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Protein docking provides a structural basis for the design of drugs and vaccines. Among
the processes of protein docking, quality assessment (QA) is utilized to pick near-native
models from numerous protein docking candidate conformations, and it directly
determines the final docking results. Although extensive efforts have been made to
improve QA accuracy, it is still the bottleneck of current protein docking systems. In
this paper, we presented a Deep Graph Attention Neural Network (DGANN) to evaluate
and rank protein docking candidate models. DGANN learns inter-residue physio-chemical
properties and structural fitness across the two protein monomers in a docking model and
generates their probabilities of near-native models. On the ZDOCK decoy benchmark, our
DGANN outperformed the ranking provided by ZDOCK in terms of ranking good models
into the top selections. Furthermore, we conducted comparative experiments on an
independent testing dataset, and the results also demonstrated the superiority and
generalization of our proposed method.
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INTRODUCTION

Amajor way for proteins to perform their functions is through interacting with other proteins and producing
protein complexes (Tuncbag et al., 2011). Protein-protein interactions play important roles in key activities
and pathways in cells (Midic et al., 2009; Tu et al., 2015). The three-dimensional (3D) structure of a protein
complex offers a deeper insight into the molecular mechanism of its biological function. Especially the
interfaces at protein complexes are often considered as prospective targets to block protein interactions in
drug discovery (Veselovsky et al., 2010). Several experimental techniques can be used to obtain a 3D structure
of protein complexes, such as X-ray crystallography, NMR and cryo-EM (Topf et al., 2008). However, due to
the cost and labor required in these experimental techniques, it is often more feasible and efficient to model
the 3D structure of protein complex in silico (Choi et al., 2009; Abdel et al., 2014). Computational protein-
protein docking methods enable prediction of preferred binding conformations (Lengauer and Rarey, 1996),
whichmay provide a structural basis for facilitating the development of drugs to successfully disrupt protein-
protein interactions (Bienstock, 2012). Since antibody as a particular category of proteins produced by the
immune system is capable of binding with high specificity to an antigen, protein docking tools are also
adopted to generate accurate antigen-antibody complexes for evaluating the diversity of polyclonal responses
in vaccine development (Rosalba et al., 2017; Weitzner et al., 2017).

There are two major approaches for the mainstream of protein docking systems. The first
approach obtains docking results from experimental binding conformations of similar protein pairs,
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which is known as template-based methods (Tuncbag et al., 2011;
Ivan et al., 2015). However, the limited available templates may
affect the success of docking results. The more general approach
is template-free docking to directly predict the 3D structure of
protein complex prediction from two individual protein
structures (Katchalski-Katzir et al., 1992; Gabb et al., 1997;
Vakser, 1997). Generally, such ab initio methods sample all
possible binding candidates first and then evaluate them with
a quality assessment (QA) function (Hurwitz et al., 2016; Sekhar,
2016). The sampling step carefully searches over the rotational
and translational degrees of freedom, and generates a large
number of candidate docking models where the two proteins
contact each other without significant steric clashes (Bernauer
et al., 2007). And then the QA is launched to pick the native-like
models from all candidates. Basically, with an exhaustive
sampling approach, the near-native models are most likely
covered in the numerous candidates (Lemmon and Meiler,
2013). Thus, the accuracy of QA directly determines the final
docking results; however, it is still the bottleneck of current
protein docking systems.

The classical QA algorithms can be roughly classified into
three categories: physical energy-based (Dominguez et al., 2003;
Brian et al., 2013; Mieczyslaw et al., 2013; Pierce et al., 2014),
statistical potential-based (Gidon et al., 1999; Zhou and Zhou,
2002; Pons et al., 2011) and machine learning-based methods
(Fink et al., 2011). The first two methods highly depend on the
descriptors of geometric complementarity and physico-chemical
features, such as van der Waals interactions, electrostatic effects,
solvation, and so on. However, physical energies are often very
sensitive to small variations and statistical potentials may not be
sensitive enough to obtain good discerning power so that they
have major limitations (Kitchen et al., 2004). Machine learning-
based approaches were proposed to combine various features in a
data-driven fashion for better generalization (Fink et al., 2011).
Especially, since deep learning as the cutting-edge machine
learning technology shows powerful predictive ability, a 3D
convolutional neural network (3DCNN) was applied on the
3D structures of protein-protein interfaces to determine if
docking models were native-like structures (Wang et al.,
2021). This 3DCNN method showed a capacity to learn local
spatial geometric properties of residues/atoms located at the
protein-protein interface with a fixed kernel size but truncated
the residue/atom interactions outside the kernels. Furthermore, a
graph neural network (GNN) was applied at the atomic level to
rank docking candidates (Wang et al., 2021). Although extensive
efforts have been made in QA, a highly accurate and generalized
QA scheme is yet to achieve.

To further explore the potential of deep learning technology in
QA, we designed a deep graph neural network, named Deep
Graph Attention Neural Network (DGANN), for docking model
QA. Docking sampling candidates can be naturally represented as
graphs according to their 3D structures, in which residues are
treated as nodes and residue-residue contacts as edges so that the
QA process can be formulated as a graph classification problem.
GNN as a graph-oriented deep learning architecture, can learn
node latent representations across the global topology of a graph.
Such an advantage provides an adaptive way to generate deep

residue (node) representations considering neighboring residue
interactions, energetic contributions and local graph topology. So
that GNN can distinguish near-native models by examining these
inter-residue representations at protein-protein interfaces.

