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SUMMARY

Convergent extension (CE) is an evolutionarily conserved collective cell movement that 

elongates several organ systems during development. Studies have revealed two distinct cellular 

mechanisms, one based on cell crawling and the other on junction contraction. Whether these 

two behaviors collaborate is unclear. Here, using live-cell imaging, we show that crawling and 

contraction act both independently and jointly but that CE is more effective when they are 

integrated via mechano-reciprocity. We thus developed a computational model considering both 

crawling and contraction. This model recapitulates the biomechanical efficacy of integrating the 

two modes and further clarifies how the two modes and their integration are influenced by cell 

adhesion. Finally, we use these insights to understand the function of an understudied catenin, 

Arvcf, during CE. These data are significant for providing interesting biomechanical and cell 

biological insights into a fundamental morphogenetic process that is implicated in human neural 

tube defects and skeletal dysplasias.
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In brief

Cell crawling and junction contraction are thought to be two distinct mechanisms used for 

elongation by convergent extension during embryonic development. Weng et al. demonstrate that 

the two modes not only work together but also collaborate for a better efficacy. A computational 

model is also developed to model this collaboration.

INTRODUCTION

Convergent extension (CE) is a fundamental collective cell movement in which a developing 

tissue converges along one axis, thereby extending in the orthogonal direction (Figure 1A). 

CE plays a crucial role in embryogenesis by shaping the body axis during gastrulation and 

neurulation and by elongating tubular organs during organogenesis (Tada and Heisenberg, 

2012; Keller, 2002; Lienkamp et al., 2012). The cell movements of CE are evolutionarily 

conserved in animals ranging from nematodes and arthropods to vertebrates (Huebner and 

Wallingford, 2018; Walck-Shannon and Hardin, 2014). Moreover, failure of CE is associated 

with severe birth defects, including neural tube defects, heart defects, and skeletal dysplasias 

(Butler and Wallingford, 2017; Wallingford et al., 2013).

Two distinct cellular mechanisms for CE have been described, and they were initially 

discovered in different cell types. The first was discovered by work on Xenopus body axis 

elongation during gastrulation (Keller and Hardin, 1987; Keller and Tibbetts, 1989; Shih 

and Keller, 1992). In this case, intercalation of mesenchymal cells is driven by polarized 
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actin-based protrusions extending from the opposing vertices of mediolateral cells (referred 

to hereafter as “ML cells”; Figure 1B) (Keller et al., 1992). These protrusions resemble 

a combination of the sheet-like lamellipodia and spike-like filopodia observed on the 

leading edge of cultured migrating cells (Devitt et al., 2021), pushing the boundary between 

neighboring cells and bringing ML cells together (Figure 1B). They also form adhesions 

with the substrate and with the neighboring cells, thus driving cell intercalation in a manner 

similar to cell migration (Keller and Sutherland, 2020; Pfister et al., 2016).

The second cellular mechanism was discovered in epithelial cells during Drosophila 
germband extension (Irvine and Wieschaus, 1994). In this case, cell intercalation is achieved 

via polarized junction remodeling, in which junctions joining anteroposterior neighboring 

cells (referred to hereafter as “AP cells”) shorten to bring together the two dorsoventral 

neighboring cells. Actomyosin accumulates on the AP cell interfaces and is activated to 

provide the contractile force (Zallen and Wieschaus, 2004; Bertet et al., 2004) (Figure 

1C). We will refer to these two distinct modes as the “crawling” and “contraction” modes, 

respectively (Figures 1B and 1C).

The two modes were initially considered as distinct mechanisms that were implemented 

in either mesenchyme or epithelia (e.g., Lienkamp et al., 2012; Nishimura et al., 2012), 

cell types that differ significantly in terms of cell-cell adhesion and cell polarity. However, 

recent evidence suggests that many cell types employ both modes during CE (Huebner 

and Wallingford, 2018; Shindo, 2018). For example, the two modes were found to work in 

conjunction in epithelial cells, first in the mouse neural plate, and later in the Drosophila 
germ band (Sun et al., 2017; Williams et al., 2014). In both cases, the crawling mode 

acts via basolaterally positioned protrusions, while contractions act apically at the epithelial 

junctions. Interestingly, we previously identified a role for the contraction mode in CE of 

mesenchymal cells of the Xenopus notochord (Shindo and Wallingford, 2014; Shindo et al., 

2019), the very cells in which the crawling mode was first defined.

Together, these previous studies suggest that crawling and contraction modes may be 

integrated in some manner to confer a maximal biomechanical advantage. The nature 

of such integration is unknown. Here, we used quantitative live-cell microscopy and a 

computational model to demonstrate that cell crawling and junction contraction act both 

independently and collaboratively to drive CE during Xenopus gastrulation. Furthermore, 

an interesting modeling approach suggests that fine control of cell adhesion is essential for 

mechano-reciprocal integration of crawling and contraction, and experimental manipulation 

of the cadherin-interacting catenin Arvcf in vivo validated this prediction. These data 

provide biomechanical and cell biological insights into a fundamental morphogenetic 

process implicated in human diseases and have broader impacts on studies of collective 

cell movement in various contexts.
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RESULTS

Crawling and contraction modes of intercalation act both independently and in concert 
during vertebrate convergent extension

The mesenchymal cells of Xenopus gastrula mesoderm are a key paradigm for studies of CE 

(Keller et al., 2003; Chu et al., 2020), and while both crawling- and contraction-based cell 

intercalation mechanisms have been explored, how the two are coordinated remains unclear 

(Huebner and Wallingford, 2018; Shindo, 2018). We therefore sought to simultaneously 

assess the contributions of crawling and contraction using explants of the Xenopus dorsal 

mesodermal tissue (”Keller” explants).

We therefore used uniform labeling with membrane-BFP to segment cells and to assess 

cell intercalation and used mosaic labeling for different colors of an actin biosensor (Lifeact-

RFP/Lifeact-GFP) to differentiate populations of actin in neighboring cells (Figures 1D–

1H and Video S1). In this assay, we could clearly distinguish actin dynamics in ML cell 

protrusions from cortical actin dynamics in adjacent AP cells (Figures 1l–1K and S1A–

S1C). When observed in kymographs, both the ML- and AP-associated actin dynamics 

were pulsatile and highly heterogeneous, as expected (Figures 1L and 1M, S1D and S1E) 

(Shindo and Wallingford, 2014; Shindo et al., 2019; Kim and Davidson, 2011; Pfister et 

al., 2016). These kymographs further suggested that both ML and AP actin dynamics were 

concentrated in regions near tricellular vertices (Figures 1L and 1M, “tCR”), while AP 

pulses outside these regions appeared less frequent and less pronounced (Figure 1M, “Mid”; 

See STAR Methods for detailed definition of tCR and Mid regions).

