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Abstract In electrophysiological recordings of the brain,
the transition from high amplitude to low amplitude sig-
nals are most likely caused by a change in the synchrony
of underlying neuronal population firing patterns. Classic
examples of such modulations are the strong stimulus-
related oscillatory phenomena known as the movement
related beta decrease (MRBD) and post-movement beta
rebound (PMBR). A sharp decrease in neural oscillatory
power is observed during movement (MRBD) followed by
an increase above baseline on movement cessation (PMBR).
MRBD and PMBR represent important neuroscientific phe-
nomena which have been shown to have clinical relevance.
Here, we present a parsimonious model for the dynamics
of synchrony within a synaptically coupled spiking network
that is able to replicate a human MEG power spectrogram
showing the evolution from MRBD to PMBR. Importantly,
the high-dimensional spiking model has an exact mean field
description in terms of four ordinary differential equations
that allows considerable insight to be obtained into the
cause of the experimentally observed time-lag from move-
ment termination to the onset of PMBR (∼ 0.5 s), as well

Action Editor: Maxim Bazhenov
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as the subsequent long duration of PMBR (∼ 1 − 10 s).
Our model represents the first to predict these commonly
observed and robust phenomena and represents a key step
in their understanding, in health and disease.
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1 Introduction

The modelling of brain rhythms is now a well established
and vibrant part of computational neuroscience. Ever since
the first recordings of the human electroencephalogram
(EEG) in 1924 by Berger (1929) electrophysiological brain
recordings have been shown to be dominated by oscillations
(rhythmic activity in cell assemblies) across a wide range of
temporal scales and scientists have sought to develop large
scale models to describe the five main frequency bands of
delta (1 − 4 Hz), theta (4 − 8 Hz), alpha (8 − 13 Hz),
beta (13 − 30 Hz) and gamma (30 − 200 Hz). Moreover,
it has long been known, since the early works of Jasper
and Andrews (1936, 1938), that different brain rhythms
can be localised to specific areas of the brain, and that
these rhythms can be functionally distinct. For example,
they showed that the beta rhythm present in the vicinity of
the central sulcus was not affected by the presentation of a
weak visual stimulus which suppressed the alpha rhythm,
recorded from the occipital lobe. Given the challenge of
modelling such complex behaviour it is perhaps no surprise
that the long and industrious history of brain modelling has
delivered more than one tool for this job. For issues that
relate to spike times and their synchrony we can appeal to
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conductance based modelling, large scale network simula-
tions and theories for understanding coupled oscillators, as
recently surveyed in Ashwin et al. (2016). For questions that
relate to understanding the coarse grained activity of either
synaptic currents, mean membrane potentials or population
firing rates, it is more natural to appeal to neural mass mod-
els, as reviewed in Coombes (2010). Indeed the latter have
proven especially fruitful in providing large scale descrip-
tions of how neural activity evolves over both space as well
as time (Coombes et al. 2014; Pinotsis et al. 2014). How-
ever, these two approaches are dangerously close to creating
a dichotomy so that there is no ideal computational mod-
elling framework for understanding the role of spike-timing
in generating localised brain rhythms.

A case in point that challenges the modelling tools cur-
rently available to us is the work of Jasper and Penfield
(1949) who showed that beta rhythms generated from the
motor cortex are suppressed during voluntary movement.
This phenomenon is known as movement related beta
decrease (MRBD). It wasn’t until some years later that the
post-movement beta rebound (PMBR) (a temporary rise in
amplitude of beta oscillations following movement cessa-
tion) was discovered (Riehle and Vaadia 2004; Pfurtscheller
et al. 1996; Jurkiewicz et al. 2006). MRBD usually lasts
for approximately 0.5 seconds and PMBR can last for
up to several seconds. MRBD and PMBR are extremely
robust, with clear amplitude changes in individual subjects
and trials (Pfurtscheller and Lopes da Silva 1999). Inter-
estingly, similar effects have been seen in studies where
the subject is asked to think about moving, without carry-
ing out the movement (Schnitzler et al. 1997; Pfurtscheller
et al. 2005). These beta band modulations are believed
to be caused by changes of synchrony within a relatively
localised region of motor cortex (Stancák and Pfurtscheller
1995). Hence, MRBD is regarded as a special case of event-
related desynchronisation (ERD) and PMBR a special case
of event-related synchronisation (ERS).

Multiple papers have employed a large number of care-
fully controlled paradigms, in humans and animals to
further investigate beta rebound phenomena and their mod-
ulations by tasks (see Cheyne 2013; Kilavik et al. 2013 for
reviews). However, despite the robust nature of the beta task
induced decrease and post stimulus rebound, the effect itself
is relatively poorly understood and, at the time of writing,
there has been, to our knowledge, no computational model
capable of describing the beta rebound. In general, high
amplitude beta oscillations are thought to reflect inhibition
(Cassim et al. 2001; Gaetz et al. 2011), a hypothesis sup-
ported by quantifiable relationships between beta amplitude
and local concentrations of the inhibitory neurotransmit-
ter gamma aminobutyric acid (GABA) (Gaetz et al. 2011;
Hall et al. 2011; Jensen et al. 2005; Muthukumaraswamy
et al. 2013). This means that the observed MRBD might

reflect an increase in processing during movement planning
and execution and the PMBR might reflect active inhibition
of neuronal networks post movement (Alegre et al. 2008;
Solis-Escalante et al. 2012). An alternative, but not mutually
exclusive hypothesis which has been proposed by Donner
and Siegel (2011) (also outlined in Liddle et al. 2016) is
that the beta signal, in part, represents long range integration
across multiple brain regions (see also Liddle et al. 2013).
Indeed this is a hypothesis supported by some evidence sug-
gesting that large scale distributed network connectivity is
mediated by beta oscillations (Brookes et al. 2011; Hall
et al. 2014; Hipp et al. 2012).

