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Abstract: A total of 1327 platinum-quality mitochondrial DNA haplotypes from United States (U.S.)
populations were generated using a robust, semi-automated next-generation sequencing (NGS)
workflow with rigorous quality control (QC). The laboratory workflow involved long-range PCR
to minimize the co-amplification of nuclear mitochondrial DNA segments (NUMTs), PCR-free
library preparation to reduce amplification bias, and high-coverage Illumina MiSeq sequencing to
produce an average per-sample read depth of 1000 × for low-frequency (5%) variant detection. Point
heteroplasmies below 10% frequency were confirmed through replicate amplification, and length
heteroplasmy was quantitatively assessed using a custom read count analysis tool. Data analysis
involved a redundant, dual-analyst review to minimize errors in haplotype reporting with additional
QC checks performed by EMPOP. Applying these methods, eight sample sets were processed from
five U.S. metapopulations (African American, Caucasian, Hispanic, Asian American, and Native
American) corresponding to self-reported identity at the time of sample collection. Population
analyses (e.g., haplotype frequencies, random match probabilities, and genetic distance estimates)
were performed to evaluate the eight datasets, with over 95% of haplotypes unique per dataset.
The platinum-quality mitogenome haplotypes presented in this study will enable forensic statistical
calculations and thereby support the usage of mitogenome sequencing in forensic laboratories.

Keywords: mtDNA; mitogenome; next-generation sequencing; haplotype; haplogroup;
population statistics

1. Introduction

Advances in next-generation sequencing (NGS) technologies allow for efficient
whole-mitochondrial-genome (mitogenome) sequence analysis of high-quality and degraded DNA
samples [1–4]. NGS generates large amounts of data per sample and high read depth, which allows
for increased sensitivity [3,5,6]. The use of automated processing in NGS, especially for library
preparation, reduces hands-on time and thus decreases the risk of human error (e.g., contamination and
sample switches) [7]. Additionally, the automated nature of NGS data analysis minimizes bias in data
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interpretation. Homopolymer stretches can be analyzed quantitatively to determine the major molecule
within the sequence data, which is an improvement over the visual method applied to the capillary
electrophoresis data produced from Sanger sequencing [8–10]. The identification and removal of nuclear
mitochondrial DNA segments (NUMTs) is also possible in NGS analysis using bioinformatic tools to
investigate phasing of variants along parsed sequence reads and to perform multiple reference sequence
alignment [11,12]. Automatic haplogrouping of complete mitogenome sequences is an additional
quality control (QC) measure that can be used to flag unusual or phylogenetically implausible
haplotypes arising from processing errors. Hence, NGS allows for more thorough QC of mitochondrial
DNA (mtDNA) sequences than Sanger sequencing.

MtDNA data are numerous in the published literature, but sufficient quality-controlled
mitogenome data for haplotype frequency estimations are lacking. The European DNA Profiling Group
(EDNAP) mtDNA Population Database (EMPOP) is the preferred mtDNA haplotype database of
the forensic community because it uses a robust QC pipeline to minimize the inclusion of error-ridden
haplotypes [13,14]. At the time of writing, EMPOP contains only 4289 forensic-quality entire
mitogenome profiles for haplotype frequency estimation. With the support of EMPOP and the Institut
für Gerichtliche Medizin (GMI), the Armed Forces Medical Examiner System’s Armed Forces DNA
Identification Laboratory (AFMES-AFDIL) was awarded a National Institute of Justice (NIJ) grant to
augment the EMPOP database with mitogenome haplotypes from 4000 United States (U.S.) and 1000
global population samples. Many of the samples were previously sequenced in the control region (CR)
with Sanger sequencing [15–18], allowing for comparison between the NGS and Sanger CR data and
thus additional QC. In this report, the first completed datasets from the NIJ grant project are presented.
As part of this effort, mitogenomes produced by the Applied Genetics group at the National Institute
of Standards and Technology (NIST) were provided to the AFMES-AFDIL for analysis and inclusion in
this study.

Over 1300 mtDNA profiles were generated using a thoroughly tested NGS processing method
with automated data analysis and rigorous QC measures [19,20]. This method utilizes two-amplicon
long-range PCR amplification, the KAPA HyperPlus Library Preparation Kit (Roche Sequencing,
Waltham, MA, USA), and sequencing on the Illumina MiSeq (Illumina, San Diego, CA, USA).
The two-amplicon approach minimizes the potential for co-amplification of nuclear mtDNA segments
(NUMTs) that can complicate data analysis [11,21,22]. The mitigation of NUMT interference with
long-range enrichment allows for the use of a lower variant frequency threshold than short amplicon
and whole-genome sequencing methods [11,23]. The library preparation method used in this study,
KAPA HyperPlus, was shown to produce even coverage across the mitogenome to maximize sequencing
efficiency [19]. Furthermore, this library preparation method can accommodate a wide range of DNA
input and does not require library amplification. KAPA HyperPlus therefore minimizes amplicon
dilution prior to library preparation and eliminates the potential for PCR bias introduced during
the library procedure [19]. The Illumina MiSeq sequencing performed herein is advantageous due
to its higher throughput and robust performance in homopolymer regions compared to pH-based
sequencing [9,24]. Using an automated laboratory and analysis pipeline with a redundant data
review, low-frequency variant confirmation through independent replication, and external EMPOP
QC, ‘platinum-quality’ mitogenome haplotypes suitable for forensic use are provided.

