated by source and the detector is
placed behind the sample. The sample should be partly transparent. In most cases, this measurement is
not possible with thick samples. However, when thin specimens are obtained, the transmission imaging
mode provides easy-to-interpret spectra, improves signal-to-noise ratio, decreases the distortion of
the spectra, and shows the definite correlation between molecular structures and spectral features.
Due to the mentioned reasons, particularly mid-IR imaging has been widely employed in qualitative
plant analyses [4]. However, for the transmission measurement, native compositions and physical
structures of samples may be altered during preparation [10,44]. In order to overcome this thick
plant samples can be investigated by reflection measurement. In such experimentation, the detector
is placed on the same side of the sample as the source to record the signal reflected by sample [23].
Most of the time, in reflection tests, original reflection spectra contain the contributions of absorption,
reflection, refraction, scattering, and other processes; therefore, some transformation methods such as
Kramers–Kronig transformation are required to extract absorption [45]. In mid-IR, diffuse reflection
(DR) and the attenuated total reflection (ATR) imaging method are applied. However, the sampling
area of ATR imaging is limited by the size of the internal reflection element crystal [45].

2.3. Sample Preparation

In mid-IR imaging studies, for most plant samples, thinner sections are usually required to
be examined on a calcium or barium fluoride or zinc selenide window. For sample preparation,
special care should be given to avoid changes in the chemical composition of the sample. Three
sectioning techniques are commonly employed to prepare the samples for imaging. They include
Fresh [46], Cryogenic [27,47] and Resin-embedded sectioning techniques [48]. Usually, fresh samples
are ideal for minimal manipulation and absence interference from embedding materials. However,
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here, it should be noted that water absorption bands from high water content of fresh plant samples at
3050–2800 cm−1 and 1700–1500 cm−1 strongly mask the modes belonging to proteins and lipids. In such
cases, samples may be also dehydrated or freeze-dried [49]. Another sample preparation method
involves tissue embedding either in a resin or in a paraffin wax, for which tissue fixation is needed.
Mostly, resin-embedding of fixed tissue has been used to obtain ultrathin (100 nm to 1 mm) sections
as well [48,50]. However, the chemical reagents used for the fixation, embedding, and elution may
cause relocation of trace elements and change native chemical compositions and physical structures
of the samples [51]. For example, the use of formalin during fixation can oxidize double bonds of
unsaturated hydrocarbon chains and cross-link primary and secondary amine groups of proteins.
Similarly, paraffin may also cause spectral artifacts in the C–H and C–C vibrations [52]. Even though it
is still feasible to use paraffin-embedded plant material after its removal using hexane [53], there is
still considerable risk of signal masking due to residual paraffin. Therefore, in the absence of fresh
samples, careful sample preparation using a cryogenic sectioning technique is advisable for mid-IR
imaging. Cryogenic sectioning can avoid the effects of chemical fixation, dehydration and infiltration
of the embedding material into the tissue. It is conducted at low temperatures after embedding the
tissue in an organic medium or flash frozen ice with or without fixation. In ice-embedded, flash frozen
samples, the vitreous ice formed within the tissue acts as the supporting medium [37]. However, in
such a condition, intracellular ice crystal formation can be produced, and thus the sample is damaged.

Comparatively, near-IR imaging having high penetration of the specimen often does not require
time-consuming procedures for sample preparation. The sample can be examined either directly or
as sections mounted onto window as the same in mid-IR imaging. However, again, overlapping
and broad near-IR absorption bands may still necessitate chemometrics to take the relevant spectral
data [19,22].

2.4. Measurement

The imaging measurement can be performed either in the imaging or mapping mode according
to the following strategies.

• Point mapping. A regular grid of spatial positions on the sample surface is defined and a spectrum
is measured at one position; and as the sample moves to the next measurement point on the grid,
the next spectrum is recorded, and this continues for all positions in the area defining the image.
Thus, different areas of the sample are consecutively analyzed.