To describe beta rebound we are faced with modelling
a mesoscopic brain scale and in particular the changes of
synchrony within a population of say 106−7 excitatory pyra-
midal cells and their associated inhibitory interneurons. A
neural mass model would be ideal for this scale, if the
question of interest related to rate rather than spike, which
suggests instead a simulation of a spiking neural network
model. Unfortunately the latter can be notoriously hard to
gain insight from for very large numbers of neurons. Ideally
we would have access to a statistical neurodynamics provid-
ing a bridge between the two levels of description. This is
an open mathematical problem. However, recent progress in
obtaining a mean field reduction for a very specific choice
of large scale spiking model has been made, and is ideally
suited as a basis for breaking the dichotomy noted above.
The single neuron model of choice being either a θ -neuron
(So et al. 2014; Luke et al. 2013) or a (formally equiva-
lent) quadratic integrate-and-fire (QIF) neuron (Pazó and
Montbrió 1009), and the coupling being global and medi-
ated by pulses (namely instantaneous synapses). Given the
dense connections of connections in cortex on small scales
(Klinshov et al. 2014) the global coupling assumption is not
so restrictive for our purposes, though the assumption of
fast synapses should be relaxed to incorporate more real-
istic post synaptic responses. This is precisely the issue
we address here to develop a model capable of explaining
MRBD and PMBR.

In what follows, Section 2 gives a recapitulation of
cortical rebound, illustrated with newly acquired magne-
toencephalography (MEG) data, along with some recently
published results. A candidate large scale computational
model is described in Section 3, utilising realistic synaptic
conductance changes. The model is cast in both voltage and
phase variable so that it can be understood both as a QIF
network, and also as a phase-oscillator network so that a
connection to Kuramoto type networks can be made. Impor-
tantly we develop an exact low dimensional mean field
description capable of capturing the behaviour of a globally
coupled network in the limit of a large number of neurons.
The macroscopic variables of interest are now firing rate and
mean membrane potential (for the voltage description) or
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the Kuramoto measure of synchrony (for the phase descrip-
tion). Importantly we show in Section 4 that the response
of the mean field model to stimulation leads to spectro-
grams with all of the key features observed in MRBD and
PMBR. Finally in Section 5 we emphasise the benefits of
this new type of neural mass model, capable of tracking not
only changes in firing rate but also coherence within a pop-
ulation, in describing cortical rebound, as well as discuss
natural extensions to our initial single population approach.

2 MRBD and PMBR: a recapitulation

Beta band modulation is robust across subjects; occurring
during internally and externally cued movements, as well
as during somatosensory stimulation. To demonstrate this,
for somatosensory stimulation, we carried out a series of
median nerve stimulation experiments on two healthy par-
ticipants. The participant’s median nerve was stimulated at
the wrist using a constant current stimulator and the neu-
rological response was measured using MEG (for more
details on the experimental design see Appendix A). The
experiment was repeated on separate days to determine how
reproducible the results were. Figure 1 shows the relative

time-frequency spectrograms for two such experiments for
each participant, where baseline activity has been sub-
tracted. The top line represents the data for participant 1 and
the bottom line represents participant 2. For each case there
is a 10–20% decrease in power for ∼ 0.5 s, demonstrating
MRBD. At ∼ 0.5 s there is a 60–100% increase in power,
exemplifying PMBR. Although the comparison between
participants shows dissimilarities in the shape and length
of PMBR, the strength and timing of both the MRBD and
PMBR are comparable. Importantly, the similarity between
each participant’s time-frequency spectrogram on separate
days is compelling.

Recent work, reviewed in Brookes et al. (2011, 2012)
and Robson et al. (2015), has begun to show the poten-
tial importance of beta band modulation. For example,
Fig. 2 (recreated with permission from Robson et al. 2015)
shows relative time-frequency spectra depicting the changes
in neural oscillations in sensorimotor cortex in response
to a cued finger movement task. The left hand panel (a)
shows the case for healthy individuals. The time-frequency
spectrum is extracted from a location of interest in left pri-
mary motor cortex. Notice that in the beta band, the MRBD
and PMBR are observed clearly. The right hand panel (b)
shows the case for patients with schizophrenia. Note the

Fig. 1 Robust beta rebound for
median nerve stimulation: Time-
frequency spectrograms showing
the percentage change from
baseline of the activity in the
motor cortex, for 2 participants
on two separate days. The top
row shows the results for
participant 1 and the bottom row
represents data from participant
2. Each participant displayed a
clear difference in their PMBR.
However, the strength and
timing of both the MRBD and
PMBR are consistent between
subjects and trials. PMBR for
each participant appears to be
reproducible
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Fig. 2 The beta rebound and its disruption in patients with schizophre-
nia: (a) Time-frequency spectrograms showing changes in the ampli-
tude of neural oscillations, in contralateral sensorimotor cortex, when
subjects execute a 2s finger movement. Note that, in the beta band
the loss in oscillatory power during movement is accompanied by

an increase in power on movement cessation. (b) Equivalent time-
frequency spectrogram in patients with schizophrenia. Note the sig-
nificant reduction in PMBR (Figure reproduced with permission from
Robson et al. 2015.)

significant reduction in PMBR. Furthermore, this same
study showed that the magnitude of the beta rebound corre-
lated significantly with the severity of ongoing symptoms of
schizophrenia, thus highlighting direct clinical relevance to
the measurement. This is just one example of how beta band
oscillations have been identified as a potential biomarker
of disease; other examples include Parkinson’s Disease
(Timmermann and Florin 2012). In addition, the robustness
of MRBD and PMBR has meant that they have also been

used in neuroscience applications ranging from brain com-
puter interfaces (Pfurtscheller and Solis-Escalante 2009) to
markers of neural plasticity (Gaetz et al. 2010; Mary et al.
2015). It is also noteworthy that the beta band power loss
and rebound, whilst commonly thought of as being observ-
able in the sensorimotor cortex, is not a sole property of the
sensorimotor system. For example, Fig. 3 shows instances
of observation of very similar phenomena in other corti-
cal areas. Figure 3a shows the time-frequency oscillatory

Fig. 3 Task induced beta band decrease and rebound phenomena
in other cortical regions: (a) Time-frequency dynamics in a network
of brain areas including bilateral insula. The task involved visual
stimuli that were relevant and irrelevant to the task. Note the sig-
nificant reduction and rebound in beta oscillations in the relevant
condition. (Reproduced with permission from Liddle et al. 2016.)