2. Materials and Methods

2.1. Sample Description

Eight anonymized sample sets were utilized to generate mitogenomes of unrelated individuals
from five U.S. metapopulations: Caucasian, African American, Hispanic, Asian American, and Native
American (Table 1). Sample classification was based on self-reported metapopulation at the time of
sample collection. No attempt to modernize population naming was performed by the authors, as
it was not possible to trace samples back to the original donors in order to update the self-reported
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classification based on modern terms. However, it is acknowledged that more inclusive terminology
would be preferable (e.g., LatinX instead of Hispanic). The samples used in this study were obtained
from the following three sources: the Analytical Genetic Testing Center located in Colorado (AGTC-CO),
NIST, and the Department of Defense Serum Repository (DoDSR). For ease of naming, each sample set
was assigned a four-letter acronym; the first two letters reference the sample source (CO for AGTC-CO,
NT for NIST, and DS for DoDSR) and the last two letters reference the metapopulation (AF for African
American, CN for Caucasian, HS for Hispanic, AS for Asian American, and NA for Native American).
This study was reviewed and approved by the Institutional Review Board Office (IRBO) under the U.S.
Army Medical Research and Material Command’s Office of Research Protections (IRBO log number
M-10185); it was determined to be research not involving human subjects because the samples were
anonymous and no personally identifiable information was obtained. The NIST Research Protections
Office reviewed and approved the use of the NIST population samples for this work.

The first three sample sets (COAF, COCN, and COHS) included 354 samples from the AGTC-CO
paternity cases and were stored at the Department of Forensic Sciences at The George Washington
University (Washington, DC). A majority of these specimens were collected from individuals living in
Colorado, though some samples may have originated from individuals in other U.S. states. The next
three sample sets (NTAF, NTCN, and NTHS) included 659 samples from NIST, collected from several
blood banks within the U.S. [25]. Two additional sample sets (DSAS and DSNA), included 350 samples
from the DoDSR, and were collected from U.S. service members who self-identified as Asian American
or Native American. The geographic location associated with each DoDSR sample was the home state of
record. Of note, seven individuals in the DSAS sample set listed U.S. territories in the Pacific as the home
state of record (Guam n = 5; American Samoa n = 2). DNA was extracted from the samples using either
the QIAamp 96 DNA Blood Kit (QIAGEN, Hilden, Germany) or a salting out method [26,27]. CR data
previously generated with Sanger sequencing were available for the AGTC-CO and most of the NIST
samples (see Supplemental File 1 for CR haplotypes and Table S1 for CR EMPOP/GenBank accession
numbers) [15–18,25].
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Table 1. Sample set information for all 1363 samples.

Sample Set Source U.S. Geographic Origin Metapopulation Sample Type Count

COAF Analytical Genetic Testing Center
(Denver, CO) Colorado * African American Whole blood, buccal swabs 123

COCN Analytical Genetic Testing Center
(Denver, CO) Colorado * Caucasian Whole blood, buccal swabs 118

COHS Analytical Genetic Testing Center
(Denver, CO) Colorado * Hispanic Whole blood, buccal swabs 113

NTAF National Institute of Standards and
Technology (Gaithersburg, MD) Multiple States African American Whole blood 258

NTCN National Institute of Standards and
Technology (Gaithersburg, MD) Multiple States Caucasian Whole blood 262

NTHS National Institute of Standards and
Technology (Gaithersburg, MD) Multiple States Hispanic Whole blood 139

DSAS Department of Defense Serum
Repository (Silver Spring, CO) Multiple States/Territories Asian American Serum 175

DSNA Department of Defense Serum
Repository (Silver Spring, CO) Multiple States Native American Serum 175

COAF = Colorado African American; COCN = Colorado Caucasian; COHS = Colorado Hispanic; NTAF = National Institute of Standards and Technology (NIST) African American;
NTCN = NIST Caucasian; NTHS = NIST Hispanic; DSAS = Department of Defense Serum Repository (DoDSR) Asian American; DSNA = DoDSR Native American. * The majority of
samples were collected from individuals living in Colorado, though some samples in the Analytical Genetic Testing Center sets may have originated from other U.S. states.
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2.2. Two-Amplicon Mitogenome Enrichment, Library Preparation, and Sequencing