RESULTS

Pipeline of Our Method
We formulated the protein docking model QA process as a binary
classification problem, which takes a 3D structure of the
candidate docking model as the input and outputs its
probability of a near-native model. The framework of our
proposed method is shown in Figure 1. Based on our
formulation, any GNN-based classification method can be
applied to conduct protein docking model QA.

In this paper, we proposed DGANN to implement it, which
was adapted from Deep Graph Convolutional Neural Network
(DGCNN) (Zhang et al., 2018) as shown in Figure 2. In DGANN,
we replaced the Graph Convolutional (GCN) layers in DGCNN
with Graph Attention (GAT) layers. This type of layers can learn
node embeddings by aggregating their neighbors’ features using
self-attention, which specifies different weights to different
neighboring nodes according to their node attributes (Velikovi
et al., 2017). Compared with directly summing neighboring node
features as aggregation in GCN, node embeddings by the GAT-
style aggregation implicitly illustrate unique residue interactions
and local topology information from different neighboring
residues.

In practice, we build the graph on the entire docking model
with learn-deep representations of all residues by stacking GAT
layers over the whole graph. By doing this, embedding of each
node can model its interactions with surrounding residues.
Especially the residues at the edge of the docking interface can
aggregate information not only from neighbors inside the
interface but also other residues outside the interface. Based
on these residue (node) embeddings, we further generated
protein-protein interface representations and conducted QA
scoring in DGANN as Figure 2 described. Since few docking
candidates from the sampling stage were native-like models, the
distribution of positive and negative samples was extremely
imbalanced. We employed ensemble learning to overcome
such an imbalanced problem, which can generate stable and
unbiased predictions by combining multiple DGANN models
from bootstrapping balanced datasets.

Comparisons With ZDOCK
For fair comparisons, we benchmarked on the docking models
from ZDOCK (detailed in Datasets Section), since ZDOCK can
generate all docking models and their QA results using the
ZDOCK scoring function. Table 1 lists the enrichment factor
(EF, defined in Evaluation Metrics Section) of good models at
different top ranks from our ensemble DGANN results and
ZDOCK results. In this experiment, we tried the mean and
maximum scores from all meta-classifiers as ensemble results
and checked their EFs at 0.01, 0.1, 0.5, 1, 5 and 10% top-scores as
shown in Table 1. It can be found that our ensemble results

Frontiers in Bioinformatics | www.frontiersin.org August 2021 | Volume 1 | Article 6932112

Han et al. Effect of Similar Targets

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


achieved better EFs than ZDOCK at various checkpoints.
Especially at the stringent checkpoints including EF at 0.01,
0.1, 0.5 and 1%, our ensemble DGANN respectively showed
33.5, 33.4, 27.5 and 33.5% higher enrichment than ZDOCK,
which demonstrated our proposed DGANN had a greater
capacity to find true positives throughout various scales of
docking candidates. Such overall outperformance also
suggested DGANN offered a better way to model inter-residue
interactions and physico-chemical contributions following the
topology of protein docking models, and generate informative
representations for QA scoring. In addition, our ensemble
strategy also indicated a capacity for enhancing near-native
models from a huge amount of low-quality docking sampling
candidates. Meanwhile, it is also observed that compared with
taking the mean scores as ensemble results, the maximum scores
worked much better at most checkpoints. A possible reason is
that maximum scores from all meta-classifiers imply the highest
probabilities to native-like models the testing model can achieve,
which is beneficial to highlight potential positives from such
extremely imbalanced data.

We also investigated the success rate (defined in Evaluation
Metrics Section) at different top ranks of DGANN and ZDOCK.
Figure 3 shows that DGANN and ZDOCK achieved similar
AHCs at top ranks but displayed different trends afterward. This
is because EF introduced EFmax to remove the biases caused by
different imbalanced degrees among different protein complexes,
while the success rate only reported an overall ability to hit
positives (Wang et al., 2021). Due to the stronger enrichment
ability to difficult cases, DGANN gained superior EFs and
comparable success rates to ZDOCK at top ranks. With the
growth of ranks, both our ensemble results outperformed

ZDOCK on the success rate. Moreover, between two ensemble
modes, the mean score mode obtained slightly better success rates
than the maximum score mode at most top ranks. This indicates
that the max ensemble mode tends to well handle hard cases, and
the mean ensemble mode is better suited to work on general cases.

Hyper-Parameter Optimization
n-hop Neighboring Aggregation Optimization
A strength of DGANN is utilizing the GAT layer to aggregate
neighboring residue properties for capturing residue interactions
and structural information. The number n of stacking GAT layers
leads to aggregate n-hop neighboring residues. For example, 1-
hop represents the nearest neighbors and 2-hop also includes the
next-nearest neighbors. We stacked different numbers of GAT
layers and collected their confusion matrices and EF performance
as shown in Figure 4. Particularly, in the 1-hop experiment, we
assigned a single GAT layer to provide node importance
coefficients for top-k-pooling but directly read out the input
node attributes of pooled k nodes to the QA scoring module for
prediction. Thus, DGANN without neighboring aggregation
would degenerate to a classical deep neural network.

Figure 4 shows that DGANNwith 2-hop aggregation achieved
more true positives and true negatives, as well as better EF at 0.01,
0.1, 0.5 and 1% than those of 1-hop setting. The performance
exhibits the superiority of DGANN in characterizing protein
docking models compared with classical deep learning
architectures.