(b) Timecourse showing the envelope of beta oscillations in primary
visual cortex during passive viewing of a visual grating. Visual stimu-
lation occurred in the 0 s to 4 s window. Note again the task induced
power loss and post stimulus rebound (Reproduced with the authors’
permission from Stevenson et al. 2011.)
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dynamics of a network of brain areas encapsulating bilat-
eral insula cortex, throughout a cognitive task (Liddle et al.
2016; Brookes et al. 2012). The task itself involves presen-
tation of a series of visual stimuli; some stimuli are relevant
to the task, others irrelevant. Subjects were asked to respond
if the relevant stimuli match some predetermined condition.
Note here that only the non-target stimuli are shown (mean-
ing that the subjects did not actually make a response). In the
relevant condition, clear beta modulation is observed with
a decrease in amplitude followed by a rebound above base-
line. Furthermore, this effect was also shown to be abnormal
in schizophrenia, again demonstrating its clinical relevance.
Figure 3b shows the case for simple sensory stimulation
of the visual cortex (Stevenson et al. 2011). Here, subjects
were asked to passively view a drifting visual grating; the
figure shows the envelope of beta band oscillations through-
out the task. Note again the clear structure with a loss in
beta amplitude during stimulation and an increase on stim-
ulus cessation. These represent two simple examples which
show that the beta band effect is not simply a property of the
sensorimotor system, but rather is a ubiquitous effect that is
observed robustly across many cortical regions.

The above indicates that stimulus related beta power loss
and post stimulus rebound are generally observable effects,
seen in many cortical areas, during both sensory and cogni-
tive tasks. Further, the reduction of rebound in disease has
been robustly demonstrated. Thus, the generation of new
mathematical models from which we can accurately predict
task induced beta band dynamics are of interest.

3 A mean field model for spiking networks

There are a now a plethora of single neuron models for
describing the spiking dynamics of cortical cells, many of
which are extensions of the basic Hodgkin-Huxley model
to incorporate nonlinear ionic currents that allow low fre-
quency firing in response to constant current injection.
Importantly mathematical neuroscience has identified a
number of mechanisms that can generate ‘f-I’ curves with
this property, with perhaps the most well known being
the saddle-node on an invariant circle (SNIC) bifurcation
(Ermentrout and Kopell 1986). This has led to the formu-
lation of the elegant θ -neuron model (or Ermentrout-Kopell
canonical model) which can mimic the firing and response
properties of a cortical cell with a purely one dimensional
dynamical system evolving on a circle. In a certain limit
this is formally equivalent to the quadratic integrate-and-fire
(QIF) model, also designed explicitly for understanding the
generation of low firing rates in cortex (Latham et al. 2000).
Given the simplicity of these models they are a natural can-
didate for cortical network studies, not only because they
are computationally cheap, but because there is more chance

to develop a statistical neurodynamics for such models than
their biophysically complicated conductance based counter-
parts. Indeed mean field models for globally pulse-coupled
networks have recently been developed by Luke et al. (2013)
for θ -neuron models, and by Montbrió et al. (2015) for QIF
models. To make these models more relevant to the interpre-
tation of brain imaging signals, and in particular EEG and
MEG, it is vital to augment the networks with more real-
istic forms of synaptic interaction and to move away from
the overly restrictive assumption of fast pulsatile synaptic
currents.

We consider a network of N QIF neurons each with a
voltage vi , for i = 1, . . . , N , evolving according accord-
ing to the following set of coupled ordinary differential
equations (ODEs):

C
d

dt
vi = ηi + κv2i + Ii, i = 1, . . . , N. (1)

Here C is a capacitance, ηi is a constant current drive, κ

is a proportionality constant, which from now on (without
loss of generality) will be set to unity, and Ii is the synaptic
current,

Ii = g(t)(vsyn − vi), (2)

where g(t) represents a common time-dependent synaptic
drive, which we shall take to arise through global coupling.
This acts to push the voltage toward the synaptic reversal
potential vsyn. If the synaptic current is positive (negative)
we say that the synapse is excitatory (inhibitory). The QIF
network has discontinuous trajectories since whenever vi

reaches a threshold value vth it is reset to the value vreset.
This firing condition is also used to define an implicit set of
firing times according to vi(T

m
i ) = vth, where T m

i denotes
the mth firing time of the ith neuron. These in turn can
be used to generate a set of conductance changes for the
ith neuron that we write in the form

∑
m∈Z s(t − T m

i ),
where s(t) is a fixed temporal filter. For a globally coupled
network, with strength of synapse k/N , the total synaptic
conductance change at each neuron is then

g(t) = k

N

N∑

j=1

∑

m∈Z
s(t − T m

j ). (3)

For fast pulsatile interactions we may set s(t) = δ(t), where
δ is a Dirac-delta function. For a more realistic form describ-
ing a normalised post synaptic potential (PSP) with an
exponential decay we may set s(t) = αe−αt�(t), whilst for
a more general PSP with both a rise and fall time we would
set s(t) = (1/α1 − 1/α2)

−1[α1e−α1t − α2e−α2t ]�(t). Here
�(t) is a Heaviside step function included to enforce causal-
ity, and the parameters α, α1,2 are decay rates. Exploiting
the fact that in all these cases s(t) is the Green’s function of
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Table 1 Synaptic filtering: Examples of differential operators and
their corresponding temporal filters

Q s(t)

1 δ(t)(

1+ 1

α

d

dt

)

αe−αt�(t)

(

1+ 1

α1

d

dt

) (

1+ 1

α2

d

dt

) (
1

α1
− 1

α2

)−1 [
α1e

−α1t −α2e
−α2t

]
�(t)