Mitogenome sequence data were produced from the three primary sample sources (AGTC-CO,
NIST, and DoDSR) using slightly different NGS processing techniques, as shown in Table 2.
The AGTC-CO and DoDSR samples were processed at the AFMES-AFDIL, whereas the NIST samples
were processed at NIST. The AGTC-CO and NIST samples were processed manually, and the DoDSR
samples were processed using an automated post-amplification procedure performed on a Hamilton
STARplus (Hamilton Company, Reno, NV, USA). Other slight modifications to the overall laboratory
procedure included: amplification input and purification, library input and reaction volume, and
MiSeq sequencing parameters. The mitogenome of each sample was enriched using long-range PCR
amplification of two overlapping targets of ~8.5 kb (amplicon A (2A): nucleotide positions (nps)
2499–10,837; amplicon B (2B): nps2669–10,672), following the conditions described in Peck et al [20].
Primer sequences can be found in Table S2. The resulting amplicons were quantified with either
the dsDNA 920 Reagent Kit (75 bp–15,000 bp) or the DNF-492 Large Fragment Kit (50 bp–20,000 bp)
(Agilent Technologies, Santa Clara, CA, USA) on the Fragment Analyzer System (Agilent Technologies).
Based on amplicon yield, 2A and 2B amplicons of each sample were pooled together. For the AGTC-CO
samples, 2A and 2B were combined in equal volumes (12.5 µL), with the exception of 94 samples in
which 11 µL of 2A was combined with 14 µL of 2B. This was performed to streamline processing
by combining 2A and 2B amplicons based on the average concentration for the sample plate. This
amplicon pooling method was also utilized for the samples sequenced at the NIST. For the DoDSR
samples, 2A and 2B were normalized individually by concentration. The AGTC-CO and DoDSR
samples were purified with AMPure XP (Beckman Coulter Life Sciences, Indianapolis, IN, USA)
prior to library preparation (Table 2). The amplicon pools were converted to Illumina libraries with
the KAPA HyperPlus Library Preparation Kit, using either a full-reaction method or the half-reaction
method described by Ring et al. [19]. Library amplification was not performed in order to minimize
PCR bias in the resulting sequence data [28]. The quality of the purified libraries was assessed with
the DNF-474 High-Sensitivity NGS Fragment Analysis Kit (1 bp–6000 bp) (Agilent Technologies)
on the Fragment Analyzer System. The libraries were then pooled together in equal volumes and
sequenced on MiSeq FGx Forensic Genomics Systems (Verogen, San Diego, CA, USA). Single-end
sequencing was performed for the AGTC-CO sample sets with the 150 cycle v3 MiSeq Reagent Kit
(Illumina). Paired-end data were generated for the DoDSR and NIST sample sets using the 600 cycle
v3 MiSeq Reagent Kit (Illumina).
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Table 2. Summary of laboratory processing methods for each sample source: the Analytical Genetic Testing Center in Colorado (AGTC-CO), the National Institute of
Standards and Technology (NIST), and the Department of Defense Serum Repository (DoDSR). Samples were processed either at the Armed Forces Medical Examiner
System’s Armed Forces DNA Identification Laboratory (AFMES-AFDIL) or at the Applied Genetics laboratory at NIST.

Sample
Source

Processing
Laboratory

Amplification
Input (µL)

Amplicon
Purification

Library Preparation Sequencing

Input (ng) Reaction Method Input (pM) Reagent Kit Read Type

AGTC-CO AFMES-AFDIL 3 Yes 150 Half-reaction Manual 12 150 cycle v3 Single end

NIST NIST 2 No 350 Full-reaction Manual 20 600 cycle v3 Paired end

DoDSR AFMES-AFDIL 5 Yes 50 Half-reaction Automated 12 600 cycle v3 Paired end
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2.3. Data Analysis

The CLC Genomics Workbench version 7.5.1 (QIAGEN) was used to import the demultiplexed
FASTQ files generated by the MiSeq Reporter (Illumina) and analyze each sample with workflows
customized for the HyperPlus data (Supplemental File 2). Before the reads are aligned to the revised
Cambridge Reference Sequence (rCRS) [29,30], the workflow trimmed 20 nucleotides off of the 5′ end
of each read and discarded reads less than 40 bp in length. Additionally, 20 nucleotides were trimmed
off the 3′ end of each paired read of the DoDSR and NIST data. For read alignment, a length fraction of
1.0 and a similarity fraction of 0.8 were used. The low-frequency variant detection tool was applied
for variant calling with a minimum read depth threshold of 100 × and a 5% variant frequency (VF)
threshold. A base quality filter (neighborhood radius = 5, minimum central quality = 30, and minimum
neighborhood quality = 30) and a 1% read direction (forward/reverse balance) filter were also used.
Point heteroplasmy (PHP), in which two or more bases were observed above 5% frequency at a single
nucleotide position, was indicated by using the appropriate International Union of Pure and Applied
Chemistry (IUPAC) code. The AFDIL-QIAGEN mtDNA Expert (AQME) tool [8] was used to produce
a reportable forensic mtDNA profile and predict the haplogroup based on PhyloTree build 17 [31,32].

The CLC workflow generated two variant tables for each sample, allowing for blind review by
two different analysts. Following forensic convention [14], the major (or dominant) length molecule
in the profile was represented. Therefore, the workflow included a step to filter indels in regions
that commonly exhibit length heteroplasmy (i.e., nps 303–315, 452–463, 513–524, 565–573, 956–966,
5891–5899, 8270–8289, 12,418–12,425, and 16,180–16,193). As variant calling in these regions can be
complicated by alignment, the major length molecule was further confirmed using the read count
analysis tool included in AQME [9]. In short, the read count analysis tool assessed the reads that
extended across the entirety of each length heteroplasmy region, grouping them by sequence motif.
Those sequence motifs with five or more reads were listed in the output. The motif of the sequence with
the most reads (i.e. the major length molecule) was reported. Since length heteroplasmy can confound
variant calling, special attention was paid to the sequence motifs listed in the read count analysis
output in order to determine the presence of PHP in these regions. Any necessary profile edits, such
as major length molecule adjustments described above or modifications required for adherence with
forensic nomenclature [14,33], were made manually and tracked automatically in the audit trail for each
sample [8]. The two profiles generated by the two analysts were compared by the secondary reviewer.
If there were differences in the profiles, the profile with errors was sent back to the analyst for correction
and then for re-approval by the secondary reviewer (Figure 1). Once the two analyses were concordant,
the following outputs were exported from the CLC Genomics Workbench: a sample history report; an
Excel file containing variant, coverage, mapping, and haplogroup information; and a CODIS-formatted
XML file. Analysis metrics, such as read depth, major base frequency, and forward/reverse balance,
were electronically collected and transferred to a Microsoft Access database (Microsoft Corp., Redmond,
WA, USA) for further analysis. The mitogenome haplotype and interpretation range were electronically
imported into Laboratory Information Systems Applications (LISA; Future Technologies Inc., Fairfax,
VA, USA) via the XML files exported from CLC.
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Figure 1. Summary of methods and quality control (QC) process for the generation of platinum-quality
mitochondrial genomes. AFMES-AFDIL = Armed Forces Medical Examiner System’s Armed Forces
DNA Identification Laboratory; EMPOP = The European DNA Profiling Group (EDNAP) mtDNA
Population Database.
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2.4. Sample Reprocessing