It indicates that the neighboring aggregation operation enables
us to learn residue interactions and topology information at
contact interfaces to predict native-like models. Meanwhile,
more than 2-hop architectures did not bring further

FIGURE 1 | Flowchart of our method. The pipeline of our method includes three stages: 1) Data preprocessing stage (in blue): The PDB files of candidate docking
models were transformed into graph structures, where each node is a residue, and each edge connects the two residues carrying any atoms within 5 Å interatomic
distance. Then, we encoded each residue (node) by its physico-chemical properties and conservation profiles (detailed in Method C). All candidate docking models were
labeled as positive or negative samples according to the Critical Assessment of PRedicted Interactions (CAPRI) criteria (defined in Methods E). We split all collected
protein complexes into training and test sets for 5-fold cross-validation. 2) DGANN modeling stage (in orange): Aiming to address the imbalanced issue in QA, we
bootstrapped 100 balanced training sub-sets to train our proposed DGANN to get 100 classifiers. 3) Ensemble learning stage (in green): An ensemble learning strategy
was employed to integrate the outputs from the 100 classifiers. When assessing a protein docking model, we applied all classifiers to predict its quality scores and took
their maximum score as the final prediction.
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improvement in EF. These results suggest considering too many
hops in residue (node) embeddings may introduce redundant and
noisy residue interactions and damage their discerning power.

Different k Optimization
In DGANN, the top-k-pooling module picks the best k residue
(node) embeddings at the interface region to define the fixed size
of graph-level representations for further QA scoring. Therefore,
it is necessary to select a reasonable k to keep generalization and
prevent information loss across all protein complexes. For the
cases with fewer than k nodes, we padded the placeholders 0 to fix
the output of top-k-pooling.

Figure 5 shows the number of residues at the contact interface
from our training protein complexes. Then, we tried their mean
40, maximum 120, and other values such as 80 and 100 as the k, to
show its influence on QA results. Another option to squeeze
node-level features with various shapes to graph-level features
with a fixed shape is the pooling operation. Here, we also
attempted both global max pooling and global mean pooling
over all nodes at the interface.

The confusion matrices and EFs of different k are shown in
Figure 6. When k equals 100, the top-k-pooling strategy slightly
outperformed other k options and two global pooling approaches
in terms of true positives, true negatives and EFs. According to
Figure 5, only a few protein complexes carried more than 100
residues at the contact interface. The optimal k value implies that
almost all the residues at the interface provide informative
features and contribute to the selection of near-native models.
Between the two global pooling methods, mean-pooling took the
total information from all interfacial residues while max-pooling
kept significant signals from interfacial residues. The top-k-
pooling with an optimal k can make a good balance, so that it
achieved relatively better performance.

Effect of Similar Targets
Significant similarity between the training data and the test data
may cause performance overestimation for a machine learning
model due to overfitting. To investigate the effect of similar
targets between the training set and test set on the
performance, we went through different identity thresholds in
CD-HIT (Ying et al., 2010) clustering, which resulted in several
groups of training sets and test sets. A series of experiments on
these groups of training sets and test sets were conducted. Their
EFs and success rates were plotted in Figure 7. It can be observed
that with the increased identities, the groups with higher
similarity between the training set and test set performed
much better than the groups with low similarity. The results
suggest that high similarity between targets of the training set and
the test set may bring an overestimation to the method
evaluation. However, we employed a relatively stringent
threshold 0.4 in splitting datasets to provide reasonable
experimental control. In the experiment using an identity
threshold of 0.3, the EFs and success rates were only dropped
slightly, which demonstrates the commonly-adopted threshold
0.4 may be stringent enough to control the similarity between the
training set and the test set.

FIGURE 2 | DGANN architecture. DGANN consists of three modules: 1)
GAT module: Docking models are first represented as graphs (blue nodes
denote the residues from the protein in blue, and red nodes represent the
residues from the protein in red), where the nodes have 26-dimensional
attributes. Then, two stacked GAT layers are designed to model neighboring
residue interactions and local structural information. For instance, the node
embedding of GLU at the second GAT layer comes from the attention-
weighted aggregation of its neighbors ARG, PRO and VAL, whose
embeddings are also aggregated by their neighbors at the first GAT layer.
Through these processes, residue interactions from internal and external
residues are modeled in each node embedding. Furthermore, at the first GAT
layer, each aggregated node embedding is mapped to 32 dimensions, while
at the second GAT layer the aggregated 32-dimensional node embeddings
are mapped to a scalar for each node, which is deemed as the importance of
the node over the whole graph. 2) Top-k-pooling module: To obtain a fixed
size of graph-level representations, all residues at protein-protein interfaces
are sorted by their importance, and the top k nodes are kept. And the twoGAT
outputs of the selected k nodes are concatenated to form graph-level
representations of protein-protein interfaces. 3) QA scoring module: The
graph representation of a docking model is fed into a 1-D convolutional layer
and a fully connected layer to generate a flattened feature vector. Finally, a
sigmoid function is applied to compute its probability of a native-like model.
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Comparisons With Existing Tools
DOVE (Wang et al., 2019) and iScore (Geng et al., 2019) are the
latest accessible tools for ranking docking models of
protein–protein complexes. DOVE trained eight sub-models
using various features named Atom20, Atom40, Goap, iTscore,
and their combinations. Atom20 and Atom40 mean using the
thresholds of atoms to locate protein interfaces. And the Goap
and iTscore are the employed tools in protein feature extraction.
In their paper, DOVE-Atom40 outperformed other sub-models.
And iScore performed consistently better than the SwarmDock,
pyDock, Zdock in their paper. In addition, ZDOCK and
HADDOCK were among the top popular docking tools, and
provided not only docking models but also their QA scores.
Therefore, we compared our DGANN with DOVE-Atom40 and
iScore on an independent test set. The test samples were collected
from Protein-Protein Docking Benchmark 5.5, which was
updated in 2020 when DOVE and iScore were published. The
newly collected 97 target complexes also do not appear in our
modeling and previous evaluation.