The first example shows pulsatile coupling, where no synaptic filter-
ing has been applied to the incoming spike. The second type of filter
shown is an exponentially decaying function, which accounts for the
slow decay of the instantaneous pulse. It does not however account
for the time it take a synapse to process the incoming action poten-
tial, increasing instantaneously to the maximum value as soon as the
spike arrives. The last example takes into account this synaptic pro-
cessing delay, increasing smoothly to its peak value and then decaying
exponentially back to zero. Note that �(t) represents the Heaviside
function

a linear differential operator Q then we may also write g as
the solution to the ODE system

Qg(t) = k

N

N∑

j=1

∑

m∈Z
δ(t − T m

j ). (4)

For the corresponding operator Q to the choice of s see
Table 1. For the rest of this paper we shall work with
the choice s(t) = α2te−αt�, describing the so-called
α-function. This can be obtained from the difference of
exponentials form described above in the limit α1,2 → α,
so that the corresponding differential operator Q is

Q =
(

1 + 1

α

d

dt

)2

. (5)

Thus Eqs. (1)–(5) define our spiking model. This is fur-
ther illustrated in Fig. 4 for an all-to-all coupled neural

network, with an inset showing the single neuron dynam-
ics. Each neuron generates a train of spikes described by a
sequence of Dirac-delta functions that are then filtered with
the kernel s(t) to generate a synaptic current according to
Eq. (2). From this one may in principle use Maxwell’s equa-
tions to determine the magnetic field that would underly an
MEG-like signal. However, for simplicity we shall take the
average network current to be a proxy for this physiological
signal. This is given explicitly by g(t)(vsyn − V (t)), where

V (t) = 1

N

N∑

j=1

vj (t), (6)

which describes the average membrane potential.
For a single uncoupled neuron (k = 0) it is a simple mat-

ter to show that, when vth → ∞ and vreset → −∞, the
frequency of oscillation is given by 2

√
ηi/C. For further

simplicity we shall work with these choices for the values of
vth and vreset. From now on we shall choose ηi to be random
variables drawn from a Lorentzian distribution L(η) with

L(η) = 1

π

	

(η − η0)2 + 	2
, (7)

where η0 is the centre of the distribution and 	 the width
at half maximum. For simplicity we will consider the aver-
age frequency of oscillations ω0 = 2

√
η0/C as a single

parameter, distributed with a width at half maximum 	ω =
2
√

	/C. In the coupled network, and if the frequencies
of the individual neurons are similar enough, then one
may expect some degree of phase locking (ranging from
synchrony to asynchrony), itself controlled in part by the
time-to-peak, 1/α, of the synaptic filter.

As shown in Fig. 5, for a model with predominantly
inhibitory connections, we see patterns of coherent spik-
ing. The degree of coherence is mainly controlled by the
degree of heterogeneity of the constant current drives ηi .

Fig. 4 Neural network: The
diagram on the right shows an
all-to-all coupled network. The
zoom on the left shows each of
the components of Eqs. (1), (3)
and (4). The top plot of the zoom
shows the shape of the synaptic
filter for the case that s(t) is an
α-function: s(t) = α2te−αt�,
where 1/α is the time-to-peak.
Ii is the total synaptic current
that enters the cell body and vi

is the voltage of the cell which
oscillates as shown in the middle
plot. The corresponding output
spike train is given by a
sequence of Dirac-delta
functions δi = ∑

m∈Z δ(t −T m
i ),

as illustrated in the bottom plot
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Fig. 5 Quadratic integrate-and-fire dynamics: The top plot show a
raster plot depicting the spike times for a sample of size 100 in a
network of 500 QIF neurons. The lower plots show the mean field vari-
ables; the firing rate r and the average voltage V . Parameter values are
chosen such that the system exhibits partial synchrony; ω0 = 0.269
Hz, 	ω = 0.042 Hz, vsyn = −10 mV, k = 0.105, 1/α = 35 ms, C =
30 mF

In this figure we also track the evolution of two macro-
scopic order parameters. These are respectively the average
membrane potential, given by Eq. (6), and the instantaneous
mean firing rate r:

r(t) = 1

N

N∑

j=1

∑

m∈Z
δ(t − T m

j ). (8)

For large N both the order parameters V and r show a
smooth temporal variation. In the case of synchrony we
would expect these mean field signals to show a periodic
temporal variation, essentially following a trajectory rem-
iniscent of a single QIF neuron receiving periodic drive,
whilst for an asynchronously firing population these mean
field signals would be constant in time (modulo finite size
fluctuations). To quantify the degree of coherence (or phase-
locking) within an oscillatory population it is convenient to
use a Kuramoto order parameter. First though it is necessary
to recast the model in terms of phase variables.

Given the well known link between the QIF neuron and
the θ -neuron it is natural to introduce the phase variable θi ∈
[−π, π) according to vi = tan(θi/2) (so that cos θi = (1 −
v2i )/(1 + v2i ) and sin θi = 2vi/(1 + v2i )). In this case we
arrive at the θ -neuron network

C
d

dt
θi = (1−cos θi)+(1+cos θi)(ηi+gvsyn)−g sin θi, (9)

Qg = 2

C

k

N

N∑

j=1

P(θj ). (10)

Here P(θ) = δ(θ − π) and is periodically extended such
that P(θ) = P(θ + 2π), and we have used the result that
δ(t −T m

j ) = δ(θj (t)−π)|θ̇j (T
m
j )|. The network defined by

Eqs. (9) and (10) describes a set of N phase variables inter-
acting via spike triggered currents every time that θj passes
through π . We will only consider the case that θj increases
through π (so that spikes are only generated on the upswing
of the corresponding voltage variable). In the absence of
synaptic coupling an isolated θ -neuron supports a pair of
equilibria θ±, with θ+ < 0 and θ− > 0 for ηi < 0, and no
equilibria for ηi > 0. In the former case the equilibria at θ+
is stable and the one at θ− unstable. In neurophysiological
terms, the unstable fixed point at θ− is a threshold for the
neuron model. Any initial conditions with θ ∈ (θ+, θ−) will
be attracted to the stable equilibrium, while initial data with
θ > θ− will make a large excursion around the circle before
returning to the rest state. For ηi > 0 the θ -neuron oscil-
lates with frequency 2

√
ηi/C. When ηi = 0 the θ -neuron

is poised at a saddle-node on an invariant circle (SNIC)
bifurcation.

