
lable at ScienceDirect

Arthroplasty Today 13 (2022) 13e23
Contents lists avai
Arthroplasty Today

journal homepage: http: / /www.arthroplastytoday.org/
Original research
Machine Learning Model Developed to Aid in Patient Selection for
Outpatient Total Joint Arthroplasty

Cesar D. Lopez, MD, Jessica Ding, BA *, David P. Trofa, MD, H. John Cooper, MD,
Jeffrey A. Geller, MD, Thomas R. Hickernell, MD
New York-Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
a r t i c l e i n f o

Article history:
Received 15 June 2021
Received in revised form
12 October 2021
Accepted 3 November 2021
Available online xxx

Keywords:
ACS-NSQIP
Machine learning
Artificial intelligence
Total knee arthroplasty
Total hip arthroplasty
Length of stay
No author associated with this paper has disclose
conflicts which may be perceived to have impending
full disclosure statements refer to https://doi.org/10.1
* Corresponding author. 622 W 168th Street, PH-1

Tel.: þ1 212 305 8193.
E-mail address: jd3628@cumc.columbia.edu

https://doi.org/10.1016/j.artd.2021.11.001
2352-3441/© 2021 The Authors. Published by Elsevier
NC-ND license (http://creativecommons.org/licenses/b
a b s t r a c t

Background: Patient selection for outpatient total joint arthroplasty (TJA) is important for optimizing
patient outcomes. This study develops machine learning models that may aid in patient selection for
outpatient TJA based on medical comorbidities and demographic factors.
Methods: This study queried elective total knee arthroplasty (TKA) and total hip arthroplasty (THA) cases
during 2010-2018 in the American College of Surgeons National Surgical Quality Improvement Program.
Artificial neural network models predicted same-day discharge and length of stay (LOS) fewer than 2
days (short LOS). Multiple linear and logistic regression analyses were used to identify variables
significantly associated with predicted outcomes.
Results: A total of 284,731 TKA cases and 153,053 THA cases met inclusion criteria. For TKA, prediction of
short LOS had an area under the receiver operating characteristic curve (AUC) of 0.767 and accuracy of
84.1%; prediction of same-day discharge had an AUC of 0.802 and accuracy of 89.2%. For THA, prediction
of short LOS had an AUC of 0.757 and accuracy of 70.6%; prediction of same-day discharge had an AUC of
0.814 and accuracy of 78.8%.
Conclusion: This study developed machine learning models for aiding patient selection for outpatient
TJA, through accurately predicting short LOS or outpatient vs inpatient cases. As outpatient TJA expands,
it will be important to optimize preoperative patient selection and effectively screen surgical candidates
from a broader patient population. Incorporating models such as these into electronic medical records
could aid in decision-making and resource planning in real time.
© 2021 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice

nses/by-nc-nd/4.0/).
Introduction

Total joint arthroplasty (TJA), including total knee arthroplasty
(TKA) and total hip arthroplasty (THA), are reproducible and suc-
cessful treatments that continue to grow in the number of pro-
cedures every year [1], and efforts to reduce the economic impact of
TJA has become a recent interest among arthroplasty surgeons. In
TJA, the main sources of costs are length of stay (LOS) and com-
plications, but rising costs have recently been reduced by
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shortening the LOS [2]. Advances in regional anesthesia, minimally
invasive surgical techniques, operative duration, earlymobilization,
and multimodal pain control strategies have proven successful in
safely reducing LOS and shifting toward outpatient TJA without
significant differences in outcomes or short-term complications
compared with inpatient TJA [3-6]. The Centers for Medicaid and
Medicare Services (CMS) removed TKA from its inpatient-only list
in 2018 and removed THA in 2020 and added TKA and THA to the
Ambulatory Surgery Center Payable list in 2020, thus allowing for
Medicare and Medicaid reimbursement for same-day procedures
performed in hospitals and ambulatory surgery centers [7,8]. As a
result, it is predicted that the volume of outpatient TJAwill increase
at much faster rates than inpatient TJA [9]. Thus, patient selection
for outpatient TJA is important for optimizing patient outcomes,
and enhanced patient selection tools may further incentivize per-
forming more TJA procedures outside the hospital setting.
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Machine learning (ML) is increasingly reported on in health
care, including orthopedics, especially for its applications in pre-
dictive analytics. ML is a form of artificial intelligence (AI) that uses
algorithms and mathematical models that can learn from data,
identify patterns and complex relationships, and make automated
decisionsdoftentimes with minimal human intervention [10].
Compared with multivariate regression models that determine
statistical correlations based on linear relationships between vari-
ables, ML can model complex nonlinear relationships and optimize
predictive capability. Within orthopedics, AI/ML has been shown to
be beneficial in surgical risk stratification and optimization [11],
outcome prediction and diagnostics [12], and cost-efficiency ana-
lyses [13]. In the field of TJA, ML methods have been used in large
database studies to predict LOS, costs, discharge dispositions, and
postoperative complications, as well as developing patient-specific
payment models based on patient risk levels [13-18].