The success rates on the independent dataset were shown in
Figure 8. Among the five tools, DGANN showed outstanding
performance on the independent dataset. At the top 5 ranks,
DOVE-Atom40 achieved a success rate of 0.3, outperforming the
other four tools, while DGANN received 0.36. We noticed that
both DGANN and DOVE-Atom40 also employed physico-
chemical properties. While our method also benefits from
physico-chemical properties, the graph neural network can

implicitly embed the topology of protein-protein structural
information. We have also computed the enrichment factor
(EF) as the measurement of docking model selection.

As shown in Figure 9, the trends of EFs on the three tools were
similar to success rates. The EF curve of DGANNwas above those
of DOVE-Atom40 and iScore. We believed the reason is the
message passing operator of DGANN can simulate the
interaction between amino acids and mimic the micro-
environment for better generating the representations of
docking models. Nevertheless, the overall performance of our
method on benchmark 5.5 cannot compare to those on
benchmark 4.0, which reflected the more complicated cases of
protein complexes were collected in benchmark 5.5. That
required further improved docking tools and better QA
approaches to provide accurate docking models.

MATERIALS AND METHODS

Datasets
In our work, we evaluated DGANN on a ZDOCK decoy set,
which provided all docking models and their QA racking results.
The dataset covered the docking sampling results from
ZDOCK3.0.2 on 176 protein complexes from protein docking
benchmark 4.0 (Hwang et al., 2010), each of which included 3,600
sampling candidate models. To avoid overestimation in our
evaluation, we applied CD-HIT (Ying et al., 2010) to cluster
the targets with 40% identity cutoff, which was a common
threshold in the literature. We combined its clustering results
into three groups to form our training set, validation set and test
set. Such combination carried out 5 times resulting in 5-fold
datasets for cross-validation. The identity threshold ensures that
relatively low similarity between the training set and test set. All
experiments in our manuscript follow these split datasets and
show the results based on the average of the outputs from the
models in the 5-fold cross-validation.

In addition to the ZDOCK benchmark 4.0 dataset, we also
used benchmark 5.5 for the independent test set. The ZDock
benchmark 5.5 includes 97 target complexes that are independent
of the ZDOCK benchmark 4.0 dataset.

Three indicators iRMSD (root mean square deviation of the
interface residues), fnat (the fraction of receptor-ligand residue
contacts in the native structure that is reproduced in the decoy)
and lRMSD (root mean square deviation of the ligand residues)
(Gabb et al., 1997) were calculated for each docking model.
According to the CAPRI quality assessment criteria, incorrect
models were defined as follows:

Incorrect: fnat < 0.1 or (lRMSD> 10.0 and iRMSD> 4.0)

TABLE 1 | EF comparisons between our ensemble DGANN and ZDOCK.

Methods EF0.01% top1 EF0.1% top4 EF0.5% top18 EF1% top36 EF5% top180 EF10% top360

ZDOCK 12.11 12.79 8.66 6.48 3.75 2.81
Ensemble-mean 7.35 9.74 9.76 8.25 4.78 3.61
Ensemble-max 16.17 17.06 11.05 8.65 4.61 3.43

The bold values represent the best result at each column.

FIGURE 3 | Success rates for DGANN and ZDOCK at the whole range
and zoomed-in at top 50 ranks.
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We took the protein docking models falling into this category
as negative samples, and others as positive samples. However,
some protein complexes in the ZDOCK decoy set did not contain

any near-native docking models based on CAPRI criterion.
Besides, lRMSD, fnat and iRMSD of some protein docking
models could not be computed owing to the inconsistency of

FIGURE 4 | Performance on different numbers of hops. The number of hops means the number of GAT layers stacking in DGANN, which determines the longest
distance neighboring aggregation in node embedding. We examined hop-1 to hop-4 setting and found hop-2 achieved the best EFs at different checkpoints.
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the sequences between decoys and native complexes (Wang et al.,
2021). After filtering out these complexes, we obtained 144 usable
protein complexes for our experiments. These protein complexes
were divided into 5-fold cross-validation sets. To conduct
ensemble learning, we bootstrapped 100 balanced training sub-
sets, which included all positive samples and the same number of
negative samples randomly extracted from all docking models of
each protein complex. But we still evaluated our method on all
3,600 docking candidate models of each protein complex.

Graph Construction
The 3-D structure of each candidate docking model was
transformed to a graph, where its nodes were all residues at
the model and its edges were defined according to the distance
between any atoms of two residues. If the distance is less than 5 Å,
we assigned an edge to connect them. After obtaining the graph
structure of each protein docking model, we encoded each node
(residue) with physico-chemical properties and sequence
conservation information. For residue physico-chemical
properties, we employed five principal components from 237
AAIndex physical-chemical properties presented by Mathura
(Venkatarajan and Braun, 2001) to derive quantitative
representations for each amino acid category. In addition,
since the residues at the protein-protein interfaces are more
conserved than other residues (Andreani and Guerois, 2014),
we also calculated Position-Specific Scoring Matrix (PSSM)
(Stormo et al., 1982) and the information content (IC)
(Hennessey and Johnson, 1981) with 21-dimensional
components as a part of residue (node) feature. Eventually,
each residue (node) was encoded to a 26 × 1 vector by
combining the 5-D physio-chemical properties and 21-D
PSSM features of the residue profiles.