We then quantified the contributions of crawling and contraction to cell intercalation. Details 

are presented in the STAR Methods and in Figure S2, but we will summarize here: (1) We 

quantified cell intercalation by measuring the displacement of tricellular vertices connecting 

AP and ML cells (Figure 1I). (2) We quantified crawling using ML actin intensity as a 

proxy (Figure 1J). (3) We quantified contraction using AP actin intensity as a proxy (Shindo 

and Wallingford, 2014; Shindo et al., 2019), treating AP actin dynamics in the tCR and 

Mid regions independently (Figure 1K). (4) For both displacement and actin dynamics, we 

quantified each tricellular region separately, as these are known to behave independently 

in diverse models of intercalation (Figure S3A) (Vanderleest et al., 2018; Huebner et al., 

2021; Cavanaugh et al., 2022). In bulk analysis, intercalation correlated little with crawling, 

tCR contraction, or mid contraction (Figures S3B–S3D). By contrast, we observed a much 

stronger correlation between crawling and tCR contraction at each tCR (Figure S3E), 

suggesting the possibility of cooperative action.

We considered that crawling and contraction mechanisms could either “take turns” or work 

together or both. To explore these possibilities, we took advantage of the pulsatile nature 

of both cell movement and actin dynamics during CE (Video S2). We first used individual 

peaks in intercalation velocity curves over time to identify single intercalation “steps” 

(Figure 2A, left). Then, for each step, we searched for cross-correlated peaks in ML and AP 

actin intensity within the 40-s window preceding the velocity peak (Figure 2A, right). This 

method allowed us to unambiguously associate each step of cell intercalation movement 

with crawling- and/or contraction-related actin dynamics (e.g., Figure S4A).
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In our data, we identified intercalation steps associated exclusively with ML cell crawling 

(i.e., correlated with a crawling peak in ML actin intensity; Figure 2B; Video S3) as well 

as steps associated exclusively with contraction (i.e., correlated with a contraction peak in 

AP actin intensity; Figure 2C and Video S3). In addition, we identified steps associated with 

peaks in both ML and AP actin intensity (Figures 2D, 2E and Video S3). These “concurrent” 

intercalation steps included cases in which a crawling peak precedes a contraction peak 

(Figure 2D and Video S3) and a similar number of cases in which a contraction peak 

precedes a crawling peak (Figure 2E and Video S3). We note here that we also observed 

a small number of intercalation steps associated exclusively with non-tCR contraction from 

the middle portion of an AP interface (Figure S4B and Video S3) as well as steps for which 

no associated crawling or contraction peak could be identified (Figure S4C, “Others”). Since 

the vast majority of intercalation can be explained by ML crawling or tCR contraction or 

both (Figure S4C), steps in these latter two categories were removed from further analysis.

We found that roughly one-third of steps were associated purely with crawling, another third 

with contraction, and the final third with both concurrently (Figure 2F, left). Intercalation 

steps are known to be highly heterogeneous, so it was notable that when we considered the 

time, rather than the number of steps, we again found an equal distribution of crawling, 

contraction, and concurrent steps (Figure 2F, middle). By contrast, when we considered 

actual displacement for cell intercalation, we found that concurrent steps accounted for far 

more than one-third of the total intercalation displacement moved by tricellular vertices 

(Figure 2F, right). Together, these data suggest that crawling and contraction can be 

simultaneously integrated to produce more effective cell movement than can either mode 

acting alone.

Concurrent crawling and contraction improve the efficacy of cell intercalation

To further define crawling-only, contraction-only, and concurrent intercalation steps, we 

quantified several additional metrics. We found that the significantly higher displacement 

for concurrent steps (Figure 3A) was related to an increase both in the duration of steps 

and the velocity of vertex movement (Figures 3B and 3C). Moreover, we noted that some 

steps involved multiple, successively correlated crawling and contraction peaks (Figure 

3D), suggesting an iterative integration of crawling and contraction. We reasoned that 

if concurrent crawling and contraction provided better efficacy, then multiple concurrent 

crawling and contraction pulses should be more productive. This was indeed the case, 

as intercalation accompanied by three or more concurrent crawling and contraction peaks 

exhibited significantly more displacement and a significantly longer duration than did those 

accompanied by only two concurrent peaks (Figures 3E and 3F). Thus, concurrent crawling 

and contraction produces more effective movement by making each intercalation step both 

longer lasting and faster than crawling-only or contraction-only steps.

Concurrent crawling and contraction amplify actin assembly of both mechanisms

We next sought to understand how concurrent crawling and contraction produced more 

effective intercalation than does either mode alone. One possibility is biomechanical 

feedback of actomyosin networks. For example, previous studies in Drosophila suggest 

that tension generated by actomyosin contraction in one cell can stimulate actomyosin 
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contraction in an adherent neighboring cell (e.g., Martin et al., 2010; Fernandez-Gonzalez 

et al., 2009). To ask if a similar mechanism was at work here, we first compared contraction-

related AP actin dynamics during contraction-only steps with that of AP actin during 

concurrent steps (Figure 4A). Strikingly, both the peak intensity and the duration of AP 

actin pulses associated with concurrent steps were significantly amplified compared to 

contraction-only steps (Figures 4B and 4C).

We performed a complementary analysis of crawling-related ML actin dynamics (Figure 

4D), and we observed a similar trend; the peak intensity and duration of crawling 

protrusions were amplified in concurrent steps relative to crawling-only steps (Figures 4E 

and 4F). Thus, concurrent execution of crawling and contraction has a synergistic effect, 

enhancing actin assembly of both modes. This result suggests that the concurrent steps 

are, in fact, integrated and that mechano-reciprocity amplifies forces when crawling and 

contraction occur concurrently (schematized in Figure 4G).

A vertex model recapitulates integrated crawling- and contraction-based convergent 
extension

Theoretical modeling is a crucial tool in studies of morphogenesis, as it allows manipulation 

of attributes that may be difficult or impossible to manipulate experimentally, and several 

modeling studies have been used to explore the mechanisms of CE (e.g., Merkel and 

Manning, 2017; Alt et al., 2017; Fletcher et al., 2017). However, the vertex models 

commonly employed for such studies are limited, because (1) they generally treat two sides 

of a cell-cell interface as a single feature; (2) heterogeneity along a single cell-cell interface 

is generally ignored; and (3) they do not independently consider contributions from cell 

crawling and junction contraction (Brodland, 2006; Belmonte et al., 2016; Finegan et al., 

2019; Shindo et al., 2019).

To overcome these limitations, we re-envisioned the vertex model of CE. We represented 

each cell not as a six-vertex hexagon, but instead as a 90-vertex polygon, allowing us 

to model local events in discrete regions of individual cell-cell interfaces (Figure 5A). 