The use of AI/ML is rapidly expanding in health care and has the
potential to improve surgical care and reduce costs, especially hip
and knee procedures. The purpose of this study is to develop ML
models that may aid in patient selection for outpatient TKA by
predicting short LOS and same-day discharge after TKA and THA
based on patients’medical comorbidities and demographic factors.
We hypothesize that the ML models can accurately predict patients
who have a same-day discharge and short LOS (2 days or less) after
THA and TKA.

Material and methods

Data source

This retrospective cohort study utilizes the American College of
Surgeons National Surgical Quality Improvement Program (ACS-
NSQIP) registry from2010 to 2018. TheNSQIP data set comprises 273
variables collected by trained surgical clinical reviewers atmore than
700U.S.medical centers. Information collected includes deidentified
demographical, preoperative, perioperative, and postoperative data,
as well as 30-day morbidity and mortality outcomes for surgical
patients in both the inpatient and outpatient setting. Data quality is
ensured through training for surgical clinical reviewers and the inter-
rater reliability audit,with thedisagreement rate at 2.3% andup to 5%
being considered acceptable [19]. Institutional review board
approval was not required for this database study.

TKA and THA cases between the years of 2010 and 2018 were
identified with the Current Procedural Terminology (CPT) codes
27,447 and 27,130, respectively. Cases with additional CPT codes,
those with LOS greater than 30 days, and patients meeting sepsis,
shock, or SIRS criteria in the 48 hours before surgerywere excluded.
Cases with incomplete data or missing predictive variables were
also excluded. Patients who did not stay overnight had an LOS equal
to 0 days and were categorized into the same-day discharge/
outpatient group. Patients were included in the short LOS cohort if
they had LOS less than or equal to 2 days. A total of 334,551 elective
TKA cases were identified in the NSQIP registry between 2010 and
2018 (16,139 patients, or 4.8%, had missing data elements and were
not used in our analysis), and 284,731 cases met inclusion criteria
and were used in our analysis (Fig. 1a). Of 213,346 THA cases in the
ACS-NSQIP database from 2010 to 2018 (12,605 patients, or 5.9%,
had missing data elements and were not used in our analysis),
153,053 cases met the inclusion criteria and were included in the
analyses (Fig. 1a).

ML model development

Artificial neural network (ANN) models were developed and
trained using the NSQIP database of elective TKA cases. All model
development and analyses were performed using the TensorFlow
Python open-source coding platform (Google Brain, Alphabet Inc.,
Mountain View, California, USA) and shared on the Google Colab
cloud network (Google AI, Alphabet Inc., Mountain View, California,
USA). The data were randomly sorted into a training set (80%) and
testing set (20%) using the “random_state” command in Tensor-
Flow. The training set data, containing predictive variables, were
used to train and develop boosted decision tree and ANN models
for predicting the outcome variables (prolonged operating time,
return to operation room, and any complication). Predictive patient
factors were used as inputs for the model to predict the indicated
output, or outcome, variable. For each incorrect prediction, the
model self-calibrates and “learns” from the patient data multiple
times through a process of reiterative algorithm refinement until
optimal model accuracy is achieved. The testing set data were used
to evaluate ML model accuracy and performance (Fig. 1b). Cate-
gorical nonbinary variables (race, American Society of Anesthesi-
ologists [ASA] class, anesthesia type) were incorporated into the
model using one-hot-encoding. Continuous variables, such as age
and body mass index (BMI), were converted into logarithmic var-
iables to normalize the data set andminimize bias. Imbalanced data
were managed using oversampling of the underrepresented
outcome variable.