Graph Neural Network Architecture
Since we formulated the protein docking model QA as a graph
classification problem, any graph neural network for graph
classification can be used as a classifier. Here, we modified

DGCNN (Zhang et al., 2018) with GAT layers and named
DGANN as shown in Figure 2. Our DGANN architecture
included the GAT module, top-k-pooling module, and QA
scoring module. The source code of DGANN is available at
https://github.com/coffee19850519/PPDocking/tree/master.

GAT module stacks two GAT layers to learn node
embeddings by aggregating their neighbors’ features under the
style of self-attention. This type of layer can specify different
weights to different neighboring nodes according to their node
attributes. The attention coefficients eij between node i and its
first-order neighbor j are calculated as follows:

eij � W h
→

i ×W h
→

j

where W is a learned weight matrix, h
→

i and h
→

jrepresent
embedding of node i and node j. eij indicates the importance
of node j to node i. And then eij is normalized across all choices of
j using a softmax function:

αij � softmax (eij) � exp (eij)∑k∈Ni
exp (eik)

Finally, the embedding of node i can be computed with an
activation faction by the following equation:

h
→’

i � σ⎛⎝∑
j∈Ni

αijW h
→

j
⎞⎠

In our work, the activation function is tanh. Through these
calculations, each 26-D input node encoding is mapped into the
32-D node features by using shared weights with the shape of 26 ×
32. The node features implicitly include the interactions between
two direct neighboring residues and local structural information.
The upper GAT layer aggregates longer distanced neighbors’
node embeddings and maps them to a scalar by using another
shared weights with the shape of 32 × 1 for each node, which is
deemed as the importance of the node over the whole graph. We
converted the entire docking model into a graph and learned

FIGURE 5 |Boxplot of residues at the protein-protein interface. We computed the number of residues at the interface of each training sample and grouped them by
protein complex names. The boxplot is to visualize the distribution of residues at interfaces of all docking models for each protein complex.
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embedding of all residues by stacking GAT layers over the
whole graph.

Top-k-pooling module was utilized to obtain a fixed size of
graph-level representations for different protein docking models.
Since the protein-protein interface is the most distinctive and
informative region, we only pooled the residue (node)
embeddings at protein-protein interface to a graph-level
representation. At this stage, only the interface residues are

used in the pooling operations. However, because the number
of residues at interfaces varied among protein docking models, we
needed to unify the size of graph-level representations for further
prediction. We used the top-k-pooling operation proposed by
DGCNN to sort the node embeddings according to their
importance and keep the top k nodes. For the models with
fewer than 100 interface residues, we padded the placeholders
0 to fix the output shape of top-k-pooling. And then the two GAT

FIGURE 6 | Performance on different pooling k. The hyper-parameter k determines the number of remaining nodes in modeling graph-level representations. We
attempted different k values according to the distribution of residues at protein interfaces alongwith two types of global poolings and found 100 is roughly the best option.
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outputs of the selected k nodes are read out and concatenated to
form the graph-level embeddings of protein-protein interfaces.

QA scoring module supplied a 1-D convolutional layer and a
fully connected layer to generate flatten feature vectors on the
graph-level embeddings. Finally, a sigmoid function is employed
to predict the probabilities of native-like models as QA scores.

Deep Graph Attention Neural Network
Training details
In the training stage, we adopted binary cross-entropy
(Goodman, 2001) as a loss function. Adam optimizer (Kingma
and Ba, 2014) with 0.001 learning rate and 0.9 decay were
employed to train the network weights on mini-batches mode.
The batch size was set to 256. We also applied the early stopping
strategy to check if the loss of a validation set did not decrease
within continuous 30 epochs. A dropout of 0.5 was also
introduced to the fully connected layers. As mentioned in
Pipeline of Our Method Section, we performed 5-fold

cross-validation and trained our DGANN on 100 balanced
bootstrapping subsets for ensemble learning. But for validating
DGANN, all trained classifiers were tested on all imbalanced
3,600 candidate docking models of each protein complex.

Evaluation Metrics
To validate the performance of our method, we used two
evaluation measures: Enrichment Factor (EF) and success rate.
The EFx% was defined as the ratio of the number of near-native
models at x% top ranks relative to the number of testing docking
models from a given protein-protein complex as follows:

EFx% � positive samples at x%
all samples at x%

× total samples
total positive samples

EFmax � total samples
total positive samples

FIGURE 7 | Performance on different identity thresholds. We explored
different identity thresholds in CD-HIT clustering and resulted in several
groups of the training set and test set. The result showed that the common
adopted threshold 0.4 may be stringent enough to control the similarity
between the training set and test set.

FIGURE 8 | Decoy selection performance on the independent test set.

FIGURE 9 | Comparison of the EF on the independent test set.
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where EFmax is the ratio of all docking models and native-like
models, which indicates the degree of difficulty to select the
positives from all docking models of a given protein-protein
complex. EF shows the ability to enrich the number of native-like
models at the top-scoring points compared to a random selection.
Success rate is the percentage with at least one successful
prediction when having a certain number of top ranks. In our
experiments, each test protein complex’s metric values were
averaged over outputs from the models in the 5-fold cross-
validation as the final QA performance.