Furthermore, cell-cell interfaces in vivo are formed of two apposed cell membranes, which 

are linked by cell-cell adhesion molecules but can behave independently. We therefore 

modeled junctions between two cells as two independent entities (Figure 5B), while 

modeling cell adhesion to connect adjacent cells (Figure 5C).

Details of the model are presented in the STAR Methods, but briefly, we invoke three 

key forces: First, the pushing force for cell crawling was modeled as a defined force 

profile applied on tricellular vertices (Figure 5D, “Fcrawl”). Second, the contractile force 

from actomyosin pulses “(Mpulse”) for junction contraction was modeled with Hill’s muscle 

model (Mitrossilis et al., 2009) (Figure 5E, “Fcontract”). Finally, we modeled the force 

transmitted between neighboring cells via force-dependent cell adhesion at cell interfaces 

using a catch-slip bond model (Figure 5C, “Fadhesion”), which reflects the known role of 

cadherin adhesion in CE (Brieher and Gumbiner, 1994; Fagotto et al., 2013; Pfister et al., 

2016; Huebner et al., 2021). Without loss of generality, this model is dimensionless, but 

parameters for the key force components were estimated from experimental data, with their 

relative values in a physiologically relevant range (Table S1).
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Critically, our model successfully recapitulated many gross aspects of CE. For example, we 

first modeled cell intercalation using four-cell models (Figure 5F; Video S4). To reproduce 

actin dynamics observed in vivo (Figures 1L and 1M), medially directed crawling forces 

“(Fcrawl”) and heterogenous actomyosin pulses along the AP cell interface “(Mpulse”) were 

applied at randomized timepoints (Figures S5A and S5B). This configuration consistently 

produced complete cell intercalation (i.e., “T1 transition”), including shortening of the AP 

cell interface and formation and elongation of a new AP-directed cell-cell interface (Figure 

5F and Video S4). We also demonstrated using our model that contraction from the middle 

portion of an AP cell interface has limited effect on cell intercalation at tCRs (Figure S5D), 

consistent with in vivo data (Figure S4C).

Moreover, 27-cell clusters in which both medially and laterally directed crawling forces 

were applied to each cell at equal probability consistently recapitulated not just cell 

intercalation but also tissue-wide CE (Figure 5G and Video S5). Importantly, cells were 

able to accomplish multiple rounds of cell intercalation and interdigitated in a regular 

manner (Figure 5G). Future cell elongation in the ML axis with cell intercalation was also 

observed, similar to the reported cell shape change in vivo (Wilson et al., 1989). Thus, a 

combination of crawling and contraction in our model can recapitulate cell movements and 

tissue morphology change observed in vertebrate CE in vivo.

Modeling recapitulates biomechanical synergy of crawling/contraction integration

As a further test of our model’s validity, we asked if it could also recapitulate finer-scale 

behaviors observed in vivo. To this end, we used four-cell models to simulate shortening 

of AP interfaces. We set medially directed crawling forces and AP actomyosin pulses in 

tCRs to defined time points, so we could distinguish crawling-only or contraction-only steps 

from steps with concurrent crawling and contraction (Figure 5H). Importantly, we found that 

across a wide range of parameters for Fcrawl and Mpulse, concurrent crawling and contraction 

in the model elicited significantly greater displacement and mean intercalation velocity 

(Figures 5I, 5J, S6A, and S6B), similar to the effects observed for concurrent steps in vivo.

This finding prompted us to ask if our model also recapitulated the amplification of 

actin assembly during concurrent steps that we observed in vivo (Figure 4). We defined 

effective protrusion intensity in our model as the integral of protrusion length over time 

and used it as a proxy for protrusion dynamics (Figure S5E). We reasoned that this is a 

mechano-responsive measure for a given crawling force, reflecting the interaction between 

a protrusion and its adjacent cells by considering both protrusion extension and retraction 

(Figure S5E). We found that when crawling and contraction occurred concurrently, the 

effective protrusion intensity was significantly higher than when a crawling force was 

applied alone (Figure 5K). This effect held for a wide range of crawling forces and 

actomyosin pulses (Figures S6C and S6D). Importantly, this mechano-reciprocity was not 

explicitly designed in the model, but nonetheless recapitulated that observed in vivo (i.e., 

Figures 4D–4F).

Similarly, our model imposed actomyosin pulses (“Mpulse”) for contraction, and the 

corresponding contraction forces (“Fcontract”) can be estimated directly from the Hill’s 

muscle model (see STAR Methods; example in Figures S5B and S5C). Mechanical forces 
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are known to promote assembly of actomyosin structures, forming a feedforward loop in 

several contexts, including CE (Martin et al., 2010; Fernandez-Gonzalez et al., 2009; Uyeda 

et al., 2011; Zaidel-Bar et al., 2015; Miao and Blankenship, 2020). We therefore used the 

calculated contraction force as a proxy for actin dynamics at the AP cell cortex. Over a wide 

range of crawling forces and actomyosin pulses, we observed amplified contraction forces 

when crawling and contraction occurred concurrently (Figures 5L, S6E, and S6F). Because 

this is not an explicit feature in the model, it suggests a mechano-reciprocal integration of 

crawling and contraction similar that observed in vivo (i.e., Figures 4A–4C).

Thus, our model recapitulated not only the tissue-scale and cell-scale CE, but also the 

synergy of crawling/contraction integration for both cell intercalation and enhanced actin 

assembly. The synergistic effects observed both in vivo and in silico suggest a mechano-

reciprocity between the two distinct populations of actomyosin that drives integration of the 

crawling and contraction modes of CE.

Modeling provides insight into the role of regulated adhesion in crawling, contraction, and 
their integration

Our working model for crawling/contraction integration schematized in Figure 4G suggested 

a strong dependency on cell adhesion for effective integration. Thus, we next examined the 

effect of cell adhesion by modulating the total adhesion units available, Nadℎesion
tot , while 

maintaining a constant, moderate crawling force, Fcrawl, and constant moderate actomyosin 

pulses, Mpulse.

Interestingly, when we reduced adhesion by half, we still consistently observed complete 

cell intercalation in four-cell models (Figure 6A), though it was characterized by enlarged 

extracellular voids between cells, particularly in tricellular and quad-cellular regions, 

reflecting the effect of reduced cell adhesion (Figure 6A, insets). More strikingly, when we 

simulated CE in a 27-cell model with reduced adhesion, tissue-wide CE was substantially 

reduced, intercellular voids were enlarged, and cell packing was much less regular (Figure 

6B).

We then used the modeling approaches outlined earlier (i.e., Figure 5H) to ask how 

modulation of adhesion impacts different modes of cell intercalation. We found that higher 

adhesion strongly inhibited crawling-only intercalation while favoring contraction-only 

intercalation (Figures 6C and 6D, “Low” versus “WT”). It is also notable that these effects 

plateaued when adhesion strength increased further. Surprisingly, across a wide range of 

adhesion strength, elevated intercalation with concurrent crawling and contraction was 

maintained robustly (Figure 6E).