Libraries resulting in partial profiles with nucleotide positions under the 100 × read depth
threshold were re-pooled and re-sequenced at lower sample multiplexing to achieve a higher read
depth per sample. Samples with multiple PHPs and/or reduced major base frequencies were flagged as
possible mixtures. These samples were re-amplified and carried through the two-amplicon processing
method. If samples were determined to be degraded (DNA fragments < 8500 bp) based on failure of
one or both amplicons, an alternate enrichment approach was utilized with four smaller amplicons of
approximately 4300 bp each [34] (Table S2). The samples that were processed with the four-amplicon
enrichment were analyzed at a 2% VF threshold in addition to the 5% VF threshold in order to check
for NUMT interference in the data.

2.5. Quality Control

After processing and data analysis were complete, all profiles were subjected to a thorough QC
review as summarized in Figure 1. The first step was to ensure that the observed PHPs were authentic.
To accomplish this, all PHPs with a minor base frequency < 10% were confirmed through independent
amplification and downstream processing. Samples with PHPs were assessed critically to rule out
the possibility that the PHP was due to a mixture. Mixtures were defined as haplotypes with reduced
variant frequency overall and the presence of PHPs at sites of haplogroup-diagnostic variants, and they
were excluded from the final datasets. All confirmed PHPs were visualized using the circlize package
v0.4.10 in R version 4.0.2 [35,36] to show their distribution and frequency across the mitogenome.

Nuclear DNA testing with PowerPlex Fusion, PowerPlex 16, (Promega, Madison, WI, USA) or
the ForenSeq DNA Signature Prep Kit (Verogen) was performed on samples with shared mitogenome
haplotypes (excluding PHP and length heteroplasmy differences) for kinship assessment [37].
The PowerPlex 16 and PowerPlex Fusion data were analyzed using GeneMapper ID-X or previous
versions (ThermoFisher Scientific, Waltham, MA, USA) and the ForenSeq data were analyzed using
the ForenSeq Universal Analysis (UAS) Software (Verogen). Possible relatedness between samples
with shared mitogenome haplotypes was assessed using Familias 3.0 [38,39] with allele frequency data
for each respective metapopulation [40,41]. If two samples were determined to be from first-degree
relatives (i.e., parent-child or siblings), only one of the mitogenome haplotypes from the first-degree
relatives was included in the database. Additionally, if short tandem repeat (STR) testing revealed two
samples with the same STR profile, either due to sample duplication or the presence of identical twins
in the sample set, one was removed from the database. Nuclear DNA testing was also performed to
evaluate the possibility of a sample mixture when needed.

During QC, the NGS data were compared to the previously generated CR Sanger data that were
available for the AGTC-CO and most NIST samples (Supplemental File 1). This was performed for
concordance and to identify any possible errors in processing. The available CR data were also used
for PHP comparison. Only high-quality mitogenome data that passed the internal QC process were
sent to EMPOP for review and further QC using tools detailed in Zimmermann et al. [42] and Huber et
al. [43]. Finalized mitogenome haplotypes were submitted for inclusion in the EMPOP database [13]
and the previous CR data for those samples were removed. Mitogenome haplotypes will also be
submitted to GenBank [44]. The mtDNA haplogroup confirmed by EMPOP with SAM 2 [43] was used
to predict mitochondrial ancestry on a continental level (i.e. African, Asian, European, and Native
American) [45].

2.6. Population-Level Analyses

LISA was used to run pairwise comparisons of mitogenome haplotypes within each
metapopulation to determine the number of shared and unique haplotypes. These pairwise comparisons
were completed for both the CR (nps 16,024–16,569, 1–576) and the whole mitogenome (nps 1–16,569).
Pairwise comparisons were performed with and without consideration of PHPs as differences. Length
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variants were excluded when running the pairwise comparisons in accordance with current forensic
guidelines for haplotype comparison and database queries [14]. Specifically, insertions at these common
positions of length heteroplasmy were ignored: 16,193, 309, 315, 455, 463, 573, 960, 5899, 8276, and 8285.

The pairwise comparisons were used to determine the empirical random match probability (RMP)
and haplotype diversity for each sample set. Genetic distance between datasets was estimated from
haplotypic data by computing pairwise Fst values in Arlequin v3.5 [46] using a Kimura 2-parameter
model. The pairwise Fst matrix was used for a principal coordinate analysis (PCoA), performed in
GenoDive version 3.0 [47]. Results were visualized in a 3-dimensional PCoA plot using the scatterplot3d
package v0.3-14 in R version 4.0.2 [35,48].

3. Results

3.1. Sample Quality Metrics

The first-pass success rate with two-amplicon processing was >85% for all sample sets. An
alternate four-amplicon enrichment approach was used on 29 samples (10 NIST and 19 DoDSR)
in which the two-amplicon approach was unsuccessful. This approach was unsuccessful in five
(17.2%) cases. A total of 32 samples (19 AGTC-CO, 3 NIST, and 10 DoDSR) were excluded from
the finalized datasets after reprocessing attempts resulted in failed data (18) or mixed profiles (14)
(Table 3). Additionally, four sets of duplicate/related samples were identified (discussed in Section 3.3),
resulting in the exclusion of one sample in each set.