CONCLUSION

In this study, we presented a deep graph neural network-based
approach named DGANN for protein docking QA. We first
formulated protein docking QA as a graph classification problem
and converted 3D structures of protein docking models into graphs.
In DGANN, we used GAT layers to aggregate the neighboring
residue properties using the attention mechanism, which implicitly
captured neighboring residue interactions and local topology
information in node embeddings. Such multi-body interactions at
residues were shown to be effective in selecting native-like protein
structure models. Furthermore, a top-k-pooling strategy was
employed to select a fixed size of residue (node) embeddings from
protein docking interfaces to form graph-level representations for
prediction. Our GNN model is significantly different from an earlier
GNN model for docking evaluation (Wang et al., 2021). In the
definition of our graph, we treated the residues at docking models as
nodes instead of atoms in that work, which reduced the graph
complexity and computational time cost. In addition, our graph is
based on the whole protein model instead of interface only, which
provided the full three-dimensional structures for accurate node
embedding generation. The experimental results on the ZDOCK
benchmark decoy set showed that our DGANN outperformed
ZDOCK and classical deep learning approaches in terms of EF
and success rate. In order to address the extremely imbalanced
issues, we applied an ensemble strategy to integrate multiple
classifiers over bootstrapping balanced training data. From
experimental results, we can observe ensemble results were more
stable and robust on imbalanced testing protein docking models.

Our work demonstrated that graph neural network can
naturally extract the multi-residue interaction and topology
information from molecular structures. For future work, we
plan to include more residue features, such as secondary
structural descriptors, solvent accessibility and electrostatic

effects, into the node attributes for further improving
graph representations. In addition, we will explore
constructing atomic level graphs of protein docking
models, which may provide higher-resolution predictions.
And more advanced graph classification GNN architectures
should be explored in the field of protein docking QA in the
future. Moreover, our work also indicates the power of
ensemble learning to address the imbalanced problem.
However, only simple linear combination strategies were
implemented in this work. Nonlinear ensemble
i.e., stacking strategies (Breiman, 1996) may also contribute
to revealing the potential of GNN in protein docking QA.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://zlab.umassmed.edu/benchmark/

AUTHOR CONTRIBUTIONS

YH collected the data, designed and implemented the model,
designed and performed experiments, and wrote the paper. FH
designed and implemented the model, designed and performed
experiments, and wrote the paper. YC performed experiments
and wrote the paper. WC performed experiments and wrote the
paper. HY performed analysis and revised the paper. DX
conceived and designed the study, supervised the project, and
revised the manuscript.

FUNDING

This work was supported by Jilin Provincial Natural Science
Foundation under Grant No. 20200201288JC, the science and
technology research project of “13th Five-” of the Education
Department of Jilin province under Grant No. JJKH20200330KJ
to YH, National Natural Science Funds of China under Grant
No.61802057 to FH and Paul K., and Diane Shumaker
Endowment Fund to DX.

ACKNOWLEDGMENTS

We like to thank Bowen Tang for his technical supports.

REFERENCES

Abdel, M. M., Rosalba, L., Paolo, M., and Anna, T. (2014). Improving the Accuracy
of the Structure Prediction of the Third Hypervariable Loop of the Heavy
Chains of Antibodies. Bioinformatics (Oxford, England) 30 (19), 2733–2740.

Andreani, J., andGuerois, R. (2014). EvolutionofProtein Interactions: FromInteractomes to
Interfaces. Arch. Biochem. Biophys. 554, 65–75. doi:10.1016/j.abb.2014.05.010

Anishchenko, I., Kundrotas, P. J., Tuzikov, A. V., and Vakser, I. A. (2015).
Structural Templates for Comparative Protein Docking. Proteins 83 (9),
1563–1570. doi:10.1002/prot.24736

Bernauer, J., Azé, J., Janin, J., and Poupon, A. (2007). A New Protein–Protein
Docking Scoring Function Based on Interface Residue Properties.
Bioinformatics MAR 23 (5), 555–562. doi:10.1093/bioinformatics/btl654

Bienstock, R. J. (2012). Computational Drug Design Targeting Protein-Protein
Interactions. Curr. Pharm. Des. 18 (9), 1240–1254. doi:10.2174/
138161212799436449

Breiman, L. (1996). Stacked Regressions. Mach Learn. 24 (1), 49–64. doi:10.1007/
bf00117832

Brian, J. G., Carles, P., and Juan, F. R. (2013). pyDockWEB: A Web Server for
Rigid-Body Protein-Protein Docking Using Electrostatics and Desolvation
Scoring. Bioinformatics 13, 1698–1699.

Frontiers in Bioinformatics | www.frontiersin.org August 2021 | Volume 1 | Article 69321110

Han et al. Effect of Similar Targets

https://zlab.umassmed.edu/benchmark/
https://doi.org/10.1016/j.abb.2014.05.010
https://doi.org/10.1002/prot.24736
https://doi.org/10.1093/bioinformatics/btl654
https://doi.org/10.2174/138161212799436449
https://doi.org/10.2174/138161212799436449
https://doi.org/10.1007/bf00117832
https://doi.org/10.1007/bf00117832
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Choi, Y., and Deane, C. M. (2009). FREAD Revisited: Accurate Loop Structure
Prediction Using a Database Search Algorithm. Proteins.