Model performance was determined by calculating the sensi-
tivity and specificity of the model, which were used to develop a
receiver operating characteristic (ROC) curve. The area under the
ROC curve (AUC) was calculated, consistent with techniques used in
prior studies [16,20]. AUC values range from 0.50 to 1 and measure
a prediction models’ discriminative ability, with a higher AUC value
signifying better predictive ability and overall accuracy of the
model correctly placing a patient into an outcome category. A
model with an AUC of 1.0 is a perfect discriminator, 0.90 to 0.99 is
considered excellent, 0.80 to 0.89 is good, 0.70 to 0.79 is fair, and
0.51 to 0.69 is considered poor [21]. Overall model accuracy (%) was
calculated by dividing the sum of true positives (correct prediction
of outcome) and true negatives (correct prediction of non-
outcome) by the sample size.

Statistical analysis

Data from the NSQIP registry were extracted, and patient vari-
ables included gender, age, race, BMI (calculated from the recorded
height and weight available), ASA class, anesthesia type (general,
spinal, and otherdincluding intravenous sedation, regional, or
epidural anesthesia), operative time, surgery setting (inpatient or
outpatient), smoking history, and preoperative diagnosis of dia-
betes, dyspnea at rest or at moderate exertion, chronic obstructive
pulmonary disease, congestive heart failure, or hypertension
requiring medication, renal failure, dialysis requirement, dissemi-
nated cancer, use of steroids for a chronic condition, bleeding dis-
order, and need for a preoperative transfusion within 72 hours of
surgery. The predicted outcomes included same-day discharge,
short LOS, and any complication within 30 days after surgery. Any
complication included the incidence of one or more of the
following postoperative adverse outcomes within 30 days after
surgery: surgical site infection, anemia requiring transfusion, deep
vein thrombosis or pulmonary embolism, urinary tract infection,
acute renal failure/compensation, sepsis, intubation-related event,
pneumonia, myocardial infarction, cerebrovascular event, cardiac
arrest, and return to the operation room.

Comparative and descriptive statistics were summarized with
unpaired student’s t-tests. Linear by linear association testwas used
to identify significant trends in same-day discharge and LOS during
the study period (2010-2018). Multivariate linear regression anal-
ysis was conducted to determine factors associated with LOS. The
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odds ratios of the predicted outcome variables were analyzed using
a binary logistic regression which accounted for multiple preop-
erative patient characteristics, including medical comorbidities and
demographic variables. The logistic regression model accounted for
binary predictor variables including age (older than or younger
than 70 years), race (White or non-White), BMI (obese or non-
obese), ASA classification above 2, general anesthesia, spinal
anesthesia, intravenous sedation anesthesia, regional anesthesia,
diabetes, smoking history, as well as other collected preoperative
characteristics and risk factors presented in the registry. Cases with
missing features were excluded from the study. Results of the lo-
gistic regressions were reported as odds ratios with 95% confidence
intervals (CIs). Confounding and interaction in the regression
Figure 1. Flowcharts showing included TKA and THA case
model were addressed by ensuring that the variance inflation fac-
tor, a measure of collinearity, did not exceed a value of 10. All sta-
tistical analyses were conducted on Stata, version 16.1 (Stata Corp.,
College Station, Texas, USA). Statistical significance was defined as
P < .05.

Results

Total knee arthroplasty

Therewere 54,939 patients with a short LOS (< 2 days) and 5845
same-day discharge TKA cases (LOS ¼ 0). To develop the ANN
models, the data were randomly separated into a training set of
s (a) and machine learning model development (b).