Platinum-quality mitogenome haplotypes were generated for 1327 individuals, representing eight
datasets from five U.S. metapopulations (Supplemental Files 3 and 4). EMPOP accession numbers
are provided in Table S1. All samples met or exceeded the minimum read depth threshold (100×) for
the entire mitogenome with 1802× average read depth. Additionally, these data yielded average major
base frequencies greater than 99% when heteroplasmy (both point and length variants) were excluded
(Table 4). For detailed analysis metrics, see Table S3.
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Table 3. Breakdown of sample success rate by dataset.

Dataset
Samples

Attempted
Finalized
Samples

Passing Excluded

Two Amplicon Four Amplicon Failed Mixed Duplicate Related

COAF 123 112 112 0 6 3 2 0

COCN 118 112 112 0 5 1 0 0

COHS 113 109 109 0 1 3 0 0

NTAF 258 256 251 5 1 1 0 0

NTCN 262 260 258 2 1 0 0 1

NTHS 139 138 138 0 0 0 0 1

DSAS 175 169 165 4 3 3 0 0

DSNA 175 171 158 13 1 3 0 0

Total 1363 1327 1303 24 18 14 2 2

COAF = Colorado African American; COCN = Colorado Caucasian; COHS = Colorado Hispanic; NTAF = National Institute of Standards and Technology (NIST) African American;
NTCN = NIST Caucasian; NTHS = NIST Hispanic; DSAS = Department of Defense Serum Repository (DoDSR) Asian American; DSNA = DoDSR Native American.

Table 4. Analysis metrics for each data source. The metric values from each set were averaged.

Data
Source

Total
Reads

Reads After
Trim

Reads
Mapped

Trimmed Reads
Mapped (%)

Average Read
Depth

Average Major
Base Frequency

(%)

Average Major Base
Frequency Excluding

Heteroplasmy (%)

Average Variant
Position Read Depth

AGTC-CO 352,136 313,022 293,667 94 1658.8 98.6 99.5 1499.6

NIST 383,834 272,090 256,309 95 1558.4 98.0 99.1 1466.0

DoDSR 688,530 566,775 504,600 90 2385.4 97.5 99.2 2198.7

AGTC-CO = Analytical Genetic Testing Center in Colorado; NIST = National Institute of Standards and Technology; DoDSR = Department of Defense Serum Repository.
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3.2. NUMT Interference in Four-Amplicon Data

When analyzed with a 2% VF threshold, NUMT interference was seen in the sequencing data of
three NIST samples that had been amplified with the four-amplicon approach. In all three samples,
the NUMTs were observed in the 4C amplicon (nps 6636–11,428; Table S2), which has primers
homologous with portions of chromosome 5 [34]. The NUMTs were observed at 2–3%, below the minor
variant detection threshold of 5%, and therefore did not affect the finalized data.

3.3. STR and Kinship Analyses of Samples with Shared Haplotypes

STR testing was performed on 126 samples (43 AGTC-CO, 63 NIST, and 20 DoDSR) with shared
haplotypes within each dataset. No first-degree relatives were identified. However, two sets (one
in NTCN and one in NTHS) of second- or third-degree relatives were identified (from autosomal
STR and single nucleotide polymorphism (SNP) data; Table S4). One sample from each of these two
sets of relatives was removed from the final datasets. It is noteworthy that both sets of relatives
originated from samples with sequential numbering, indicating that the samples were likely collected
consecutively. Two sets of duplicate samples, both in COAF, were identified through STR testing, and
thus one of each duplicate was removed. Altogether, the kinship testing portion of the QC process
helped to identify four samples that required exclusion from the database. These analyses did not
include samples that were excluded from these datasets based on previous testing (e.g., during CR
data generation).

3.4. CR Sanger Concordance

Excluding differences arising from low-level heteroplasmy, all mitogenome NGS data were
concordant with available CR Sanger haplotypes with the exception of three samples (Supplemental
Files 1–2). Two of these discordant samples failed to produce usable Sanger sequencing data during
initial high-throughput (automated) CR processing [15] and required manual reprocessing. The NGS
data for these two samples were reproduced from stock tubes and the mitogenome haplotypes were
shown to be consistent across processing events. Thus, the robust QC of these data identified apparent
sample switches in the CR Sanger data. The two CR haplotypes were replaced by NGS-derived
mitogenome data in EMPOP. The third sample (COAF060) was shown to be a low-level mixture of
degraded and intact DNAs; therefore, the previously generated CR haplotype could not be replicated
with the two-amplicon long-range mitogenome NGS method. Since the authentic mtDNA haplotype
is uncertain for this sample, the CR haplotype was removed from EMPOP and it was not replaced with
mitogenome data. CR Sanger data were available for seven other NGS mixed samples (six AGTC-CO
and one NIST), and review of these data showed no evidence of mixtures. Though the background
noise of Sanger sequencing may mask the low-level (<10%) mixtures identified during NGS processing,
it is likely that the contamination occurred after CR Sanger data generation was completed (more
than ten years ago) and consequently these seven CR haplotypes were maintained in EMPOP. CR
Sanger haplotypes concordant with the NGS data were replaced in EMPOP by the newly generated
mitogenome haplotypes (Table S1).