Dominguez, C., Boelens, R., and Bonvin, A. M. J. J. (2003). HADDOCK: A
Protein−Protein Docking Approach Based on Biochemical or Biophysical
Information. J. Am. Chem. Soc. 125 (7), 1731–1737. doi:10.1021/ja026939x

Fink, F., Hochrein, J., Wolowski, V., Merkl, R., and Gronwald, W. (2011).
PROCOS: Computational Analysis of Protein-Protein Complexes.
J. Comput. Chem. 32 (12), 2575–2586. doi:10.1002/jcc.21837

Gabb, H. A., Jackson, R. M., and Sternberg, M. J. E. (1997). Modelling Protein
Docking Using Shape Complementarity, Electrostatics and Biochemical
Information 1 1Edited by J. Thornton. J. Mol. Biol. 272 (1), 106–120.
doi:10.1006/jmbi.1997.1203

Geng, C., Jung, Y., Renaud, N., Honavar, V., Bonvin, A. M. J. J., and Xue, L. C.
(2019). iScore: a Novel Graph Kernel-Based Function for Scoring Protein-
Protein Docking Models. Bioinformatics 36 (1), 112–121. doi:10.1093/
bioinformatics/btz496

Gidon, M., Henry, A., and Gabb (1999). Use of Pair Potentials across Protein
Interfaces in Screening Predicted Docked Complexes. Proteins Struct. Funct.
Bioinformatics.

Goodman, J. (2001). Classes for Fast Maximum Entropy Training. IEEE, 7–11.
doi:10.1109/ICASSP.2001.940893

Hennessey, J. P., Jr., and Johnson, W. C., Jr. (1981). Information Content in the
Circular Dichroism of Proteins. Biochemistry 20 (5), 1085–1094. doi:10.1021/
bi00508a007

Hurwitz, N., Schneidman-Duhovny, D., and Wolfson, H. J. (2016). Memdock: An
α-helical Membrane Protein Docking Algorithm. Bioinformatics 32 (16),
btw184. doi:10.1093/bioinformatics/btw184

Hwang, H., Vreven, T., Janin, J., and Weng, Z. (2010). Protein-protein Docking
Benchmark Version 4.0. Proteins 78 (15), 3111–3114. doi:10.1002/prot.22830

Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and
Vakser, I. A. (1992). Molecular Surface Recognition: Determination of
Geometric Fit between Proteins and Their Ligands by Correlation
Techniques. Proc. Natl. Acad. Sci. 89 (6), 2195–2199. doi:10.1073/
pnas.89.6.2195

Kingma, D., and Ba, J. (2014). Adam: A Method for Stochastic Optimization.
Comput. Sci ICLR 2015, May 13. arXiv:1412.6980

Kitchen, D. B., Decornez, H., Furr, J. R., and Bajorath, J. (2004). Docking and
Scoring in Virtual Screening for Drug Discovery: Methods and Applications.
Nat. Rev. Drug Discov. 3 (11), 935–949. doi:10.1038/nrd1549

Lemmon, G., and Meiler, J. (2013). Towards Ligand Docking Including Explicit
Interface Water Molecules. Plos One 8 (6), e67536. doi:10.1371/
journal.pone.0067536

Lengauer, T., and Rarey, M. (1996). Computational Methods for Biomolecular
Docking. Curr. Opin. Struct. Biol. 6 (3), 402–406. doi:10.1016/s0959-440x(96)
80061-3

Midic, U., Oldfield, C. J., Dunker, A. K., Obradovic, Z., and Uversky, V. N. (2009).
Protein Disorder in the Human Diseasome: Unfoldomics of Human Genetic
Diseases. Bmc Genomics 10 (Suppl. 1), 1–24. doi:10.1186/1471-2164-10-s1-s12

Mieczyslaw, T., Moal, I. H., Chaleil, R., Juan, F. R., and Bates, P. A. (2013).
SwarmDock: a Server for Flexible Protein-Protein Docking. Bioinformatics 6,
807–809.

Pierce, B. G., Wiehe, K., and Hwang, H., (2014). ZDOCK Server: Interactive
Docking Prediction of Protein–Protein Complexes and Symmetric Multimers.
Bioinformatics.

Pons, C., Talavera, D., de la Cruz, X., Orozco, M., and Fernandez-Recio, J. (2011).
Scoring by Intermolecular Pairwise Propensities of Exposed Residues (SIPPER):
A New Efficient Potential for Protein−Protein Docking. J. Chem. Inf. Model. 51
(2), 370–377. doi:10.1021/ci100353e

Rosalba, L., Pier, P., and Olimpieri, M. A., (2017). PIGSPro: Prediction of
immunoGlobulin Structures V2. Nucleic Acids Res.

Sekhar, P. N. (2016). Software for Molecular Docking: A Review. Biophysical Rev. 9
(2), 91–102.

Stormo, G. D., Schneider, T. D., Gold, L., and Ehrenfeucht, A. (1982). Use of the
’Perceptron’ Algorithm to Distinguish Translational Initiation Sites inE. Coli.
Nucl. Acids Res. 10 (9), 2997–3011. doi:10.1093/nar/10.9.2997

Topf, M., Lasker, K., Webb, B., Wolfson, H., Chiu, W., and Sali, A. (2008). Protein
Structure Fitting and Refinement Guided by Cryo-EMDensity. Structure 16 (2),
295–307. doi:10.1016/j.str.2007.11.016

Tu,W. B., Helander, S., Pilstål, R. R., Hickman, K. A., Lourenco, C., Jurisica, I., et al.
(2015). Myc and its Interactors Take Shape. Biochim. Biophys. Acta (Bba) - Gene
Regul. Mech. 1849 (5), 469–483. doi:10.1016/j.bbagrm.2014.06.002