• Line mapping. Spectra are acquired according to predefined spatial positions and the line is moved
right to left and up to down to cover the whole area. Subsequently, a series of spectra along one
dimension is obtained.

• Area mapping. Depending on the overall mapping size, the sizes of the individually analyzed
areas, the spectral resolution and the number of repeated scans, mappings with single element
detectors can be time-consuming. With Focal Plane Array (FPA), detectors which enable obtaining
a series of spectra collected in two dimensions [54], the required measurement time is reduced.
These detectors consist of several thousands of single detector elements which record all spectra
at once without the need for moving the sample [55,56].

• Hyperspectral imaging. The images are acquired at wavelengths in the near-IR region. For this
measurement, a huge amount of data is collected in a hyper spectral cube where the three axes
include two spatial axes and one spectral axis. This can be generated in one of the four ways:
a point-to-point spectral scan in a spatial grid pattern; FT imaging; a line-by-line spatial scan
(i.e., the push-broom method); and wavelength tuning with filters. In this cube, the sample is
compartmented into small surface or volume areas (referred to as pixels) each of them representing
a full spectrum. These cubes are mostly displayed as a three-dimensional matrix or data cube
spanning two spatial dimensions, x and y. The third dimension z corresponds to the individual
wavelength/wavenumber (Figure 4) [57]. The main disadvantages of hyperspectral imaging
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include it being costly. Data collection and analysis requires sensitive detectors and fast computers,
respectively, and substantial data storage capacity is required due to the size of the hyperspectral
images [15].
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2.5. Quantum Chemical Methods

The application of electronic structure methods, such as quantum chemical methods, for the
calculation of frequencies is of great value for the interpretation of complex experimental spectra.
Application of quantum chemical techniques molecular orbital theory (MO), damped harmonic
oscillator fitting procedure, generalized second-order vibrational perturbation (GVPT2) and density
functional theory (DFT) to real systems represents the essence of computational chemistry. Among
such approaches, anharmonic vibrational analysis is commonly used for non-fundamental modes.
For example, GVPT2 allows acquiring of wavenumber and intensity parameters for first overtones and
binary combination modes. The use of this theoretical calculation on the spectrum gives opportunity
for fitting procedure. Thus, the information about the number of modes’ components can be obtained
with selecting appropriate non-overlapping modes for further analysis. In addition, DFT data offer
interpretation of non-fundamental modes. Even though these mentioned methods are needed to extract
relevant information from non-fundamental bands, it should be stated that such modes have potential
to affect entire spectral regions including mid-IR, for which fundamental bands dominate. For that
reason, such analysis should be also performed for mid-IR region. In addition, it has been reported
that DFT analyzing non-fundamental modes provides not only analysis for near-IR spectra and but
also accurate reproduction of mid-IR region [58–60]. Related with this topic, the reports are appeared
in the literature [58,61,62]. It is worth mentioning that it these studies, in which such methods are used,
were not directly conducted in cells, tissues and organs. However, when considering overlapping
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IR spectra of plant samples due to fundamental and non-fundamental modes, the implementation
of such calculations to IR spectroscopic data obtained from plants will offer accurate interpretation.
Relatively, to the best of our knowledge, there is only one work reported by Krichler and co-workers,
2016 [63]. In that study, GVPT2 approach on DFT level was employed for the calculation of near-IR
spectrum of the rosmarinic acid of milled Rosmarini folium plants. Regarding this study, it will obviously
provide a new perspective for the application of such methods to IR imaging data to obtain more
efficient interpretation.