We next examined the impact of adhesion on integrating concurrent crawling and 

contraction. We found that effective protrusion intensity tended to decrease as adhesion 

increased (Figure 6F), a result similar to cadherin-mediated contact inhibition of locomotion 

in vivo (Becker et al., 2014). More interestingly, amplification of protrusion intensity 

during concurrent steps was only observed when adhesion was in the medium-high regimes 

Figure 6F). In low-adhesion regimes, protrusion was indeed diminished in concurrent steps 

compared with crawling-only steps (Figure 6F, “Low”), reflecting the requirement for 
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adhesion between protrusions and the cortex of another cell to interact. In contrast, there 

was a pronounced trend for the contraction force to increase with adhesion (Figure 6G), 

consistent with the thought that anchoring sites are necessary for the actomyosin to generate 

cortical tension. Interestingly, the synergistic effect on contraction force during concurrent 

steps was quite robust to changes in adhesion (Figure 6G), suggesting a differential impact 

of adhesion and the transmitted force on contraction versus crawling.

Multiple functions of the Arvcf catenin are required for normal integration of crawling and 
contraction

Finally, we considered that this quantitative understanding of the interplay of crawling 

and contraction during CE might shed light on complex experimental loss-of-function 

phenotypes. For example, the Arvcf catenin is a C-cadherin/Cdh3-interacting protein that 

is required for Xenopus CE (Fang et al., 2004; Paulson et al., 2000). In a companion paper, 

we show that loss of Arvcf decreased the tissue-level extension force by cell intercalation, 

leading to CE defect in embryos (Huebner et al., 2022). The cell biological basis of this 

phenotype is not known, so we turned to our mosaic labeling approach and our model for 

insight.

Live imaging of mosaically labeled explants revealed that Arvcf loss (see STAR Methods) 

did not affect cell shape (Figure 7A), but it did decrease overall intercalation velocity 

(Figure 7B). Interestingly, analysis of individual intercalation steps revealed that crawling-

only and contraction-only steps were not affected (Figure 7C), but in striking contrast, 

intercalation during concurrent steps was significantly reduced in the absence of Arvcf 

(Figure 7C, right). This mosaic analysis further revealed that the defect in concurrent steps 

was associated specifically with a failure to amplify crawling-associated actin dynamics 

during concurrent steps, contraction-associated actin dynamics remained significantly 

amplified (Figures S7A–S7D). This result suggested a specific role for Arvcf in the normal 

synergistic integration of crawling and contraction.

Turning to our model, we first considered that loss of Arvcf elicits a small but significant 

reduction in cortical cadherin levels, resulting in enlarged gaps between cells (Huebner et 

al., 2022). Curiously, while reducing adhesion alone in our model could elicit the formation 

of extracellular gaps (Figures 6A and 6B), it could not recapitulate the specific disruption of 

concurrent steps that we observed for Arvcf loss in vivo (Figures 6C–6E).

This result suggested that Arvcf plays a more complex role, so we performed a broader 

survey of parameter space in our model. Strikingly, only one set of parameters in the 

ranges tested here recapitulated the concurrent step-specific defect in intercalation (Figure 

7D). These parameters (−25% adhesion [“Nadℎesion
tot ”]; −23% crawling [“Fcrawl”]; +7% 

contraction [“Mpulse”]) also recapitulated the defect in amplification of crawling-associated 

protrusions during concurrent steps (Figure S7E), leaving the amplification of contraction-

associated forces unaltered (Figure S7F). Finally, these model parameters also recapitulated 

the failure of CE (Figure 7E). Thus, our model faithfully modeled in silico both fine and 

gross aspects of the Arvcf knockdown phenotype that we observed in vivo.
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DISCUSSION

Here, we have combined live imaging and modeling to explore the mechanisms by which 

two modes of cell motility–protrusive crawling and cortical contraction–collaborate to drive 

a crucial morphogenetic process in early vertebrate embryos. Our live imaging approach 

allowed us to independently identify and quantify the actin assembly associated with 

crawling or contraction (Figures 1, 2, and 3). By doing so, we show that when crawling 

and contraction occur concurrently during mesenchymal CE in Xenopus, actin assembly 

associated with both mechanisms is amplified (Figure 4). Moreover, this amplification 

of actin assembly in turn is associated with significantly improved efficacy of cell 

intercalation. Similar mechanosensitive responses of actomyosin are observed in diverse 

epithelial cells (e.g., Martin et al., 2010; Fernandez-Gonzalez et al., 2009), so our work 

here in mesenchymal cells in Xenopus suggests that the crawling- and contraction-based 

intercalation mechanisms in epithelial cells (e.g., Sun et al., 2017; Williams et al., 2014) 

may be similarly coupled.

In addition, our modeling of CE provides a substantial advance over previous models. It 

independently captures junction contraction, cell crawling, and cell-cell adhesion, while 

also treating individual cell cortices independently from one another. The model therefore 

allows detailed description of both gross tissue movement as well as the diverse underlying 

subcellular behaviors (Figures 5 and 6). This is crucial, since individual cell-cell junctions 

during Xenopus CE display very local heterogeneities in their mechanical properties 

(Huebner et al., 2021). Similar local heterogeneity has also been observed during CE 

in Drosophila epithelial cells (Vanderleest et al., 2018) and when junction shortening is 

artificially induced in cell culture (Cavanaugh et al., 2022). Despite our substantially more 

complex model, it nonetheless recapitulates both gross and fine characteristics of vertebrate 

CE observed in vivo (Figure 5). Given the model’s ability to provide insights into complex 

phenotypes observed in vivo (Figure 7), we feel this model will provide a very useful 

resource for the community.

Finally, this work also provides insights into the role of cell adhesion during CE. The little-

studied Arvcf catenin not only tunes cadherin adhesion, but it also functionally interacts 

with the small GTPases RhoA and Rac, negatively regulating RhoA function and conversely 

promoting Rac function (Fang et al., 2004). How these functional interactions relate to cell 

behaviors is not known, but our data and modeling suggest that Arvcf-mediated Rac activity 

is necessary for normal ML crawling, while Arvcf-tempering of RhoA activity is needed 

to restrain AP contraction. In light of previous data on the cell biological roles of RhoA 

and Rac during CE (Tahinci and Symes, 2003), a re-examination using mosaic labeling 

should be highly informative. Thus, our work here provides not only insights but also tools 

for a deeper understanding of Xenopus CE specifically and the mechanisms integrating 

biomechanical forces that drive animal morphogenesis generally.