Tuncbag, N., Gursoy, A., Nussinov, R., and Keskin, O. (2011). Predicting Protein-
Protein Interactions on a Proteome Scale by Matching Evolutionary and
Structural Similarities at Interfaces Using PRISM. Nat. Protoc. 6 (9),
1341–1354. doi:10.1038/nprot.2011.367

Vakser, I. A. (1997). Evaluation of GRAMM Low-Resolution Docking
Methodology on the Hemagglutinin-Antibody Complex. Proteins 29 (S1),
226–230. doi:10.1002/(sici)1097-0134(1997)1+<226::aid-prot31>3.0.co;2-o

Velikovi, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2017).
Graph Attention Networks, ICLR 2018 October. arXiv:1710.10903v3

Venkatarajan, M. S., and Braun, W. (2001). New Quantitative Descriptors of
Amino Acids Based on Multidimensional Scaling of a Large Number of
Physical–Chemical Properties. Mol. Model. Annu. 7 (12), 445–453.
doi:10.1007/s00894-001-0058-5

Veselovsky, A. V., Ivanov, Y. D., Ivanov, A. S., Archakov, A. I., Lewi, P., and
Janssen, P. (2010). Protein-protein Interactions: Mechanisms and Modification
by Drugs. J. Mol. Recognit 15, 405–422. doi:10.1002/jmr.597

Wang, X., Flannery, S. T., and Kihara, D. (2021). Protein Docking Model
Evaluation by Graph Neural Networks. Front. Mol. Biosciences 8, 402.
doi:10.3389/fmolb.2021.647915

Wang, X., Terashi, G., Christoffer, C. W., Zhu, M., and Kihara, D. (2019). Protein
Docking Model Evaluation by 3D Deep Convolutional Neural Networks.
Bioinformatics 36 (7), 2113–2118. doi:10.1093/bioinformatics/btz870

Weitzner, B. D., Jeliazkov, J. R., Lyskov, S., Marze, N., Kuroda, D., Frick, R., et al.
(2017). Modeling and Docking of Antibody Structures with Rosetta. Nat.
Protoc. 12 (2), 401–416. doi:10.1038/nprot.2016.180

Ying, H., Beifang, N., and Ying, G. (2010). CD-HIT Suite: a Web Server for Clustering
and Comparing Biological Sequences. Bioinformatics. doi:10.1109/cmc.2010.90

Zhang, M. H., Cui, Z. C., Neumann, M., and Chen, Y. X. (2018). An End-To-End
Deep Learning Architecture for Graph Classification. Thirty-Second Aaai
Conference on Artificial Intelligence/Thirtieth Innovative Applications of
Artificial Intelligence Conference/Eighth Aaai Symposium on Educational
Advances in Artificial Intelligence, FEB 4438–4445.

Zhou, H., and Zhou, Y. (2002). Distance-scaled, Finite Ideal-Gas Reference State
Improves Structure-Derived Potentials of Mean Force for Structure Selection and
Stability Prediction. Protein Sci. 11 (11), 2714–2726. doi:10.1110/ps.0217002

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Han, He, Chen, Qin, Yu and Xu. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Bioinformatics | www.frontiersin.org August 2021 | Volume 1 | Article 69321111

Han et al. Effect of Similar Targets

https://doi.org/10.1021/ja026939x
https://doi.org/10.1002/jcc.21837
https://doi.org/10.1006/jmbi.1997.1203
https://doi.org/10.1093/bioinformatics/btz496
https://doi.org/10.1093/bioinformatics/btz496
https://doi.org/10.1109/ICASSP.2001.940893
https://doi.org/10.1021/bi00508a007
https://doi.org/10.1021/bi00508a007
https://doi.org/10.1093/bioinformatics/btw184
https://doi.org/10.1002/prot.22830
https://doi.org/10.1073/pnas.89.6.2195
https://doi.org/10.1073/pnas.89.6.2195
https://doi.org/10.1038/nrd1549
https://doi.org/10.1371/journal.pone.0067536
https://doi.org/10.1371/journal.pone.0067536
https://doi.org/10.1016/s0959-440x(96)80061-3
https://doi.org/10.1016/s0959-440x(96)80061-3
https://doi.org/10.1186/1471-2164-10-s1-s12
https://doi.org/10.1021/ci100353e
https://doi.org/10.1093/nar/10.9.2997
https://doi.org/10.1016/j.str.2007.11.016
https://doi.org/10.1016/j.bbagrm.2014.06.002
https://doi.org/10.1038/nprot.2011.367
https://doi.org/10.1002/(sici)1097-0134(1997)1+<226::aid-prot31>3.0.co;2-o
https://doi.org/10.1007/s00894-001-0058-5
https://doi.org/10.1002/jmr.597
https://doi.org/10.3389/fmolb.2021.647915
https://doi.org/10.1093/bioinformatics/btz870
https://doi.org/10.1038/nprot.2016.180
https://doi.org/10.1109/cmc.2010.90
https://doi.org/10.1110/ps.0217002
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles

	Quality Assessment of Protein Docking Models Based on Graph Neural Network
	Introduction
	Results
	Pipeline of Our Method
	Comparisons With ZDOCK
	Hyper-Parameter Optimization
	n-hop Neighboring Aggregation Optimization

	Different k Optimization
	Effect of Similar Targets

	Comparisons With Existing Tools

	Materials and Methods
	Datasets
	Graph Construction
	Graph Neural Network Architecture
	Deep Graph Attention Neural Network Training details
	Evaluation Metrics

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