2.6. Spectral Pre-Processing and Chemometrics

Typical imaging experiments often require the co-addition of many scans to improve
signal-to-noise ratio while maintaining high spatial resolution, which may result in the production
of 100 or more spectra. The data must therefore be reduced by several image planes and spectral
parameters. For this, the first step is pre-processing. It is performed to enhance information and to
reduce irrelevant information such as the scattering effects contained in the spectra. These mathematical
pre-treatments cover baseline corrections, normalizations, derivatives and smoothing [64,65]. The next
steps are classification and cegression. Classification methods are used to group the samples depending
on spectral distinctions and similarities. Principal Component Analysis (PCA) is a popular algorithm
pattern recognition and discrimination method. When there is no prior knowledge about the sample,
PCA is usually the first method to explore the existing signal types in the imaging data. Pixels of the
plant sample can be classified according to the score images. However, the principal components
are usually not equal to chemical compounds. Therefore, Multivariate Curve Resolution (MCR)
methods [4,64,66] are necessary to estimate the spectra and the contents of the chemical compounds
from the imaging data. Regression methods link the spectrum to quantifiable properties of the samples.
Widely-known regression analyses are Multiple Linear Regression (MLR), Principal Component
Regression (PCR), and Partial Least Squares (PLS) [20]. PLS and PCR often lead to very similar
results, and MLR performs better when working with a short range of uncorrelated wavelengths
or data points. PLS and PCR can be easily adapted for discrimination and are in fact derived from
PCA [66,67]. In addition to these, an MCR method called PHAC (PCA-Hierarchical Cluster Analysis
(HCA)-Alternating Least Squares-Correlation Coefficients) can be performed to show the spatial
distribution of the multiple compositions in each sampling region [4]. Detailed documentation of
chemometrics has been provided in the literature [33,67,68]. As mentioned above, near-IR imaging
relies on chemometrics to obtain relevant information from broad peaks. Thus, the selection of the
reference method is very important when developing near-IR application. On the other hand, with
the use of appropriate regression techniques, relationships between absorption values at specific
wavelengths and reference values of the constituent could be properly established [33].

3. Selected Applications of Mid-Infrared and Near-Infrared Imaging on Plant Studies

This section provides some reports in which mid-IR and near-IR imaging have been employed to
investigate phenotypic properties of plant structures for basic plant sciences and agricultural purposes.
In order to present a variety of the subjects on which two techniques were used, different applications
for each method are described.

3.1. Mid-IR Imaging Applications

In comparison to near-IR imaging, mid-IR imaging was developed earlier with conventional light
sources to study chemical constituents within plant cell walls [69] and whole tissues [70].

3.1.1. Identification of Cell Wall Components

The chemical specificity of mid-IR region allows the identification of certain peaks in 1200–950 cm−1