3.5. Heteroplasmy

Length heteroplasmy was observed in 1202 (90.6%) individuals (Table S5). Length heteroplasmy
was most common in the CR hypervariable (HV) I and II polycytosine stretches, observed in 263
(19.8%) and 1153 (86.9%) individuals, respectively. Additionally, length heteroplasmy in the CR HVIII
polycytosine stretch was observed in a total of 105 (7.9%) individuals with 54 (4.1%) individuals
exhibiting length heteroplasmy in the 513–524 AC repeat region. Three samples in the COHS (1)
and NTHS (2) datasets exhibited length heteroplasmy at both nps 455 and 463. A total of 97 (7.3%)
individuals exhibited other coding region/sequence (CDS) length heteroplasmy. Of note, length
heteroplasmy at np 8276 was observed in five individuals with T8277C present in every instance.
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Additionally, 59 (4.4%) individuals had occurrences of length heteroplasmy at np 12,425, none of which
resulted in an indel based on the major molecule.

There were 365 (28%) individuals with observed PHPs (Table 5). Of those, 295 individuals (80.8%)
had one PHP present and 70 (19.2%) had more than one PHP present, with 60 (16.4%) individuals
having two PHPs and ten (2.7%) individuals having three PHPs. Three PHPs was the most observed
per individual. A total of 170 PHPs with <10% minor nucleotide frequency were confirmed in at
least two separate amplification events. Of the 191 attempted PHP confirmations, 21 (11%) PHPs in
13 samples (12 DoDSR and 1 NIST) could not be confirmed and were not included in the finalized
datasets. A majority (17) of the unconfirmed PHPs, all in the DoDSR data, were observed in samples
with low amplicon yields (<4 ng/µL) in the original data. Four other PHPs could not be confirmed
despite having original amplicon yields > 4 ng/µL. In addition, the original CR Sanger data were
utilized for the confirmation of 13 PHPs. In all 13 confirmations, the PHPs were not initially called
in the original CR haplotype and the minor bases frequencies were only 7.5% on average. However,
upon more targeted review of the data, the 13 PHPs could be observed above background noise in
the Sanger sequencing data. It was noted that PHPs with a minor base frequency of at least 5.8%
could be retroactively noted in the Sanger sequencing data. In three cases, the PHPs were detected in
the NGS data but could not ultimately be observed in the Sanger sequencing data. Every PHP that was
originally noted in the Sanger sequencing data was also observed in the NGS data.

Table 5. Number of individuals with observed point heteroplasmies (PHPs) in each dataset.

Dataset Total
Individuals Total PHPs Individuals

with PHPs
Individuals
with 1 PHP

Individuals
with 2 PHPs

Individuals
with 3 PHPs

COAF 112 37 31 (28%) 26 4 1

COCN 112 41 30 (27%) 20 9 1

COHS 109 36 27 (25%) 20 5 2

NTAF 256 77 60 (23%) 43 17 0

NTCN 260 92 77 (30%) 65 10 2

NTHS 138 53 43 (31%) 34 8 1

DSAS 169 62 54 (32%) 49 2 3

DSNA 171 48 43 (25%) 38 5 0

All 1327 446 365 (28%) 295 60 10

COAF = Colorado African American; COCN = Colorado Caucasian; COHS = Colorado Hispanic; NTAF = National
Institute of Standards and Technology (NIST) African American; NTCN = NIST Caucasian; NTHS = NIST Hispanic;
DSAS = Department of Defense Serum Repository (DoDSR) Asian American; DSNA = DoDSR Native American.

A total of 446 PHP variants were observed over 373 unique positions (Supplemental File 2). Of
the 446 PHP variants, 149 (33.4%) were located in the CR with multiple occurrences at nps 146 (9), 204
(7), and 16,093 (10) (Figure 2). Only ten positions in the CDS had a PHP variant occur more than once
(nps 709, 4384, 6221, 7270, 8987, 9984, 13,477, 14,364, 15,115, 15,924), with np 15,924 having the most
at four occurrences. Of the 446 recorded PHPs, 424 (95.1%) were transitions, 228 being pyrimidine
transitions (Y) and 196 being purine transitions (R). In the CR, the majority of PHPs (62.4%) were
pyrimidine transitions. In contrast, purine and pyrimidine transitions were approximately equal in
the CDS with 149 (50.2%) R and 135 (45.4%) Y. Two CR positions had occurrences of both transversion-
and transition-type PHPs: np 16192 was observed as C16192Y and C16192S, and np 16,265 was
observed as A16265R and A16265M. Additionally, CDS np 6221 was observed as both T6221Y and
T6221R in the datasets.

PHP VF was also examined to assess whether the variant from the rCRS was the major/dominant
base (Figure 3). It was found that typically the variant from the rCRS was the minor base, with 143
(32%) of the PHPs having a VF between 5 and 10%. In fact, the percentage of PHPs with a VF below
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15% (47.5%) was approximately equal to that with a VF above 15% (52.5%). A larger proportion of
the CR PHPs (28.9%) than the CDS PHPs (18.2%) had VFs over 50%.
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3.6. Population-Level Analyses

Summary statistics were calculated for all datasets (Table 6). When PHPs were included,
the highest haplotype diversity was 1 since all haplotypes were unique in the COAF and COCN
datasets. The highest observed RMP was in the COHS dataset (1.09%) and the lowest in the NTAF
and NTCN datasets (0.41%) when PHPs were included. As expected, the RMPs were lower and
the haplotype diversity higher for all datasets when PHPs were included. The lowest haplotype
diversity was observed in the COHS dataset regardless of whether PHPs were included or excluded
from the pairwise comparisons (0.9983 and 0.9958, respectively).