As well as naturally providing a phase variable the θ -
neuron network is more straight forward to simulate as the
model has continuous trajectories on an N-torus (and there
is no need to handle the discontinuous reset conditions). The
Kuramoto order parameter is then defined as

Z(t) = 1

N

N∑

j=1

eiθj (t) ≡ R(t)ei�(t). (11)

Here R provides a measure of the degree of coherence
within the network and � is the average phase. If a popula-
tion is perfectly synchronised then R = 1 and similarly if
the system is perfectly asyncronous then R = 0. In Fig. 6
we show a sequence of snapshots of the Kuramoto order
parameter for the dynamics shown in Fig. 5, as well as the
time evolution of the degree of coherence.

Much as the order parameters (r, V ) vary smoothly with
time (for large N) then so does the pair (R, �). Indeed
in the large N limit Luke et al. (2013), making use of the
Ott-Antonsen (OA) ansatz (Ott and Antonsen 2008), have
shown that a globally pulse-coupled network of θ -neurons
has an exact mean field description. The OA ansatz allows
the reduction of globally coupled phase oscillators in the
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Fig. 6 Theta neuron dynamics: The top set of plots show the phases of
the individual neurons, represented by the coloured dots, at 3 different
values of time t . The colour of each neuron has no intrinsic meaning,
and is used merely to aid in distinguishing the dots. The phase of each
neuron is the angular position of the coloured dot. The black dot in the
centre represents the Kuramoto order parameter Z = Rei� . In the top
left plot the system is completely asynchronous and Z � 0. The top

middle plot demonstrates that the length from the centre of the disk to
the black dot represents R, the population synchrony, and �, the aver-
age phase, is represented by the angular position of the black dot. The
top right plot shows the system at a later point in time. The lower plots
show R and � as a function of time. One observes that both the popu-
lation synchrony and average phase continuously oscillate. Parameter
values as in Fig. 5

infinite size limit to an explicit finite set of nonlinear ODEs.
These describe the macroscopic evolution of the system,
in terms of the Kuramoto order parameter for synchronisa-
tion, as long as the distribution of phases is at most single
peaked. In essence the ansatz is well suited to describing
systems which dynamically evolve between an incoherent
asynchronous state and a partially synchronised state, which
is often the case in systems with interactions that are pre-
scribed by harmonic functions, such as found in Eq. (9). To
illustrate the type of network evolution that can be gener-
ated with different values of synchrony, see Fig. 7. Here we
show some plots of the phase distribution for different val-
ues of the network coherence as well as the average network
current that would be produced.

Interestingly, Montbrió et al. have recently shown how
to move between order parameters for the phase and volt-
age descriptions with the use of a conformal transformation
(Montbrió et al. 2015). If we introduce the complex order
parameter for the voltage description as

W = πCr + iV , (12)

then the following transformation allows one to switch
perspectives and obtain the order parameter for the volt-
age description in terms of the Kuramoto order parameter
as

W = 1 − Z

1 + Z
, (13)

where Z denotes the complex conjugate of Z. Importantly
the OA ansatz can also be used to obtain a mean field
model in the presence of non-pulsatile synaptic, extending
the approaches in Luke et al. (2013) and Montbrió et al.
(2015). In Appendix B we show that this yields the mean
field model described by the fourth order ODE system:

C
d

dt
Z = −i

(Z − 1)2

2
+ (Z + 1)2

2

[−	 + iη0 + ivsyng
]

−Z2 − 1

2
g, (14)

Qg = kH(Z). (15)
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Fig. 7 Distribution of phases: Figure illustrating the distribution of
phases F(θ) in the large N limit and the average synaptic current for
different values of the population coherence R. For simplicity we have
fixed the choice of time so that �(t) = 0. When the population is com-
pletely synchronous (R = 1) all of the neurons have the same phase
and as a result all of the neurons fire together so that F(θ) = δ(θ)

and the average synaptic current is very spiky. In the regime where
R � 0.5 the phases are more distributed. Although a dominant phase
can be clearly identified (by the peak value) not all neurons have this

phase. The OA ansatz gives the shape of the distribution in the form
F(θ) = (2π)−1(1−|Z|2)/(|eiθ −Z|2). This spread in the phase distri-
bution acts to smooth out the spikes in the average synaptic current to
create a smooth oscillatory signal. When the population of neurons is
completely asynchronous there is no dominant phase and every phase
is equally probable so that F(θ) = 1/(2π). In this case all of the neu-
rons fire at different times with their phases uniformly distributed to
yield a constant synaptic current. Note that the peak in the distribution
of phases move as the system evolves with time with a velocity �̇

Here H(Z) is a global state dependent drive to the popula-
tion given by

H(Z) = 1

Cπ

1 − |Z|2
1 + Z + Z + |Z|2 , |Z| < 1. (16)

A plot of this scalar function of a complex variable is shown
in Fig. 8. It is illuminating to express H as function of W

using (13) from which we find

H(W) = 1

Cπ

W + W

2
= r. (17)

Hence we may interpret H(Z) as the firing rate of the popu-
lation that drives the global synaptic current. Figure 8 shows

H as a function of Z. As expected H takes its highest value
when Z � eiπ , corresponding to high synchrony where all
of the neurons fire and reset at the same time.