Figure 2. Area under the ROC curve of artificial neural network model for total knee arthroplasty (TKA) predicting (a) short LOS and (b) same-day discharge.
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Table 2
Factors associatedwith hospital length of stay (LOS) after TKA, onmultivariate linear
regression analysis.

Variable Coefficient P value 95% confidence
interval

Preoperative factors:
Sex (female) 0.203 <.001 0.184 0.221
Race (white) �0.146 <.001 �0.174 �0.119
Age 0.016 <.001 0.015 0.017
BMI 0.010 <.001 0.009 0.011
Diabetes 0.188 <.001 0.164 0.212
Smoking 0.095 <.001 0.061 0.128
Dyspnea 0.214 <.001 0.173 0.254
COPD 0.334 <.001 0.285 0.383
CHF 0.646 <.001 0.483 0.810
HTN 0.057 <.001 0.037 0.077
Renal failure 0.968 .001 0.389 1.546

Table 1
Summary of patient demographics, medical comorbidities, perioperative and postoperative outcomes of ambulatory and nonambulatory TKA cases.

Predictive factors Nonambulatory (n ¼ 278,886) Ambulatory (n ¼ 5845) P value All TKA (n ¼ 284,731)

Female (%) 61.8% 53.8% <.001 61.6%
White (%) 87.7% 87.7% .956 87.7%
Avg. age (years) 66.8 65.5 <.001 66.8
Age >70 years (%) 35.5% 29.6% <.001 35.4%
Avg. BMI 33.0 31.7 <.001 33.0
Obesity (%) 63.5% 57.0% <.001 63.4%
Diabetes (%) 18.1% 14.5% <.001 18.0%
Smoke (%) 8.3% 7.0% .002 8.3%
Dyspnea (%) 5.7% 2.1% <.001 5.6%
COPD (%) 3.5% 2.2% <.001 3.5%
CHF (%) 0.3% 0.1% .003 0.3%
Hypertension (%) 65.0% 56.9% <.001 64.8%
Renal failure (%) 0.0% 0.0% .224 0.0%
Dialysis (%) 0.2% 0.1% <.001 0.2%
Cancer (%) 0.10% 0.09% .845 0.1%
Wound infection (%) 0.2% 0.1% <.001 0.2%
Steroid use (%) 3.5% 2.3% <.001 3.5%
Weight loss (%) 0.11% 0.22% <.001 0.1%
Bleeding disorder (%) 2.1% 1.4% .001 2.1%
ASA class >2 (%) 49.3% 38.2% <.001 49.1%

Outcomes Nonambulatory (n ¼ 278,886) Ambulatory (n ¼ 5845) P value All TKA (n ¼ 284,731)

Inpatient (%) 96.7% 50.9% <.001 95.8%
Avg. operative time (min) 92.1 83.5 <.001 91.9
Prolonged operative time (%) 16.0% 8.6% <.001 15.9%
Any complication (%) 6.6% 2.5% <.001 6.5%
Nonhome discharge (%) 22.0% 6.0% <.001 21.7%
Readmission (%) 4.0% 4.7% .046 4.0%
Reoperation (%) 1.2% 1.0% .223 1.1%

COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure.
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216,960 patients and a testing set of 54,420 patients. After testing,
the AUC of the ANN model for predicting same-day discharge was
measured to be 0.802, with an overall accuracy of 89.2% (Fig. 2a).
The ANN model for predicting short LOS had an AUC of 0.767, with
overall accuracy of 84.1% (Fig. 2b).

Direct statistical comparison between same-day discharge and
other TKA cases shows significant differences in average patient age
(65.5 vs 66.8 years, respectively; P < .001), percent of those older
than 70 years (29.6% vs 35.5%; P < .001), percent female (53.8% vs
61.8%; P < .001), average BMI (31.7 vs 33.0; P < .001), percent ASA
class 3 and above (38.2% vs 49.3%; P < .001), and other medical
comorbidities (Table 1). Multiple linear regression analysis identi-
fied several predictive factors which were significantly associated
with total LOS, including female sex, age, BMI, diabetes, smoking
and chronic obstructive pulmonary disease history, congestive
heart failure, bleeding disorders, steroid use, and ASA classification
(Table 2).