Limitations of the study

Unlike more-studied epithelial cells in CE, which have a clear apicobasal polarity, these 

mesenchymal cells are spindle-shaped along the mediolateral axis. The radial shape 

symmetry allowed us to look into different cellular mechanisms and their interaction only 
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at the focal plane where cell-cell interface is vertical to focal plane and is sharp under 

the scope. However, our recent work has revealed a differential adhesion network between 

the superficial cell-extracellular matrix (ECM) interface and the deeper cell-cell interface 

(Huebner et al., 2022). Thus, the adhesion-dependent cell crawling and its integration with 

the cortical contraction may have a different pattern at the superficial cell-ECM interface. 

It is likely to skew the cell intercalation pattern shown in Figures 2F and S4C. For the pair 

comparison of our in vivo and in silico results, we also did not consider the cell behaviors at 

the cell-ECM interface.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, John B. Wallingford 

(wallingford@austin.utexas.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon request.

• All original code has been deposited at Mendeley Data and is publicly available 

as of the date of publication. DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

Xenopus laevis: Xenopus laevis adult male and female frogs were obtained from 

Nasco (LM00531MX and LM00713M) and Xenopus 1(4290 and 4270) and maintained 

according to standard procedures. All work was carried out following the University 

of Texas at Austin, Institutional Animal Care and Use Committee (IACUC) protocols 

#AUP-2018-00,225 and #AUP-2021-00,167.

METHOD DETAILS

Xenopus embryo manipulations—Ovulation was induced by injecting adult female 

Xenopus laevis with 600 units of human chorionic gonadotropin (HCG, MERCK Animal 

Health) and animals were kept at 16 dc overnight. Eggs were acquired the following day 

by squeezing the ovulating females and eggs were fertilized in vitro. Eggs were dejellied 

in 2.5% cysteine (pH 7.9) 1.5 h after fertilization and reared in 1/3× Marc’s modified 

Ringer’s (MMR) solution. For micro-injection, embryos were placed in 2% ficoll (Fisher 

Scientific) in 1/3× MMR during injection and washed in 1/3× MMR 30 min after injection. 

Embryos were injected in the dorsal blastomeres at the 4-cell stage targeting the C1 cell at 

32-cell stage and presumptive notochord. Keller explants were dissected at stage 10.25 in 

Steinberg’s solution using hair tools and cultured until stage 14 for imaging.

Weng et al. Page 11

Cell Rep. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mRNA and morpholino microinjections—Capped mRNAs were generated using the 

ThermoFisher SP6 mMessage mMachine kit (Catalog number: AM1340). mRNAs were 

injected at the following concentrations per blastomere: Mem-BFP (75 pg), Lifeact-RFP (75 

pg), and Lifeact-GFP (75 pg). Arvcf morpholino was injected at a concentration of 30 ng per 

blastomere.

Imaging Xenopus explants—Explants were submerged in Steinberg’s solutions and 

cultured on glass coverslips coated with Fibronectin (Sigma-Aldrich, F1141) at 5 μg/cm2. 

After 5-h incubation at room temperature, we started standard confocal time-lapse imaging 

using a Nikon A1R. Images of membrane-BFP, Lifeact-GFP, and Lifeact-RFP were taken at 

a focal plane 5 μm deep into the explant and at an interval of 10 s.

Cell segmentation—All image process and analysis were performed using customized 

MATLAB scripts if not mentioned otherwise. We first performed cell segmentation and 

junction detection on images of Membrane-BFP. Briefly, we used pixel classification in 

ilastik (Berg et al., 2019), a machine-learning based open-resource image analysis tool, 

to classify pixels at cell-cell interface and pixels in cytoplasm. This process converted a 

time-lapse movie of fluorescence intensity images to a time-lapse movie of probability 

images for cell-cell interface. We then extracted skeletons where the probability peaks at 

each time point for a robust detection of cell-cell interfaces and cell segmentation.

Kymograph preparation—We customized the preparation of kymograph so that it not 

only displays actin fluorescence intensity values from crawling (ML cells) or contraction 

(AP cells) signals but also displays the movement of tricellular vertices explicitly. Briefly, 

we extracted 2 μm thick bands along the AP cell interface from images of actin labeling, 

linearized the bands, calculated the normalized mean fluorescence intensity across the 

thickness, then stacked data from each time point along the time axis. For a direct display 

of tricellular vertex movement, we used in-plane displacement at each time point, defined in 

Figure S2A, as a reference to align the kymograph.

Measurement of cell intercalation—We defined cell intercalation as the displacement 

of a tricellular vertex along the direction to shorten the AP interface (Figure S2A). Each 

tricellular vertex was tracked over time on the segmented images and its displacement in 

the tangential direction of the AP interface (“in-plane”) between adjacent timepoints was 

quantified (Figure S2A). The in-plane displacement is the only component that contributes 

to cell intercalation and junction shortening. The transverse movement of a tricellular vertex 

causes junction rotation and was neglected here. To keep it simple, the in-plane displacement 

is referred to as “vertex displacement”, “intercalation displacement”, or “displacement”. We 

quantified cell intercalation at each tCR separately because their behaviors were independent 

(Figure S3A).

Measurement of actin dynamics for crawling and contraction—For the 

quantification of actin intensity associated with crawling or contraction, a 2 μm thick band 

along the AP cell interface was extracted from the fluorescent image of actin for ML 

cells or AP cells respectively (Figures S2D and S2E). For each time point, we divided 

such bands into tricellular regions (tCRs) and the middle region (Mid) for the analysis of 
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regional actin dynamics. The tCRs have a minimum length of 4 μm at any time point and 

covered the entire protrusions from the ML cells if there were any. The middle regions were 

complementary to the tCRs and had a minimum length of 2 μm (Figure S2E). The raw 

crawling and contraction signals for cell intercalation were the mean actin fluorescence 

intensity in the correspondence tCRs or the middle region as specified (Figure S2G). 

The necessity for such a regional analysis is apparent, since actin dynamics are highly 

heterogeneous long the AP interface (Figures 1L and 1M). The low correlation between the 

contraction signal in a tCR and that in the adjacent middle region also supports this regional 

analysis (Figure S3F). Since contraction from the middle region of a junction has minor 

contribution to cell intercalation (Figure S4C), this manuscript focuses on actin dynamics in 

tCRs and contraction signals refer to contraction in tCRs if not otherwise specified.

Normalization of fluorescence intensity signals—To allow for comparison of 

fluorescence intensity from different cells and from different actin biosensors, we 

normalized the fluorescence intensity of each cell with its mean cytosolic background 

intensity. Briefly, we used cell segmentation mentioned earlier to generate a cytosolic mask 

for each cell which excluded cell-cell interface and cell cortex with a 3 μm margin (Figure 

S2C). The mean fluorescence intensity within each cytosolic mask was quantified and its 

moving average over 6 min was calculated and used for normalization (Figures S2F–S2H).