Figure 9 shows results for a simulation of 500 theta neu-
rons (red) and a simulation of the reduced mean field model
(blue). It is strikingly clear that the two simulations agree
very well. If the size of the population in the large scale
simulations is reduced then one can begin to see finite size
fluctuations, as expected. The macroscopic order parame-
ters (r, V ) in the reduced mean field model are plotted in
Fig. 10. Unsurprisingly they behave similarly to the corre-
sponding order parameters for the large scale simulations
plotted in Fig. 5. Likewise, the mean field representation of
(R, �), plotted in Fig. 11, agree extremely well with those
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Fig. 8 Plot ofH : Density plot showingH as a function of the complex
number Z = Rei� . As H corresponds to the firing rate it takes a high
value near Z = eiπ , this corresponds to highly synchronous behaviour
where all of the phases of the neurons go through π simultaneously

shown in Fig. 6. For a further discussion of the bifurcation
structure of this model see Coombes and Byrne (2017).

4 A mechanistic interpretation of movement
induced changes in the beta rhythm

In Section 2 we demonstrated how an externally cued thumb
movement caused a∼ 0.5 s decrease in beta band power fol-
lowed by a ∼ 2− 4 s increase in beta band power, typifying
MRBD and PMBR, respectively. The median nerve stim-
ulation lasts ∼ 50 ms, however the evoked response lasts
significantly longer. Upon examining the time-frequency
spectrograms in Fig. 1 we observed an increase in low fre-
quency activity at t = 0, which appears to last for ∼ 0.3 −
0.4 s, corresponding to the transduced median nerve stimu-
lation and corresponding movement. We base the design of
the external drive on this transduced signal.

We model the transduced signal as a temporally filtered
drive A = A(t) that is received by every neuron in the

Fig. 10 Mean field reduction for a QIF network: Time series for the
mean field variable W = πCr + iV , where r is the population firing
rate and V is the average voltage. Comparing these plots to the corre-
sponding plots for a 500 neuron simulation in Fig. 5 it is clear to see
that they agree well. The finite size fluctuation for V are quite appar-
ent when comparing the results for the large scale simulation to those
of the reduced mean field model. However, the overall behaviour is
similar. Parameters as in Fig. 5

model. In this case the dynamics of Z obey (14) under the
replacement η0 → η0 + A, with QDA(t) = �(t), where
QD is the differential operator obtained from Q in Eq. 5
under the replacement α → αD , and �(t) is a rectangular
pulse, �(t) = 
�(t)�(τ − t), where 
 can be inter-
preted as the strength of the drive. Note that the pulse is
not applied until after transients have dropped off. As the
evoked response in the experimental data last for∼ 0.3−0.4
s we set τ = 0.4 s.

Fig. 9 Validity of reduction:
Comparison between the
reduced mean field network
(blue) and simulation a network
of 500 θ -neurons (red). Phase
plane for the Kuramoto order
parameter Z = Rei� is shown
on the left and the phase plane
for the synaptic conductance g

and its derivative g′ is shown on
the right. Parameter values as in
Fig. 5
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Fig. 11 Mean field reduction for a θ -neuron network: Phase plane
of the Kuramoto order parameter Z, showing R(t) and �(t), as well
as a time series for both R and �. Once again the plots match very
well with the corresponding plots for the simulation of 500 θ -neurons
in Fig. 6. Interestingly even the initial behaviour is well matched.
Parameter values as in Fig. 5

Figure 12 shows the phase plane for the Kuramoto order
parameter Z = Rei� , as well as a time series for the within
population synchrony R, in response to the drive described
above. The colours correspond to the different time periods;
before drive (blue), during drive (red), after drive (green).
The system oscillates in partial synchrony with R oscillat-
ing between ∼ 0.05 − 0.6 in the absence of drive. Once
the drive is switched on the amplitude of these oscillations
decreases and hence the power is also reduced, correspond-
ing to MRBD. Note that the frequency also increases during
this period. After the drive is switched off the level of coher-
ence is increased as Z is drawn towards the edge of the
unit disk before spiralling back to the original limit cycle,
corresponding to PMBR. Importantly the system does not
rebound until t � 0.5 s as seen in the real data. It should be
noted that the stimulus corresponds to ∼ 80% of this time
to rebound, however as the evoked response is present in
∼ 60 − 80% of the ∼ 0.5 s of MRBD in the real data we
believe that this is a good fit.

The corresponding response of the synaptic current is
shown in Fig. 13. The time series (left) shows that when the
drive is switched on the synaptic current is reduced, how-
ever the neurons are now also receiving a strong excitatory
current in the form of the drive. There is a large increase in
the amplitude of the oscillations of the synaptic current at

Fig. 12 Response of Z to drive Top: Phase plane for Z, demonstrating
the behaviour of the system in response to the drive A(t). The blue
curve represents the system before the pulse arrives, as it settles to its
non-perturbed dynamics (t < 0), the red curve demonstrates how the
system behaves when the pulse is switched on (0 < t < τ ) and the
green how the system reacts once the drive is switched off (t > τ s).
Bottom: Time series ofR showing the change in the level of coherence,
before, during and after the drive is switched on. The amplitude of
the oscillations in R appear significantly reduced while the drive is
switched on. Parameter values as in Fig. 5, apart from ω0 which was
increased to 0.279 Hz, as this value gave a stronger PMBR, τ = 0.4,
1/αD = 5.6 ms and 
 = 15 mA

∼ 0.5 s, corresponding to PMBR, which can also be seen in
the time-frequency spectrogram (right). The initial increase
in amplitude is very large, however the percentage increase
between 0.5− 1.5 s is relatively small. The synaptic current
appears to have fully settled back to its pre-drive behaviour
by t � 1.5 s, indicating a PMBR of roughly 1 s, which is
not as long as the PMBR seen in our experimental data. An
increase in power can be seen at around 26 Hz at t � 0 s,
corresponding to the increase in frequency during the drive
on period. This high beta activity can be interpreted as the
processing of the motor input.