Predictive variables associated with same-day discharge
included male sex, age less than 70 years, White race, BMI less than
30, no smoking history, and ASA classification below 3 (Fig. 3,
Supplementary Table 1). The linear by linear association test reveals
a trend in same-day discharge over time from 2010 to 2018, ac-
counting for 0.5% (and average LOS of 3.3 days) of all elective TKAs
in 2010 to 2.8% (and average LOS of 2.3 days) in 2018 (P < .001).
Cancer 0.170 .240 �0.114 0.454
Steroid use 0.164 <.001 0.115 0.212
Bleeding disorder 0.380 <.001 0.320 0.441
ASA class 0.260 <.001 0.241 0.279

Perioperative factors:
Op. time 0.006 <.001 0.006 0.006
Anesthesia: general 0.045 .095 �0.008 0.097
Anesthesia: spinal �0.258 <.001 �0.311 �0.205
Anesthesia: other �0.323 <.001 �0.380 �0.265

COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure; HTN,
hypertension.
Bold values are statistically significant.
Total hip arthroplasty

When categorized by hospital LOS in the multivariate logistic
regression analysis, there were 32,190 patients with short LOS (< 2
days). There were 2621 patients with same-day discharge. The ML
model for predicting same-day discharge had an AUC of 0.814 and
an accuracy of 78.8%. The ML model for predicting short LOS had an
AUC of 0.757 and an accuracy of 70.6% (Fig. 4).
On average, same-day discharge THA patients were younger
(61.6 years) than the rest of the patients with THA (64.9 years)
(P < .001) and had a lower percentage of patients older than 70
years (19.8%) vs the rest of the patients with THA (31.8%) (P < .001)
(Table 3). The same-day discharge group differed from the rest of
the patients in percentage of female patients (45.9% vs 54.8%;
P < .001), White patients (83.5% vs 76.2%; P < .001), and patients
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with ASA class greater than 2 (26.1% vs 42.6%; P < .001). BMI was
significantly different between the two groups (29.2 vs 30.3;
P < .001) in addition to other comorbidities (Table 3). Multiple
linear regression identified predictive factors associated with an
increased LOS, including age, female sex, BMI, ASA class, smoking,
steroid use, operative time, and other comorbidities (Table 4).
Among same-day discharge patients, factors found to increase odds
of a same-day discharge were White race (P < .001), use of spinal
anesthesia or other anesthesia techniques (P < .001), and wound
class above 1 (P ¼ .024) (Fig. 5, Supplementary Table 2). The linear
by linear association test reveals a trend in same-day discharge over
time from 2010 to 2018, accounting for 0.6% (and average LOS of 3.2
days) of all elective THAs in 2010 to 6.7% (and average LOS of 2.0
days) in 2018 (P < .001).

Discussion

This study developed ML models for aiding preoperative patient
selection for outpatient TKA and THA, through accurate prediction
of outpatient vs inpatient surgical candidates, as well as patients
with short LOS (<2 days). The ANN models were more accurate in
predicting same-day discharge for both TKA and THA, which both
showed good predictive and discriminative ability (AUC >0.80). The
models for predicting short LOS for both TKA and THA had fair
predictive and discriminative ability (AUC >0.70). Prediction of
same-day discharge was more accurate likely because the patients
represented within this group have distinctly different character-
istics andmedical comorbidities from thosewhomay need a longer
LOS. Patients within the short LOS cohort are more difficult to
differentiate because they may share overlapping features with the
patients with same-day discharge and patients who may need
longer LOS.