Intercalation step analysis by correlating actin dynamics and cell movement
—To understand the underlying mechanisms for cell intercalation, we first performed 

cross-correlational analysis between the intercalation velocity traces and the traces of actin 

dynamics for crawling or contraction (Figures S3C–S3D). Vertex velocity traces were 

chosen rather than the vertex displacement for the dynamics of cell intercalation, because 

displacement is the integral of a velocity and trails the dynamics of the velocity (Figure 

S2B). The bulk analysis shown low cross correlation between the cell movement and actin 

dynamics (Figures S3C–S3D), suggesting a more complex mode of cell intercalation than 

crawling or contraction alone. Meanwhile, the contraction signals and crawling signals in 

tCRs were better correlated in over half of the cases (Figure S3E), suggesting an active 

integration between them.

To infer the driving force for cell intercalation at a finer temporal resolution, we took the 

advantage of the pulsatile nature of both actin dynamics and cell movement during CE. 

We first identified peaks in the intercalation velocity curves as single intercalation “steps”, 

then searched for cross-correlated peaks in the crawling and contraction signals from tCRs 

within a 40-s window preceding the velocity peak (Figure 2A; e.g. Figure S4A; threshold 

for cross-correlation: 0.5). If an intercalation step is correlated with a peak in the crawling 

or contraction signal, it is categorized as a crawling or contraction intercalation step (Figures 

2B and 2C). If an intercalation step is correlated with a pair of contraction and crawling 

peaks, it is categorized as a concurrent intercalation step (Figures 2D and 2E). Within the 

40-s window, we observed comparable number of cases when a crawling peak precedes 

a contraction peak (Figure 2D) and cases when a contraction peak precedes a crawling 

peak (Figure 2E). Besides the crawling, contraction, and concurrent intercalation steps, 

which are the major players, we also observed intercalation steps that are correlated with 
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contraction peaks from the middle region of an AP interface (Figure S4B). Compare with 

actin dynamics in tCRs, contraction in the middle region has much less contribution to cell 

intercalation (Figure S4C). See also Video S3.

Vertex model to simulate convergent extension—To study how crawling and 

contraction act in concert to drive convergent extension, we designed a cell-based CE model 

that offers a detailed description of subcellular behaviors and allows for cells taking an 

arbitrary shape under subcellular forces. The design of the model is inspired by a cell-based 

model for the gastrulation of Nematostella vectensis (Tamulonis et al., 2011). Each cell 

is initially a hexagon and is represented by a 90-vertex polygon (Figure 5A). Interfaces 

between any neighboring cells are allowed to connect via cell-cell adhesion (Figures 5B and 

5C).

The dynamics of the model is driven by simple Newtonian mechanics with the basic 

assumptions: (1) vertices are embedded in viscous medium that applies a viscous dragging 

force with the damping parameter η and (2) inertia vanishes. This leads to the governing 

equation for the evolution of the position xi of vertex i determined by

ηdxi
dt = Fi,

where Fi is the total force acting on the vertex i. Each simulation step is run by determining 

the forces acting on each vertex and solving the system of first-order differential equations 

using two-step Adam-Bashforth method with timestep Δt = 0.05 For each cell, vertices are 

reset every unit time so that each segment has relatively the same length and regions with 

high contraction do not have vertices over-crowded.

Inspired by the experimental observations, we considered three key force components in our 

model: (i) pushing force on the “leading” edge simulating lamellipodia and filopodia-like 

protrusions (“Fcrawl”, Figure 5D), (ii) contractile force on cell edges simulating contraction 

at cell cortex (“Fcontract”, Figure 5E), and (iii) adhesive force between cells simulating 

cadherin dependent cell adhesion (“Fadhesion,” Figure 5C). Secondary force components 

incorporated into our model include (iv) elastic cytosolic pressure maintaining the area of a 

cell and (v) repulsive force between cells to avoid cell collision. Without loss of generosity, 

this model is a dimensionless, but parameters for the key force components are estimated 

from experimental data, maintaining their relative values in a physiological relevant range 

(see Table S1).

(i) Pushing force for cell crawling and protrusion extension: We considered two force 

components associated with the crawling force, Fcrawl, one for lamellipodia-like pushing 

on the “leading” edge and one for filopodia-like pushing at a more focused region. The 

“leading” edge forms stochastically and polarity-dependently (i.e., randomly toward median 

or lateral for convergent extension). Small pushing forces with a cosinusoidal profile and 

the maximum magnitude of Fl are applied on vertices along the leading edge for a period 

of Tl. The cosinusoidal force profile is initially centered around the anteroposterior center 

of the cell and could be shifted toward a protrusion when one forms as described below. 
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Filopodia-like protrusions form stochastically on vertices in the tricellular regions on the 

“leading” edges. When a protrusion site is identified, a quartile-sine force pulse with the 

magnitude of Fp and the duration of Tp is applied to the vertex in the direction toward 

the interface between its two neighboring cells (Figures S5A and S5B). For the analysis of 

different intercalation types, we simulated the shortening of AP interfaces exclusively and 

set the filopodial protrusions forming at defined time points (Figure 5H), so that we can 

distinguish crawling-only intercalation events from concurrent events.

(ii) Contraction at cell cortex: Contraction at cell cortex is modeled as pieces of Hill’s 

muscle connected in series. The contractile force between two neighboring vertices equals:

Fcontract =
M • fstall • 1 + ε̇/ε̇0 , ε̇ < 0

M • fstall • 1 + 0.5 • 1 − e−ε̇/0.5 • ε̇0 , ε̇ ≥ 0
,

where M is the density of actomyosin, fstall is the stall force, ε̇ is the strain rate in each 

segment defined by adjacent vertices, and ε̇0 is the maximum contractile strain rate when 

force vanishes. To mimic actomyosin pulses long the AP interface (Figure 1M), M is 

composed of a polarity-dependent baseline of actomyosin Mbase, plus extra half-sine pulses 

Mpluse in the tricellular regions and/or the middle of the AP interface for a period of Tm 

(Figures S5A and S5B). The extra actomyosin pulses form stochastically in the 4-cell or 

27-cell models. However, for the analysis of different intercalation types, we simulated the 

shortening of AP interfaces exclusively and set the actomyosin pulses at defined time points 

in tCRs only (Figure 5H), so that we can distinguish contraction-only intercalation events 

from concurrent events.

(iii) Cell-cell adhesion and force transmission: Cell-cell adhesion is based on cadherin 

clustering via its trans- and cis-interaction, and depends on force transmission via cadherin 

clusters and cadherin-catenin complex binding to the actomyosin network (Lecuit and Yap, 

2015).We simplified cell adhesion as adhesion clusters of the size of Nadhesion binding 

cell edges of adjacent cells, while holding an adhesive force of Fadhesion (Figure 5C). The 

dynamics of adhesion clustering and the adhesion force are interdependent and we used a 

catch-bond model for the simulation (Rakshit et al., 2012; Buckley et al., 2014; Novikova 

and Storm, 2013).