Interestingly, we see a direct correlation between syn-
chrony and the synaptic current. The time series in Fig. 12
(bottom) shows a peak in synchrony at t � 0.5 s, just as
the time series in Fig. 13 (left) shows a sharp increase in
the amplitude of the synaptic current at t � 0.5 s. This
increase in amplitude can also be seen in the spectrogram
(right). The strength of the drive 
 dictates the extent of
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Fig. 13 Response of the synaptic current to drive: Time series and
spectrogram of the synaptic current showing the response of the sys-
tem to the external drive �(t). The colours in the time series (left)
correspond to the different time periods; before drive (blue), during

drive (red), after drive (green). Both figures clearly demonstrate the
rebound of the system, there is an increase in amplitude (and hence
power) ∼ 0.5 s after the drive was initially switched on. Parameters as
in Fig. 12

the rebound. However it also prescribes the frequency of
the oscillations amid the period when the drive is switched
on. Therefore it is important to find the balance, where we
have a prominent PMBR but also a physically realistic fre-
quency during the interval when the stimulus is switched
on. Although the increase in power at a higher frequency
cannot be seen in our experimental data (Fig. 1), these time-
frequency spectrograms were calculated for a small area of
the motor cortex, it can be seen in the results obtained in
Robson et al. (2015) (Fig. 2). It is widely believed that an
increase in high beta and gamma activity is present in motor
preparation and execution, in a more frontal region of the
motor cortex.

The parameters were chosen such that the system oscil-
lated at beta frequency and a significant MRBD and PMBR
could be observed. The model is robust and can reproduce
MRBD and PMBR for a wide region of parameter space.

5 Discussion

We have presented a mechanistic model that exhibits both
MRBD and PMBR. This low dimensional model is derived
from a corresponding high dimensional spiking network
model and maintains a faithful representation of synaptic
currents. In the reduced model these currents are driven by a
firing rate that is itself a function of the complex Kuramoto
order parameter. This makes a significant departure from
the usual phenomenological neural mass description of
neuronal population dynamics for which the firing rate is
usually only a function of synaptic activity or mean mem-
brane potential. Importantly the transient response of the
reduced model is sufficiently rich to capture the emergent
time scales of both MRBD and PMBR, when it is stimulated
whilst operating in the beta frequency range. Although the

length of PMBR observed in the reduced model was shorter
than that seen in the experimental data, it is still within the
documented 1 − 10 s range. Given that model responses
are linked to changes in within-population coherence, this
gives further support to the notion that beta band ampli-
tude changes, and in particular those in MRBD and PMBR,
are in fact due to changes in synchrony. More generally the
model parameters can be altered so that the population oscil-
lates at other frequencies, and hence, used to explain other
ERD/ERS phenomena in the brain.

One natural extension of the model is to small networks,
with coupling through the mean-field variables of a set
of local populations, to describe systems with a mixture
of excitation and inhibition. This would lead to a richer
set of structures within the phase space for the network
and provide further mechanisms for controlling emergent
time-scales (say as orbits can be made to approach saddle
structures, leading to a slow down in dynamics), which may
help lengthen the PMBR, see Coombes and Byrne (2017)
for a discussion of the bifurcation structure for a two popu-
lation model. An interesting study would be to couple two
identical populations, corresponding to left and right motor
cortex areas, and drive one of the populations to inspect
the bilateral response as seen in experimental data (Robson
et al. 2015; Liddle et al. 2016). It is also possible that noise
may play a constructive role, and the OA ansatz for a mean-
field reduction can also be performed in this case (Lai and
Porter 2905). The introduction of noise may also result in a
lengthening of the PMBR.

Perhaps of more interest in using these next generation
neural models to replace existing neural mass descriptions,
is the development of reductive techniques to handle other
nonlinear integrate-and-fire models, such as those of Izhike-
vich type (Izhikevich 2003). However, this is a substantial
mathematical challenge since the OA reduction technique
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that we have employed here will break down. However, it
is possible to extend the work presented here to include gap
junction coupling (Laing 2015). There is now little doubt
that gap junctions play a substantial role in the generation
of neural rhythms, both functional (Hormuzdi et al. 2004;
Bennet and Zukin 2004) and pathological (Velazquez and
Carlen 2000; Dudek 2002). It is also interesting to consider
the spatially extended version of this model, we report on
this elsewhere (Byrne et al. 2017).

Another possible extension would be to include a vari-
ety of different synaptic receptor. We have assumed that
PMBR and MRBD are mediated by the same type of synap-
tic receptor. However, Hall et al. (2011) suggest that MRBD
is a GABA-A mediated process, whilst PMBR appears to
be generated by a non-GABA-A receptor mediated process.
A further model that distinguishes between receptors, may
offer important insights into motor processes, and can be
readily accomplished within the framework that we have
presented here.
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Appendix A: Experimental method

A.1 Data collection

In order to demonstrate directly the robustness of beta
band modulation in sensorimotor cortex, a somatosensory
paradigm was used. Two subjects took part in the study,
which was approved by the University of Nottingham Med-
ical School Ethics Committee. The paradigm comprised

electrical stimulation of the subject’s left median nerve,
which was achieved by applying a series of 500 μs duration
current pulses to two gold electrodes placed on the subject’s
wrist. The current was delivered using a Digitimer DS7A
constant current stimulator, and the amplitude was increased
slowly until a visible movement of the thumb was observed.
Each experimental run comprised a total of 80 pulses deliv-
ered with an inter-stimulus-interval (ISI) of 10 s. A single
experimental run lasted approximately 13 minutes. Each
subject performed the study twice to assess robustness.