region related to cell wall components [29]. Taking advantage of this, Fourier Transform Infrared
Microspectroscopy (FT-MIR) was utilized to study the alterations in cell wall components in different
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tissues throughout plant development and growth. For instance, Barron et al. (2005) [71] compared
hard and soft wheat (Triticum aestivum) endosperm textures, and found the presence of higher amounts
of a water-extractable arabinoxylan in the peripheral endosperm of soft grains. In another study, the
changes in similar molecules during cell-elongation were monitored to characterize maize (Zea mays)
coleoptile growth by application of neural networks on mid-IR spectra [1]. Moreover, the differences
occurred in the ratio of β-1,3-1,4-glucans/arabinoxylans, and in the arabinoxylan in endosperm grain
during the stage of development was reported by Saulnier et al. (2009) [72]. Similarly, an increase in
cellulose obtained from peaks at 900 and 1320 cm−1 and a decrease in pectins denoted by modes at 1014,
1094, 1152, 1238, and 1741 cm−1 were obtained during Arabidopsis embryo germination [73]. Likewise,
a study of Luffa cylindrical multiple pollen tubes formation from a single pollen grain has revealed
lower amounts of pectins and accumulation of abnormal cell wall components related to lignin, pectin,
cellulose, callose and overall cell wall carbohydrate content [74]. FT-IR microspectroscopy was also
used to determine post mortem lignification of tracheary elements of Zinnia elegans by monitoring
1510 and 1595 cm−1 [75]. Recently, a combination of FT-MIR and an FPA together with chemometric
analysis was performed to characterize different secondary xylem cell types (vessels, fibers, and
rays) across the annual wood ring of aspen (Populus tremula) and to monitor changes in the cell
walls. In this study, in fiber cells, lignin predominated in early wood and hemicelluloses/cellulose
in late wood during the growing season. Additionally, xylem ray cells were found to contain more
aromatic compounds (lignin and monolignols) in early wood and more pectins and/or hemicelluloses
in late wood [76]. Furthermore, Dokken and Davis, 2007 [13] employed synchrotron radiation infrared
microspectroscopy (SR-IMS) to probe cellulose, lignin, and proteins, in the root tissue of hydroponically
grown sunflower and maize plants. Upon the application of PCA, epidermis and xylem tissues of
two different plants could be discriminated. The authors revealed that the best successful separation
of maize and sunflower tissues was achieved depending on the band at 1635 cm−1 attributed to
hydrocinnamic acid in (H type) lignin. A similar technique was conducted to identify the acetyl
esterification of the cell walls of the black cotton-wood (Populus trichocarpa). According to the results,
p-coumarate accumulated in young leaves and declined in mature leaves, while ferulate and acetate
were predominantly found in stems. Over the course of stem development, the amount of ferulate
increased, whereas the initial amount of p-coumarate diminished [77]. Again, related with cell wall
components, ATR FT-IR microspectroscopy was applied in conjunction with multivariate statistical
analysis on petal samples of Petunia hybrida from wild-type and from two transgenic lines in which
the PhEXPA1 expansin gene expression was down-regulated and up-regulated to determine the role
of expansin in the rearrangement of the cell wall polymer network. Within the scope of the study,
the changes in cell wall composites absorption bands assigned to pectin were as follows: 1740 cm−1,
1595 cm−1, 1440 cm−1, 1150 cm−1, 1105 cm−1 and 975 cm−1; hemicellulose: 1260 cm−1, 1230 cm−1 and
1075 cm−1; and cellulose: 1025 cm−1. The data revealed that compared to wildtype there was a decrease
in down-regulated samples for pectin and cellulose but in up-regulated samples for hemicellulose [78].
Lastly, the alterations in cell wall components were detected to monitor the degradation of spruce wood
by brown-rot fungi (Gloeophyllum trabeum or Poria placenta) by transmission FT-IR imaging microscopy
and multivariate analysis. The findings showed that brown-rot starts to become significant in the outer
cell wall regions (middle lamellae, primary cell walls, and the outer layer of the secondary cell wall S1).
Most significant during incipient decay was the cleavage of glycosidic bonds, i.e., depolymerization of
wood polysaccharides and the degradation of pectic substances. Accordingly, intramolecular hydrogen
bonding within cellulose was reduced, while the presence of phenolic groups increased [79].

3.1.2. Protein Structure Analysis

In mid-IR spectra, amide I and amide II modes are attributed to proteins. Since the height of amide I
is very sensitive to changes in proteins structures, the changes in secondary structure elements can be
predicted [26]. Related with this, FT-IR synchrotron infrared microspectroscopy was used to determine
protein structure of leaves of Lc-transgenic and non-transgenic alfalfa using Gaussian and Lorentzian
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methods of multi-component peak modeling. HCA and PCA as well as curve fitting analysis revealed
that transgenic alfalfa contained a relatively lower percentage of alpha helices and beta-sheets and
a higher percentage of turns and random coils. On the other hand, transgenic Lc-alfalfa leaves had
similar proteins with non-transgenic alfalfa obtained by no difference in cluster and PCA analysis [80].
Similar approach was also done on endosperm in hard wheat breeding by Bonwell and co-workers
(2008) [81], on seed proteins in the wild type and T-DNA insertion mutants of Arabidopsis thaliana cv.
by Withana-Gamage et al. (2013) [40] and on feed barley varieties by Yu et al. (2006) [82]. Identical
system was also utilized to quantify protein damage caused by frost (Xin et al., 2013) [27].