Given the increased cost-consciousness around healthcare
spending, the use of ML in helping surgeons identify suitable
Figure 3. Factors associated with greater odds of same-day disch
candidates for outpatient TJA may provide potentially significant
cost savings, especially as more insurers are introducing bundled
payments for surgical care [22,23]. Previous retrospective studies
have evaluated the accuracy of different preoperative calculators or
scoring systems of patients to predict if the patients had a same-day
discharge or less than two midnight stay after TJA [24e26]. The
Outpatient Arthroplasty Risk Assessment was developed with nine
comorbidity categories and points assigned to each category based
on the presence and severity of each of these comorbidities.
Outpatient Arthroplasty Risk Assessment scores within the early
discharge range were found to be significantly associated with an
actual early discharge in their study population and significantly
more accurate than other scoring systems such as the American
Society of Anesthesiologists Physical Status or the Charlson Co-
morbidity Index [25,26]. Other calculators used to predict LOS
include the ACS-NSQIP surgical risk calculator, which uses the type
of procedure, demographic variables, and comorbidities to predict
surgical risk and LOS, as well as the CMS Diagnosis-Related Group,
which uses either the arithmetic or geometric means of the LOS of
patients who have undergone the same procedure within the past
year. It was found that both the ACS surgical risk calculator and the
CMS Diagnosis-Related Groupmeans significantly overestimate the
LOS [24].

Our study uses neural networks, which are comprised of mul-
tiple “neural layers” that can process large amounts of data and
share information using weighted connections which are opti-
mized during the training process [27]. In particular, neural net-
works contain a hidden layer of nodes, where multiple input data
can combine and transform, ultimately reaching the final MLmodel
that predicts outcomes [13]. As a result, they can achieve predictive
performance which provides an advantage in accurately modeling
complex nonlinear relationships in high-volume data sets. These
models have the potential to be utilized in clinical settings and
integrated into a hospital electronic medical record, enabling
arge after TKA, on multivariate logistic regression analysis.



Figure 4. Area under the ROC curve of artificial neural network model for total hip arthroplasty (THA) predicting (a) short LOS and (b) same-day discharge.
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Table 3
Summary of patient demographics and medical comorbidities and perioperative and postoperative outcomes of ambulatory and nonambulatory THA cases.

Predictive factors Nonambulatory (n ¼ 150,432) Ambulatory (n ¼ 2621) P value All THA (n ¼ 153,053)

Average age (years) 64.9 61.6 <.001 64.9
Age >70 years (%) 31.8% 19.8% <.001 31.6%
Female sex (%) 54.8% 45.9% <.001 54.7%
White race (%) 76.2% 83.4% <.001 76.4%
Average BMI 30.3 29.2 <.001 30.3
Obesity (%) 46.8% 40.3% <.001 46.7%
Diabetes (%) 12.0% 8.2% <.001 12.0%
Smoking (%) 11.2% 13.0% .006 13.0%
COPD (%) 2.4% 3.9% .001 3.9%
Dyspnea (%) 4.6% 1.5% <.001 4.5%
CHF (%) 0.3% 0.03% .016 0.3%
Hypertension (%) 56.0% 44.4% <.001 55.8%
Renal failure (%) 0.04% 0.04% .952 0.04%
Dialysis (%) 0.2% 0.1% .127 0.2%
Disseminated cancer (%) 0.3% 0.1% .102 0.3%
Wound infection (%) 0.3% 0.2% .259 0.3%
Steroid use (%) 3.8% 2.3% <.001 3.8%
Weight loss (%) 0.2% 0.2% .682 0.19%
Bleeding disorder (%) 2.1% 0.1% <.001 2.1%
ASA class >2 (%) 42.6% 26.1% <.001 42.3%
Wound class >1 (%) 0.4% 0.6% .152 0.4%

Outcomes Nonambulatory (n ¼ 150,432) Ambulatory (n ¼ 2621) P value All THA (n ¼ 153,053)

Inpatient (%) 99.1% 80.7% <.001 98.8%
Average operative time (min) 92.1 82.4 <.001 92.0
Prolonged operative time (%) 17.3% 9.4% <.001 17.1%
Any complication (%) 8.8% 2.6% < .001 8.7%
Nonhome discharge (%) 20.0% 5.1% <.001 19.8%
Readmission (%) 4.2% 3.2% .014 4.2%
Reoperation (%) 2.3% 2.1% .590 2.3%

COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure.
Bold values are statistically significant.
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individualized assessment of patients who may be treated in
outpatient settings, which are shown to be more cost-efficient with
a streamlined model that eliminates inpatient and other ancillary
expenses [28e30]. AI/ML models can also balance sensitivity (ie,
Table 4
Factors associated with hospital length of stay (LOS) after THA, on multiple linear
regression analysis.