MEG data were captured using the third order synthetic
gradiometer configuration of a 275-channel CTF whole-
head MEG system (MISL, Port Coquitlam, Canada). The
subject was positioned supine, with their head in the MEG
helmet, whilst data were recorded at a 600 Hz sampling rate.
Three localisation coils were attached to the head as fiducial
markers (nasion, left preauricular and right preauricular)
prior to the recording. Energising these coils at the start
and end of data acquisition enabled localisation of the fidu-
cial markers relative to the MEG sensor geometry as well
as determination of total head movement. In order to co-
register brain anatomy to the MEG sensor array, prior to the
MEG recording each subject’s head shape was digitised rel-
ative to the fiducial markers using a 3D digitiser (Polhemus
IsoTrack, Colchester, VT, USA). Volumetric anatomical
MR images were acquired using a 3 T MR system (Phillips
Achieva, Best, Netherlands) running an MPRAGE sequence
(1 mm3 resolution). Following data acquisition, the head
surface was extracted from the anatomical MR image and
coregistered (via surface matching) to the digitised head
shape for each subject. This allowed complete coregistration
of the MEG sensor array geometry to the bain anatomy, thus
facilitating subsequent forward and inverse calculations.

A.2 Data analysis

MEG data were inspected visually and any trials containing
excessive interference removed. Data were then analysed
using synthetic aperture magnetometry (SAM) (Vrba and
Robinson 2001), a beamforming variant (van Drongelen
et al. 1996; Gross et al. 2001; Hillebrand et al. 2005;
Robinson and Vrba 1998; van Veen et al. 1997) that has
been applied successfully in many studies to localise neural
oscillatory amplitude changes. Data were first filtered to the
beta (13–30 Hz) band. Following this the SAM beamformer
was applied and oscillatory amplitude was contrasted in
active and control time windows in order to delineate
the spatial signatures of beta amplitude change. The for-
ward model was based upon a multiple local sphere head
model and the forward calculation by Sarvas (Huang et al.
1999; Sarvas 1987). Covariance was computed within the
prescribed windows (Brookes et al. 2008). Pseudo-t-
statistical images were generated.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix B: Mean field reduction

In the limit N → ∞ the state of the network at time t can be
described by a continuous probability distribution function
ρ(η, θ, t), which satisfies the continuity equation (arising
from the conservation of oscillators):

∂ρ

∂t
+ ∂ρc

∂θ
= 0, (18)

where c is a given realisation of θ̇ ,

c = 1

C

[
(1 − cos θ) + (1 + cos θ)(η + gvsyn)

−g sin θ ] . (19)

The global drive to the network, given by the right hand
side of Eq. (10), can be constructed as

lim
N→∞

1

N

N∑

j=1

P(θj ) =
∫ 2π

0
dθ

∫ ∞

−∞
dρ(η, θ, t)P (θ). (20)

Hence,

Qg = k

πC

∑

m∈Z

∫ 2π

0
dθ

∫ ∞

−∞
dρ(η, θ, t)eim(θ−π), (21)

where we have used the result that 2πP (θ) =∑
m∈Z eim(θ−π). The formula for c above may be written

conveniently in terms of e±iθ as

c = 1

C

[
f eiθ + h + f e−iθ

]
, (22)

where f = ((η−1)+vsyng+ig)/2 and h = (η+1)+vsyng,
and f denotes the complex conjugate of f .

The OA ansatz assumes that ρ(η, θ, t) has the product
structure ρ(η, θ, t) = L(η)F (η, θ, t)whereL(η) is taken to
be the Lorentzian given by Eq. (7). Since F(η, θ, t) should
be 2π periodic in θ it can be written as a Fourier series:

F(η, θ, t) = 1

2π

{

1 +
∞∑

n=1

Fn(η, t)einθ + cc

}

, (23)

where cc denotes complex conjugate. The insight in Ott and
Antonsen (2008) was to restrict the Fourier coefficients such
that

Fn(η, t) = α(η, t)n, (24)

where |α(η, t)| ≤ 1 to avoid divergence of the series. There
is also a further requirement that α(η, t) can be analytically
continued from real η into the complex η-plane, and that this
continuation has no singularities in the lower half η-plane,
and that |α(η, t)| → 0 as Im η → −∞. If we now sub-
stitute (22) into the continuity Eq. (18), use the OA ansatz,
and balance terms in eiθ we obtain an evolution equation for
α(η, t) as

∂

∂t
α + 1

C

(
iα2f + iαh + if

)
= 0. (25)

It is now convenient to remember the Kuramoto order
parameter (11), which in the large N limit is given by

Z(t) =
∫ 2π

0
dθ

∫ ∞

−∞
dηρ(η, θ, t)eiθ . (26)

We note that |Z| ≤ 1. Using the OA ansatz (and using the
orthogonality properties of eiθ , namely

∫ 2π
0 eipθeiqθdθ =

2πδp+q,0) we then find that

Z(t) =
∫ ∞

−∞
dηL(η)α(η, t). (27)

By noting that the Lorentzian (7) has simple poles at η± =
η0± i	 the integral in Eq. (27) may be performed by choos-
ing a large semi-circle contour in the lower half η-plane.
This yields Z(t) = α(η−, t), giving Z(t) = α(η+, t).
Hence, the dynamics for g given by Eq. (21) can be written
as

Qg = kH(Z), (28)

where

H(Z) = 1

Cπ

{

1 +
[ ∞∑

m=1

(−1)mZm + cc

]}

(29)

= 1

Cπ

1 − |Z|2
1 + Z + Z + |Z|2 . (30)

with |Z| < 1. The dynamics for Z is obtained from Eq. (25)
as

C
d

dt
Z = −i

(Z − 1)2

2
+ (Z + 1)2

2

[−	 + iη0 + ivsyng
]

−Z2 − 1

2
g. (31)

References

Alegre, M., Alvarez-Gerriko, I., Valencia, M., Iriarte, J., & Artieda,
J. (2008). Oscillatory changes related to the forced termination
of a movement. Clinical Neurophysiology: Official Journal of
the International Federation of Clinical Neurophysiology, 119(2),
290–300.

Ashwin, P., Coombes, S., & Nicks, R. (2016). Mathematical frame-
works for oscillatory network dynamics in neuroscience. Journal
of Mathematical Neuroscience, 6(2), 1–92.

Bennet, M.V.L., & Zukin, R.S. (2004). Electrical coupling and neu-
ronal synchronization in the mammalian brain. Neuron, 41, 495–
511.
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