3.1.3. Tissue and Taxa Differentiation

Huck-Pezzei et al. (2012) [10] used similar tool with clustering techniques (k-means clustering,
fuzzy cmeans clustering and HCA) to differentiate morphological and molecular patters of different
tissues of St. John’s wort (Hypericum perforatum) by monitoring lipids (1740 cm−1), phospholipids
(1240 cm−1), proteins (1630 cm−1, 1550 cm−1), carbohydrates (between 1185 and 930 cm−1), and
nucleic acids (1080 cm−1). Depending on the contents of the components such as epidermis, phloem,
protoxylem, sclerenchyma, and xylem tissues were successfully discriminated. Parallel distinction
had been previously done on barley tissues such as percarp, seed coat, aleurone, and endosperm by
detecting lignin, protein, carbohydrates, cellulosic materials and lipids [83]. The capability of the same
technique combined with agglomerative HCA and PCA was tested to distinguish endosperms of barley
grain, corn grain and wheat by analyzing 1720–1485 cm−1 (protein), 1650–950 cm−1 (non-structural
CHO starch) and 1185–800 cm−1 (total CHOCO vibrations). The findings revealed that effective
discrimination of three samples could be achieved based on protein mode but not the other modes [84].
In addition, Dell’Ann and co-workers (2010) [85] distinguished pollens of eleven taxa by using FT-IR
transmission microspectroscopy together with unsupervised and supervised multivariate statistical
methods depending on the wavenumber range of 4000–850 cm−1. In this study, HCA provided
reproducibility of the FT-IR spectra of the same taxon. In supervised method, best results were
obtained from a K-nearest neighbors’ classifier and the leave-one-out cross validation procedure on
the dataset composed of single pollen grain spectra (overall accuracy 84%).

3.2. Near-IR Imaging Applications

3.2.1. Discrimination of Different Plant Samples

Even though near-IR imaging is widely applied for quantitative analyses with the use of
chemometrics, it has also been utilized for discrimination of plant samples. For example, dried
fruits of two different species Illicium verum (Chinese star anise) and Illicium anisatum (Japanese star
anise) could be distinguished by short-wave infrared hyperspectral push-broom imaging (920–2514 nm)
system and multivariate analysis. In this study, a classification model with four principal components
and an R2X cum of 0.84 and R2Y cum of 0.81 was developed for the species using Partial Least Squares
Discriminant Analysis (PLS-DA). The model was used to predict the identity of I. anisatum (98.42%) and
I. verum (97.85%) [86]. The same technique in conjunction with PLS-DA, soft independent modeling
of class analogy (SIMCA), K-nearest neighbor algorithm (KNN) and support vector machine (SVM),
and random forest (RF) was also applied to distinguish rice seed samples based on 1039 nm and
1612 nm spectral range. For classification, PLS-DA and KNN models represented over 80% accuracy,
and SIMCA, SVM and RF models produced 100% accuracy in both the calibration sample sets [87].
Similarly, different maize kernels (e.g., hard, intermediate or soft) from inbred lines were properly
classified using Matrix near-IR camera (960–1662 nm) and the Sisu Chema short wave IR hyperspectral
push-broom imaging system (1000–2498 nm) [12]. The authors were obtained with mean square error
of prediction 0.18 and 0.29, respectively by PLS-DA. Liu and Giu (2015) [88] employed hyperspectral
imaging together with chemometric analysis to identify kiwifruits treated with exogenous plant
growth regulator in the range of 865.11–1711.71 nm. PCA, Successive Projections Algorithm (SPA), PLS
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regression and SVM modeling methods were used to select principal components and characteristic
wavelengths. The results indicated that average correct identification rates of all models were higher
than 98.9% and 96.7% for the calibration set and validation set, respectively. The best model was found
to be PLS-SPA whose average accuracy rate reached 100% for the calibration set and 98.4% for the
validation set.