Variable Coefficient P value 95% confidence
interval

Preoperative
Age 0.024 <.001 0.023 0.025
Female sex 0.236 <.001 0.214 0.259
White race �0.776 <.001 �0.803 �0.749
BMI 0.005 <.001 0.003 0.007
Diabetes 0.070 <.001 0.034 0.107
Smoking 0.089 <.001 0.054 0.124
COPD 0.288 <.001 0.227 0.349
Dyspnea 0.299 <.001 0.243 0.356
CHF 0.781 <.001 0.571 0.992
Hypertension 0.002 .902 �0.235 0.027
Renal failure 0.993 .001 0.396 1.590
Dialysis 1.008 <.001 0.762 1.255
Disseminated cancer 1.003 <.001 0.792 1.215
Wound infection 0.786 <.001 0.604 1.006
Steroid use 0.214 <.001 0.155 0.274
Weight loss 0.264 .042 0.010 0.520
Bleeding disorder 0.411 <.001 0.332 0.491
ASA class 0.248 <.001 0.226 0.269
Wound class 0.321 <.001 0.213 0.428

Perioperative
Operative time 0.005 <.001 0.004 0.005
Anesthesia: spinal �0.108 <.001 �0.133 �0.082
Anesthesia: other �0.301 <.001 �0.336 �0.267

COPD, chronic obstructive pulmonary disease; CHF, congestive heart failure.
Bold values are statistically significant.
selecting low-risk candidates) and specificity (ie, selecting high-
risk candidates) of patient selection [31]. Our study showed that
the 30-day complication rate was significantly lower in same-day
discharge TKA and THA cases than in inpatient cases, which sup-
ports the feasibility of performing outpatient TKA and THA in pa-
tients with low risk of postoperative complications.

Recently, more ML techniques have been used in retrospective
database studies to develop possible tools for preoperative patient
selection for outpatient TKA and THA [28,29,30] Wei et al. devel-
oped an ANN model to predict outpatient vs inpatient status after
TKA, which demonstrated good predictive and discriminative
ability (AUC >0.80) [32]. Zhong et al. developed an ANN model and
a random forest model, an ML technique that regresses and ana-
lyzes data throughmany decision trees, based on comorbidities and
preoperative laboratory values to determine same-day discharge or
an inpatient stay [33]. Their ANN model had fair predictive and
discriminative ability (AUC >0.70), whereas the random forest
model had good predictive and discriminative ability (AUC >0.80).
Furthermore, Kugelman et al. used the extreme gradient boost ML
technique, which builds multiple models based on the errors and
residuals of previous models to reach an ultimate model which
demonstrated good predictive and discriminative ability (AUC
>0.80) [28]. Despite the variations on the methods used, our ANN
models for both TKA and THA show similar results to the afore-
mentioned studies (AUC >0.80 for same-day discharge for both TKA
and THA).

AI/ML models can accurately assess a patient’s likelihood for
same-day discharge based on multiple factors rather than identi-
fying the individual risk factors or demographic variables that may
contribute. However, ML models act as a “black box” because only
the input predictive variables and output predictions are known
and relationships and strengths of individual variables remain
unknown [14]. Although ANNmodels have better predictive ability,



Figure 5. Factors associated with greater odds of same-day discharge after THA, on multivariate logistic regression analysis.
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multivariate logistic regression is useful to determine which indi-
vidual factors are associated with the outcomes [11]. The ANN
models in this study used variables found on multiple linear
regression to be significantly associated with total LOS and vari-
ables found on multivariate logistic regression analyses to be
significantly associated with same-day discharge.