Genetic distance was evaluated by computing pairwise Fst values for all eight datasets, which are
provided in Table S6. The p-values were statistically significantly different at a p < 0.05 level for all
pairwise comparisons except for those between the two Caucasian datasets (COCN and NTCN) and
the two African American datasets (COAF and NTAF). Summary statistics combining these datasets
are available in Table S7. Conversely, the two Hispanic datasets (COHS and NTHS) were found to be
statistically significantly different from each other. Although only represented by a single dataset per
metapopulation, the Native American (DSNA) and Asian American (DSAS) datasets were statistically
significantly different from all other datasets. As shown in the PCoA plot (Figure 4), approximately 85%
of the variation between datasets was represented by coordinates 1 and 2. These first two coordinates
(1 and 2) show how closely spaced the two Caucasian and two African American datasets are to each
other. The two Hispanic datasets are very close to one another when considering coordinates 1 and 3,
but coordinate 2 separates them. It is interesting to note that although coordinate 3 only explains 5.86%
of the variation, it distinguishes the NTHS from the DSAS datasets, which are similarly located when
considering only coordinates 1 and 2 (Figure S1).
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Caucasian; COHS = Colorado Hispanic; NTAF = National Institute of Standards and Technology (NIST)
African American; NTCN = NIST Caucasian; NTHS = NIST Hispanic; DSAS = Department of Defense
Serum Repository (DoDSR) Asian American; DSNA = DoDSR Native American.
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Table 6. Summary statistics. Observed and empirical random match probabilities (RMPs) and haplotype diversity were calculated for the entire mitogenome
when point heteroplasmy (PHP) were included and excluded. Length heteroplasmy nps 16,193, 309, 315, 455, 463, 573, 960, 5899, 8276, and 8285 were ignored for
these calculations.

Dataset Sample
Size

Including PHP Excluding PHP

Total
Haplotypes

Unique
Haplotypes

Observed
RMP (%)

Empirical
RMP (%)

Haplotype
Diversity

Total
Haplotypes

Unique
Haplotypes

Observed
RMP (%)

Empirical
RMP (%)

Haplotype
Diversity

COAF 112 112 112 0.89 0.00 1 110 108 0.92 0.03 0.9997

COCN 112 112 112 0.89 0.00 1 112 112 0.89 0.00 1

COHS 109 102 97 1.09 0.17 0.9983 94 83 1.34 0.42 0.9958

NTAF 256 251 247 0.41 0.02 0.9998 246 237 0.42 0.03 0.9997

NTCN 260 254 250 0.41 0.02 0.9998 250 244 0.43 0.05 0.9995

NTHS 138 131 127 0.86 0.14 0.9986 125 116 0.97 0.24 0.9976

DSAS 169 167 165 0.61 0.01 0.9999 165 161 0.62 0.03 0.9997

DSNA 171 167 163 0.61 0.03 0.9997 164 159 0.65 0.07 0.9993

COAF = Colorado African American; COCN = Colorado Caucasian; COHS = Colorado Hispanic; NTAF = National Institute of Standards and Technology (NIST) African American;
NTCN = NIST Caucasian; NTHS = NIST Hispanic; DSAS = Department of Defense Serum Repository (DoDSR) Asian American; DSNA = DoDSR Native American.
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3.7. Haplogroup Distribution

Haplogroups were assigned to all samples, and haplogroup frequencies were calculated for all
datasets (Table S8). African L haplogroups had the highest frequencies in both of the African American
datasets, making up 86.6% of the COAF dataset and 93.3% of the NTAF dataset (Figure 5). The Caucasian
datasets were comprised mostly of European (H, HV, I, J, K, T, U, V, W, X) haplogroups (97.3% in
COCN and 96.2% in NTCN). There was a notable difference between the haplogroup distributions
in the two Hispanic datasets (Figure 6a,b). In the NTHS dataset, 18.1% of haplotypes belonged
to African haplogroups, whereas only 2.8% of haplotypes in the COHS had African mitochondrial
lineages. Furthermore, NTHS had approximately 50% more European haplogroups than COHS. Within
the Native American haplogroups that comprised the highest proportion in both NTHS and COHS,
the frequency of Native American haplogroup B2 differed between the datasets. The NTHS had 8.0%
B2, yet more than one-quarter (28.4%) of the COHS haplotypes belonged to B2. In the DSAS dataset,
Asian haplogroups B and M had the highest frequencies at 23.7% and 21.3%, respectively. In the DSNA
dataset, European haplogroup H was most frequent at 36.3% (Figure 6c). In fact, 67.8% of haplotypes in
the DSNA dataset were assigned to haplogroups of European ancestry, with only 26.3% of haplotypes
associated with Native American haplogroups (A2 12.3%, B2 6.4%, C1 3.5%, and C4c 1.2%). Sunburst
plots for each dataset are given in Figure S2.
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Figure 5. Proportions of haplogroups observed within each dataset. African haplogroups are green,
European haplogroups are blue, Native American haplogroups are purple, and Asian haplogroups are
orange. Haplogroups representing less than 5% of haplotypes within each dataset have been grouped
together and are shaded in grey. For complete haplogroup distribution and frequencies, see Table
S8. COAF = Colorado African American; NTAF = National Institute of Standards and Technology
(NIST) African American; COCN = Colorado Caucasian; NTCN = NIST Caucasian; COHS = Colorado
Hispanic; NTHS = NIST Hispanic; DSNA = Department of Defense Serum Repository (DoDSR) Native
American; DSAS = DoDSR Asian American.
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(DSNA) datasets. Ancestry was classified on a continental level based on the assigned mitochondrial
DNA haplogroup.