Briefly, the force dependent unbinding rate for a single catch-bond can be expressed as 

ku f = k0 • exp −f /f∗ + ϕc + exp −f /f∗ + ϕs  where k0 is a reference unbinding rate and 

set to 1 s−1, f is the force on the bond, f* is a force scale used to non-dimensionalize all 

forces, and ϕc and ϕs represent zero-force unbinding rates associated with the catch and 

slip portion of the bond dynamics, respectively. Considering an adhesion cluster of the 

size Nadhesion and a tensile load Fadhesion uniformly distributed on all bonds, the temporal 

evolution of the cluster size is expressed as
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dNadℎesion
dt = γ • k0 • Nadℎesion

tot − Ndℎesion − k0 •

exp −
Fadℎesion

Nadℎesion • f∗ + ϕc + exp
Fadℎesion

Nadℎesion • f∗ − ϕs

where γ is a dimensionless rebinding rate and Nadℎesion
tot  is the polarity-dependent 

total adhesion units available in the vicinity. Under a quasistatic state, Nadhesion 

and Fadhesion can reach their maximum given by Nadℎesion_max
tot = αγ

αγ + 2Nadℎesion
tot

and Fadℎesion_max = Nadℎesion_max • ϕmax • f∗, where α = exp ϕs/2 − ϕc/2  and 

ϕmax = ϕs + ϕc /2 (see detailed deduction in Novikova and Storm, 2013).

Clustering is designed to initiate between any vertex-edge pair from two neighboring cells 

when the distance between them, d is larger than dr, a repulsion limit defined later to avoid 

cell collision, but smaller than da, the adhesion limit. The two anchoring points of the cluster 

can move as the cell deforms and can sit anywhere on cell edges.

At the end of each iteration timestep, the adhesive force applied via an adhesion cluster is 

estimated by Fadhesion_e = ka • Nadhesion • (d − dr), where ka is the spring constant for a 

bond unit. ka is estimated assuming a cluster under a slowly increasing tension reaches its 

maximum size of Nadhesion_max and maximum load of Fadhesion_max at da, and it equals ka = 

f*ϕmax/da.

(iv) Cytosolic pressure: Cytoplasm is assumed to be linearly elastic, so the difference 

between the current cell area A and the rest area Ar provides a pressure on cell boundary 

to maintain the cell size. The cytoplasm potential energy is given by Ec = 1
2kc

A − Ar
Ar

,

where kc is the cytoplasm stiffness, and the force on each vertex i can be expressed as 

Fi = ∇iEc = − kc
A − A0

A0
yi − 1 − yi + 1, xi + 1 − xi − 1 .

(v) Contact repulsion: Repulsive forces are applied to any vertex-edge pair from two 

neighboring cells if the distance between them d if less than dr or if the vertex is inside the 

neighboring cell (d < 0). The magnitude of this repulsive force is an exponential function of 

d and is given by,

Fr = Frmax − Frmax − Fr0 • exp d
dr

ln
Fmax

Fmax − Fr0
,

where Fr0 is the repulsion at d = 0, and Fmax is the maximum repulsion if the vertex is inside 

a neighboring cell.
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QUANTIFICATION AND STATISTICAL ANALYSIS

For intercalation analysis, 57 tricellular vertices from wildtype cells from at least 10 

independent experiments and 27 tricellular vertices from Arvcf KD cells from at least 

3 independent experiments are pooled. For step analysis results from four-cell models 

simulating shortening of AP interface (as in Figures 5H–5L, 6C–6G, 7D, S7E, and S7F), 

19 independent simulations were run for each set of parameters. In boxplots, each dot 

represents a datapoint from a vertex. The central line is the median, the box extends 

vertically between the 25th and 75th the percentiles, and the whiskers extend to the lower 

and upper limits that do not include the outliers. For violin plots and split violin plots, each 

dot represents an individual intercalation step/event (as in Figures 3, 5I, 5J, 6C–6E, 7C and 

7D), or an individual crawling or contraction pulse (as in Figures 4, 5K, 5L, 6F, 6G, and 

S6) identified from the data pool. Besides the included boxes, the violin plots also show the 

probability density extending from the lower limits to the upper limits that do not include the 

outliers. All p values are calculated using Wilcoxon Rank-Sum Test (A.K.A Mann Whitney 

U Test; MATLAB statistics toolbox). *p < 0.05; **p < 0.005; ***p < 0.0005; N.S., not 

significant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cell crawling and junction contraction work both independently and jointly 

for CE

• Integration of crawling and contraction produces more efficient cell 

movement in CE

• Integration is achieved via adhesion-dependent mechano-reciprocity

• A computation model recapitulates gross and fine scale features of CE, 

including integration of crawling and contraction
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Figure 1. Mosaic labeling showing dynamics of distinct actin populations for crawling and 
contraction during convergent extension
(A) Illustration of convergent extension showing tissue elongation in the AP axis by cell 

intercalation in the orthogonal direction.

(B) Sketch showing crawling mode of convergent extension in four cells with actin in ML 

protrusions in green.

(C) Sketch showing contraction mode of convergent extension in four cells with actin at AP 

interfaces in purple.

(D) Schematic illustrating mosaic labeling technique in a Xenopus embryo.

(E and F) Representative images showing uniform labeling of membrane-BFP (E) and 

mosaic labeling of different colors of an actin biosensor (Lifeact-GFP [F] and Lifeact-RFP 

[G]).

(H) Example showing actin in AP cells labeled in one color and ML cells in another. 

Asterisks mark representative tCRs for later analysis.
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(I–K) Still images from a representative time-lapse movie (Video S1, Example 1) showing 

membrane (I, blue), actin in the ML protrusions for crawling (J, green, arrowheads), or actin 

at the AP interface for contraction (K, purple). Dashed lines mark cell-cell interfaces; boxes 

mark tricellular regions (“tCR”) and the middle region (“Mid”); see text for details.

(L and M) Kymograph along the AP cell interface showing spatiotemporal dynamics of actin 

from the ML protrusions representing the “crawling” signal (L) and actin from the AP cells 

representing the “contraction” signal (M).

See also Figure S1 and Video S1.
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Figure 2. Direct quantification of crawling- and contraction-based cell intercalation during 
convergent extension
(A) Method for intercalation step analysis. Left, intercalation steps were identified as 

individual peaks on the trace of intercalation velocity. Right, each step is categorized based 

on its correlation with peaks in the crawling and/or contraction signals (green and purple, 

respectively). Gray boxes mark the 40-s time window for correlational analysis.