Our analysis found that patients with more manageable anes-
thesia needs are more likely to have shorter LOS, especially with a
higher proportion of patients with ASA classification of 2 or less and
undergoing spinal anesthesia rather than general anesthesia.
Several studies have shown that an effective perioperative anes-
thetic plan is essential for the success of outpatient joint procedures,
including TKA and THA [29,30]. Factors that commonly prolong
hospital stay after TJA include inadequately controlled pain, nausea,
vomiting, urinary retention, and limited mobility [29,34,35].
Regional anesthetic techniques such as spinal or epidural anesthesia
have become widely used for TJA because they have shown to be
associated with reduced 30-day mortality, lower blood transfusion
frequency, fewer superficial wound infections, and shorter hospital
LOS than general anesthesia [36,31]. Given the shift toward short-
ened LOS and reduced complications risk in outpatient TJA, anes-
thesia type may play an important role in ensuring cost-efficiency
and quality of care associated with these procedures.

Regarding differences in demographics, we found that patients
selected for same-day discharge TKA and THA were more likely to
be male and younger than 70 years. Although the majority of TKA
and THA patients are female (61.6% of nationwide TKA patients and
55.4% of THA patients) [37] there exists underrepresentation of
female patients in outpatient TKA and THA studies. In a systematic
review of studies comparing evidence regarding the safety and
feasibility of performing TJAs in the outpatient setting, the TKA and
THA studies generally included an older population, with mean
ages ranging from 55 to 68 years and the majority of studies
including a larger proportion of males than female patients [38].
Among same-day discharge TKA and THA feasibility studies in the
literature, factors associated with a longer hospital stay include
female sex, increasing age, and an ASA classification of 3 or 4 [39].
In addition, our analysis found that White race was the main pa-
tient factor found to decrease odds of long LOS and increase odds of
same-day discharge. Our results agree with those of a longitudinal
analysis of racial disparities in TJA, which found thatWhite patients
were more likely to have shorter hospital stays, home discharge,
and lower readmission rates, whereas Black patients had longer
hospital stays, greater rates of nonhome discharge, more read-
missions, and higher mortality rates. Black patients also had
significantly lower rates of TJA utilization [40]. These racial dis-
parities are systemic, as previous studies identified that biases exist
in screening algorithms for comorbidities and for calculating costs,
in addition to the smaller physician referral networks in predomi-
nantly Black communities, which may act as a barrier to patients
obtaining quality care and good outcomes [41,42].

This study has several potential limitations. The ML tools
developed in this study require external validation before conclu-
sions can be made about its efficacy in clinical settings. Our analysis
did not factor for surgery dates within the studied time period,
especially as more recent surgeries are more likely to utilize new
protocols, such as Enhanced Recovery After Surgery protocols and
updated multimodal pain control protocols, which were designed
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to shorten operative times and decrease LOS. In addition, there are
inherent limitations when using a large database such as the NSQIP,
which may include coding errors, missing data points, and inac-
curate information. Sample bias makes ML model predictions only
as reliable as the training data set. As a result, we decided to omit
cases from our analysis that had missing data. We also addressed
possible group attribution bias which results from training a model
with data that contains an asymmetric view of certain groupsdfor
example, if certain racial or gender groups have disproportionate
outcomes compared with other groups, the model will be inclined
to incorporate these inequities into their predictions as the stan-
dard. We considered the effect of societal inequities on ML model
development and took these factors into consideration when
evaluating the meaning of the model’s predictions. Future studies
may validate this application using a similar data set, especially as
more TJAs are performed and more data become available.

Conclusions

This study developed ML models for aiding preoperative patient
selection for outpatient TKA and THA, through accurate prediction
of same-day discharge and short LOS (<2 days) after TKA and THA.
ANNmodels were more accurate in predicting same-day discharge,
whereas prediction of short LOS was less accurate. As outpatient
procedures becomemore common, it will be important to optimize
preoperative patient selection and to effectively screen surgical
candidates from a broader patient population. This study devel-
oped ML models to aid in patient selection for outpatient TKA and
THA. Incorporating models such as these into electronic medical
records could aid in decision-making and resource planning in real
time. Given the increased cost-consciousness around healthcare
spending, the use of ML to help surgeons identify suitable candi-
dates for outpatient TJA may provide potentially significant cost
savings, especially as more insurers are introducing bundled pay-
ments for surgical care.
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