3.2.2. Measurement of Biomolecule Related Parameters

One of the studies measured content of biomolecules in plant samples by using near-IR imaging
was performed by Yu et al. (2014) [8] to determine the spatial distribution of total nitrogen in leaves,
stems, and roots of pepper plants. Within the scope of the study, Total Nitrogen Contents (TNCs)
were measured using Dumas Combustion (DC) method. RF algorithm was implemented to select
the wavelengths (992, 756, 749, 918, 909, 921, 758, and 912 nm) that represented the best prediction
for different tissues of TNCs. PLS model was used to build the quantitative relationship between
the spectral reflectance and TNCs-DC of samples based on full spectra and selected wavelengths.
The RF-PLS model of the whole-plant with results of RP 50.876% and RMSEP 50.426% was considered
as the optimal model for the TNCs-HSI prediction in pepper plants. TNCs-HSI of all pixels in samples
was calculated by applying the optimal PLSR model. In another report, the same technique was
also conducted for quantitative identification and distinction of aflatoxin-infected maize kernels
from clean ones [89]. The authors adopted the masking method to reduce the noise after pixel-level
calibration, and then conducted inverse PCA and secondary PCA to enhance the signal-to-noise
ratio. Upon interactive analysis, two PCs were found to indicate the spectral characteristics of
healthy and infected maize kernels, and the wavelengths of 1729 and 2344 nm were also identified
to indicate aflatoxin exclusively. The n-dimensional visualization method based on PC3 to PC7 was
adapted to separate the aflatoxin-infected and clean kernels. The result was compared with chemical
analysis of Aflatest, and the verification accuracy of pixel level reached about 100%. In addition,
ElMasry et al., 2007 [14] tested a Vis/near-IR (400–1000 nm) hyperspectral imaging system to determine
the moisture content, total soluble solids, and acidity in strawberries. Furthermore, Schmilovitch et al.
(2014) [90] studied three cultivars of bell pepper (“Ever Green”, “No. 117” and “Celica”). The quality
parameters including total soluble solids, total chlorophyll, carotenoid and ascorbic acid content were
determined during maturation by hyperspectral imaging in 550–850 nm regions. Comparisons were
made between the PLS regression analysis of the reflectance spectra (R), and the first derivative spectra
(D1R), log(1/R), D1(log(1/R)) and D2(log(1/R)). High correlations were obtained by the established
models with the coefficients of 0.95, 0.95, 0.97, and 0.72 for total soluble solids, total chlorophyll,
carotenoid and ascorbic acid content, respectively. Moreover, the quantification and localization
of glucosinolates in florets of a single broccoli species were examined by hyperspectral imaging in
the regions of 950–1650 nm [91]. By using the same technique, nitrogen deficiency was identified
by chlorophyll concentration distribution map of cucumber. PCA was performed to reduce the
dimension along the wavelength axis. MLR was used to build calibration models relating the spectra
and chlorophyll concentration which was further confirmed by HPLC. Chlorophyll concentration
was reasonably well-predicted with a high correlation (R = 0.8712). Distribution of chlorophyll
concentrations on the nitrogen deficient and control cucumber leaves were obtained. Thus, the results
concluded that hyperspectral imaging exhibits considerable promise for non-destructive diagnostics
of nitrogen deficiency in cucumber plant [92]. Similar approach combined with chemometric methods
was performed by Liu et al. (2015) [93] to measure lycopene and phenolic compounds content in
intact tomatoes. PLS, least squares-support vector machines (LS-SVM) and back propagation neural
network were applied to develop quantitative models. Compared with PLS and LS-SVM, back
propagation neural network (BPNN) model considerably improved the performance with coefficient
of determination in prediction (R2P) = 0.938 and 0.965, residual predictive deviation (RPD) = 4.590 and
9.335 for lycopene and total phenolics content prediction, respectively.