(B–E) Examples of crawling-only (B), contraction-only (C), and concurrent intercalation 

steps (D and E). Each shows traces of intercalation velocity and actin dynamics (left), a 

schematic (top-right), and still frames (bottom-right) from time-lapse data. Asterisks mark 

the correlated peaks of velocity, crawling, and/or contraction.
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(F) Stack plots showing in percentile the number of steps, accumulative time of each step, 

and total displacement of cell intercalation for each category as indicated. Intercalation steps 

having no correlation with crawling or tCR contraction were labeled as “Others.”

See also Figure S4 and Videos S2 and S3.
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Figure 3. Concurrent crawling and contraction improve the efficacy of cell intercalation
(A) Concurrent steps produce significantly greater intercalation than do crawling or 

contraction steps.

(B and C) Concurrent steps increase both the step duration and average intercalation 

velocity.

(D) Sketch showing multiple concurrent crawling and contraction pulses (“3 + Concur. 

peaks”).

(E and F) Multiple concurrent crawling and contraction pulses (“3 + peaks”) further improve 

the intercalation displacement and duration. p values are calculated using Wilcoxon rank 

sum test (A.K.A. Mann-Whitney U test). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not 

significant.
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Figure 4. Integration of crawling and contraction enhances actin assembly
(A) Schematic showing contraction pulses (purple) in contraction-only and concurrent steps.

(B and C) Violin plots showing increased peak actin intensity (B) and pulse duration (C) 

of contraction pulses when they occurred concurrently with crawling pulses compared with 

contraction pulses occurring alone.

(D) Schematic showing crawling protrusions (green) in crawling-only and concurrent steps.
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(E and F) Increased peak actin intensity (E) and pulse duration (F) of crawling protrusions 

when they occurred concurrently with contraction pulses compared with crawling protrusion 

occurring alone.

(G) Schematic showing amplified actin assembly in crawling protrusions and contraction 

cortex when they are integrated during concurrent steps. p values are calculated using 

Wilcoxon rank sum test (A.K.A. Mann-Whitney U test). *p < 0.05; **p < 0.005; ***p < 

0.0005; NS, not significant.

See also Figure S4.
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Figure 5. A vertex model provides insights into the biomechanics of crawling-contraction 
integration
(A) Each individual cell was modeled as a 90-vertex polygon.

(B) A four-cell model, with cell-cell interfaces modeled as independent entities.

(C–E) Schematic focused on the boxed region in (B), showing the design for subcellular 

modeling behaviors. (C) Cell-cell interfaces were connected via cell adhesion clusters of 

Nadhesion, holding adhesive forces of Fadhesion. (D) Crawling forces Fcrawl were applied to 

ML vertices around tricellular regions.
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(E) Contraction forces Fcontract were added to cell cortex, which is a function of the amount 

of actomyosin density including the pulsatile component Mpulse.

(F) Representative simulation result of a four-cell model; magnification in insets reveals 

minimal extracellular gaps between cells.

(G) Representative simulation result of a 27-cell model, showing not only cell intercalation 

but also tissue-wide convergent extension.

(H) Schematic showing timepoints for crawling forces and contraction pulses, so crawling-

only or contraction-only intercalations steps can be distinguished from concurrent steps.

(I and J) The model recapitulates enhanced intercalation displacement and higher velocity 

for concurrent steps compared with crawling or contraction alone.

(K and L) Violin plots showing synergistic effect of integration on effective protrusion 

intensity (K) and AP contraction force (L), recapitulating experimental observations (see 

Figure 4). p values are calculated using Wilcoxon rank sum test (A.K.A. Mann Whitney U 

test). *p < 0.05; **p < 0.005; ***p < 0.0005; NS, not significant.

See also Figures S5 and S6.

Weng et al. Page 30

Cell Rep. Author manuscript; available in PMC 2022 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Role of cell adhesion in crawling and contraction
(A) Representative simulation result of a four-cell model with low adhesion showing 

complete cell intercalation. Magnification in insets shows enlarged voids in multi-cellular 

regions.

(B) Simulation result of a 27-cell model with low adhesion reduced tissue-wide convergent 

extension.

(C–E) Effect of increasing adhesion on intercalation (vertex displacement) during crawling-

only, contraction-only, and concurrent steps in the model. “WT” marks the value used for 
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simulating the wild-type condition in Figure 5. “Low” marks the value used for simulating 

the low-adhesion condition in (A) and (B).

(F) Effect of increasing adhesion on the effective protrusion intensity in crawling-only and 

concurrent steps. Enhanced protrusion intensity during concurrent steps is only observed 

with medium-high adhesion.

(G) Effect of adhesion on contraction force in contraction-only and concurrent steps. 

Contraction force during concurrent steps is robustly increased in concurrent steps. p values 

are calculated using Wilcoxon rank sum test (A.K.A. Mann Whitney U test). *p < 0.05; **p 

< 0.005; ***p < 0.0005; NS, not significant.

See also Videos S4 and S5.
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Figure 7. The Arvcf catenin is specifically required for integration of crawling and contraction
(A) Still images of membrane-GFP-labeled cells showing that both wild-type and Arvcf-

depleted cells were mediolaterally elongated.

(B) Arvcf knockdown decreased average intercalation velocity.

(C) Violin plots of intercalation (vertex displacement) in crawling-only, contraction-only, 

and concurrent steps.

(D) Simulation results recapitulating the concurrent step-specific defect in intercalation. 

“KD” marks the results using a set of parameters for simulating Arvcf depletion.

(E) Representative simulation result of a 27-cell model with parameters simulating Arvcf 

depletion. Tissue-wide convergent extension is reduced. p values are calculated using 

Wilcoxon rank sum test (A.K.A. Mann Whitney U test). *p < 0.05; **p < 0.005; ***p 

< 0.0005; NS, not significant.
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See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

chorulon® Human chorionic gonadotropin MERCK Animal Health NADA NO. 140-927; 
RRID:SCR_018232

Fibronectin Sigma-Aldrich CAT# F1141

Ficoll Fisher Scientific CAT# BP525

Critical commercial assays

mMESSAGE mMACHINE™ SP6 Transcription Kit ThermoFisher CAT#AM1340

Experimental models: Organisms/strains

Wild Type Xenopus laevis Adult Frogs Nasco, Xenopus 1 RRID:XEP_Xla100

Oligonucleotides

Morpholino: MMO-Arvcf 5′-
ACACTGGCAGACCTGAGCCTATGGC-3′

Gene Tools (Fang et al., 2004) N/A

Recombinant DNA

Plasmid: Lifeact-GFP Wallingford Lab N/A

Plasmid: Lifeact-RFP Wallingford Lab N/A

Plasmid: Membrane-BFP Wallingford Lab N/A

Software and algorithms

Ilastik (Berg et al., 2019) https://www.ilastik.org/

Matlab 2020b https://matlab.mathworks.com/ N/A

CE models This paper Mendeley Data: https://doi.org/
10.17632/45vmp75htk.12
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