Molecules 2017, 22, 168 13 of 20

3.2.3. Detection of Bruises and Tissue Damages

Hyperspectral imaging has been also utilized to identify bruises and damages on different
agricultural products. For instance, bruise damages on “Shingo” pears were detected by application
of a classification algorithm based on F-value. The optimal waveband ratio for the discrimination of
bruises was obtained as 1074 nm and 1016 nm: R1074/R1016 with the accuracy of 92% [94]. The same
system was also performed to detect bruised areas on strawberries [95] and on wheat kernels [96].
Additionally, bitter pit lesions on apples [97] and fungal infection by Penicillium digitatum in citrus
fruit [98] were efficiently detected in combination with PLS model.

3.2.4. Analysis of Firmness of Fruits

Lu et al. (2005) [99] had earlier used a push-broom multispectral imaging system (400–1000 nm)
to determine the scattering profiles of soft and firm “red haven” peaches. Experiments showed that
soft fruit possesses broader scattering profile than firm ones and their difference was most pronounced
at 680 nm. Likewise, firmness of apples was identified by a Multispectral Imaging (MSI) system over
the wavelengths at 685, 850, 904 and 980 nm. In the scope of the study, to validate the MSI system,
intra-lipid solutions of known concentration were used. The best MSI results of R = 0.87 and root
mean square error of cross validation (RMSECV) = 7.17 were obtained when the Lorentzian model
parameters derived at each wavelength were combined using MLR [100].

3.2.5. Endosperm Texture Determination

To evaluate endosperm texture of hard, intermediate, or soft whole yellow maize kernels a linescan
(push-broom) instrument in the wavelength from 1000 to 2498 nm was tested [11]. After multivariate
image cleaning PCA model was performed following multiplicative scatter correction (MSC) and
mean-centering. Different clusters representing vitreous and floury endosperm (different types of
endosperm present in varying ratios in hard and soft kernels) and a third type of endosperm were
obtained in the score plot of the second and fourth principal components. Chemical interpretation
revealed that starch density and the protein matrix could be monitored for differentiation of endosperm
textures. The vitreous and floury endosperm clusters were used to make PLS-DA model, using four
components, with a coefficient of determination (R2) for the y data (kernel hardness category) for the
training set of over 85%.

3.2.6. Assessment of Plant Development

Germination periods of muskmelon seed were predicted by near-IR hyperspectral imaging by
push-broom system in the spectral range of 948–2494 nm. The spectra from seeds on Germination
Days 3 and 5 and non-germinated seeds were studied for development of PLS-DA. Most effective
wavelengths were selected using Variable Important in Projection (VIP), Selectivity Ratio (SR), and
Significance Multivariate Correlation (sMC). The PLS-DA model was constructed using individual
VIP, SR, or sMC variables. The results demonstrated that the PLS-DA model, which was developed
with the selected optimal variables from the different methods, provided comparable results for the
calibration set; however, the PLS-DA-SR method afforded the highest classification accuracy (94.6%)
for a validation set used to determine the viability and vigor of muskmelon seeds [101]. More examples
for application of hyperspectral imaging in crop and plant analysis are available in a review provided
by Cozzolino and Roberts, 2016 [18].

3.3. Combined Studies

For imaging measurement, the transmission imaging mode presents easy-to-interpret spectra
with high signal-to-noise ratio. However, the native chemical compositions and physical structures
of plant samples may be altered during microtome process as stated above. To overcome this direct
measurement of thick plant samples by the combination of near-IR and mid-IR imaging can be
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proposed. Chen et al. recently took advantage of near-IR transmission and ATR microspectroscopic
imaging to characterize non-microtomed Ginkgo biloba leaves. In order to interpret ATR imaging
spectra, PCA, HCA, alternating least squares (ALS), and PLS were used. Near-IR transmission
microspectroscopic imaging was applied to explore the primary chemical structures of whole leaf
samples and the C–H and O–H bonds in secretory cavities, veins, and mesophylls were found to be
different due to overlapped modes. Instead of this, mid-IR images indicated that secretory cavities and
mesophylls contained more resin-like compounds and proteins, whereas veins contained more cellulose
and calcium oxalate. In addition, within the scope of the study, the surface chemical composition
leaf samples were also studied by ATR microspectroscopic imaging. The spectra and distribution
images of cuticle, protein, cellulose, ginkgolic acids, and calcium oxalate on the adaxial surface were
obtained using the PHAP procedure, which is the combination of PCA, HCA, ALS and PLS. As a
result, chemical compositions of secretory cavities, veins, and mesophylls were analyzed in detail, and
the distributions of some compounds on the surface layers of Ginkgo biloba leaves were revealed [9].

In another experiment, the chemical morphology of the Areca nut section was directly
characterized by the reflection near-IR imaging and the attenuated total reflectance mid-infrared
(ATR-MIR) imaging methods. According to NIR spectra, there are three types of pixels corresponding
to the endosperm, perisperm, and testa, respectively. In addition to these data, the endosperm and
perisperm contain a lot of carbohydrates and lipids as well as a few protein particles, while the testa
mainly consists of tannins obtained by ATR imaging results. Thus, in the content of the study, first,
the reflection near-IR imaging explored the sample to find out typical regions in small sizes. Then,
ATR-MIR imaging method measured the typical regions and revealed the molecular structures and
spatial distributions of compounds of interest [4].

4. Summary and Future Outlook

Mid-IR and near-IR imaging are non-destructive versatile analytical techniques in plant analysis
providing qualitative and quantitative data with spatial distribution patterns of components in
heterogeneous cells, tissues and organs. Two technologies have different advantages and constraints.
The mid-IR has the practical limitation of thin specimen and difficult sample preparation. In contrast,
near-IR data are more readily obtained with minimal sample preparation while offering deeper
sample penetration. The appearance of mid-IR absorptions from vibrations of different functional
groups in characteristic frequencies of IR facilitates easy band assignment and interpretation. Thus,
plant composites can be qualitatively analyzed with wide and common use of this technique.
Comparatively, near-IR interpretation usually requires statistical multivariate data treatment due to
broader overlapping modes. However, once calibration method is developed, quantitative information
about chemical composition of plants can be obtained, which is an ignored advantage of this technology
over other conventional methods. Thus, taking the advantages of these methods several characteristics
and properties of plant structures have been analyzed.

Even though the benefits of the techniques over other analytical methods are sensitivity, analytical
speed, and minimal sample preparation and easy operation, they still require development. Particularly,
the use of multivariate data analysis methods and sampling techniques to interpret the data generated
may bring some restrictions their use. As future perspectives, the development of the technologies in
terms of methodologies and instrumentation will facilitate their applicability for a wide range of plant
sciences. The developed theory covers several factors such as higher performing instrumentation,
algorithms and software for signal processing. In particular, even though they are well-established
as laboratory systems, there is still need for miniaturization. This will enable on-site and in-field
analysis, which offers great opportunity to study the plant in their natural environments. Additionally,
advances in instrumentation like improvement in resolution will increase their sensitivity, and thus
efficacy of investigation. Further developments in chemometrics and quantum chemical methods will
obviously contribute to easy spectral analysis.
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In sum, the integration of mid-IR and near-IR imaging with basic and applied plant research can
overcome bottleneck issues due to receiving the full benefit of the available molecular data. In this
way, reliable, automatic, multifunctional, and high-throughput plant phenotyping platforms may be
developed more, and thus, plant scientists may gain new insights into all the aspects of plants.
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