4. Discussion

Forensic-quality mitogenomes were generated for 97% (1327/1365) of the samples attempted in this
study. Despite slight differences in NGS processing (Table 2), no loss of quality was observed in the data
from any one method. Though the read count and read depth metrics differ between each data source,
these metrics can be affected by a variety of factors such as the number of samples included in the MiSeq
run, the read type (paired end v. single end), and the cluster density of the run. The major base frequency
metrics, which are more indicative of sample data quality, were comparable between all three data
sources, averaging > 99% when heteroplasmy was excluded. This indicates that minimal background
noise (<1%) was observed in all datasets regardless of variations in sample type and processing. Thus,
the two-amplicon long-range approach (supplemented with four-amplicon enrichment for lower
quality samples), HyperPlus library preparation, and MiSeq sequencing, combined with the robust
analysis pipeline, produced more than 1300 platinum-quality mitogenomes.

The four-amplicon enrichment approach was useful for processing samples that previously failed
with the two-amplicon approach. However, NUMT interference was observed at 2–3% minor base
frequency in the 4C amplicon of three samples. These NUMTs were below the 5% minor variant detection
but emphasized the importance of data QC when analyzing at lower variant detection thresholds
(<5%). It is also noteworthy that all three NUMTs were observed in the NIST samples extracted from
whole blood, which has a higher likelihood for co-enrichment of NUMTs [49]. However, no NUMTs
were observed in data generated with the two-amplicon method, demonstrating the advantage of
using the two-amplicon enrichment approach to generate reliable mitogenome data. The application
of two-amplicon long-range enrichment allows primers to be specific for the mitogenome, opposed to
small-amplicon approaches that may be homologous to regions of the nuclear genome due to primer
design restrictions and mtDNA variation [5,11,22,50].

STR testing on samples with shared haplotypes was an important aspect of QC in this study,
helping to identify duplicate or related samples for removal from the database. The inclusion of
maternally related individuals in mtDNA databases can result in inaccurate estimation of haplotype
frequencies [37]. The use of both STR and SNP data allowed for the identification of two sets of more
distant (second- and third-degree) relatives compared to traditional STR testing, which is typically only
suitable for kinship analysis of first-degree relatives [51,52]. Since these more distant relatives were
numbered sequentially in each case, it was presumed that the relatives were sampled simultaneously
and that a genetic relationship was recognized between them. Other cases in which genetic relatives,
recognized or not, were randomly sampled on separate occasions, would be better representative of
the general population and might not be excluded from a mitogenome database. As new STR and
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SNP assays allow for more distant kinship testing [53], it will be important to develop guidelines for
the appropriate threshold for inclusion of relatives in population databases of lineage markers.

The automated nature of NGS data analysis combined with read count confirmation ensured that
the major molecule was accurately assigned in homopolymer regions for all samples, in accordance
with ISFG guidelines for population data [14]. The robust analysis workflow used in this study
identified haplotypes with indels in common length heteroplasmy regions, which are recognized in
EMPOP and can be disregarded in EMPOP haplotype queries. Indels were furthermore observed at
eight additional CR and CDS sites that are not currently possible to ignore in EMPOP queries. However,
these eight additional indels were observed at low frequency (<0.1% of haplotypes) with only one (nps
1878, 2141, 2417, 8289, 14,529, 15,545, 16,166, 16,296) or two (np 71) samples each. Because of their
rarity, indels in these eight regions may not require special handling in database queries.

The authenticity of low-frequency PHPs presented in this study is ensured by the fact that every
PHP with a minor base frequency < 10%, down to the minimum detection threshold of 5%, was
confirmed in at least two separate amplification events. The importance of PHP confirmation for QC
was emphasized by the fact that 22 PHPs could not be reproduced in the second amplification. Often
in these cases, re-amplification would result in higher amplicon yields, but the PHP was not observed,
indicating that the original observation was due to stochastic error. Inclusion of these spurious PHPs
in the final datasets would over-represent mtDNA heteroplasmy rates and thus inflate haplotype
diversity estimations [54–56]. Of the reported PHPs, the majority (66.6%) were located in the CDS,
consistent with the findings of [57] in which 61.4% of observed PHPs were located in the CDS. In this
study, PHPs were most frequently observed at CR positions 146, 152, 204, and 16,093, all of which are
known PHP hotspots [57–60]. Unlike the findings in [57,58], not all CDS PHPs observed in this study
were unique, with ten positions having more than one PHP occurrence. However, this difference is
likely due to the larger sample size of the present study, which is one of the largest forensic mitogenome
datasets published to date. Additionally, these previous studies utilized Sanger sequencing and thus
were limited to a 10–20% threshold, the point at which when minor base signal could be confidently
discerned from CE background noise. This is in contrast to the 5% heteroplasmy detection threshold
used in this study, which can reveal lower-level variants than Sanger sequencing. Finally, the majority
(95.1%) of the reported PHPs were transition-type, consistent with findings in [57], in which 96% of
PHPs were transitions.

When pairwise Fst values were used to estimate genetic distance between the eight datasets, it
was found that all comparisons except for those between the two African American (COAF and NTAF)
and two Caucasian (COCN and NTCN) datasets were statistically significantly different from one
another. Based on these findings, it would be reasonable for a laboratory to combine the African
American and Caucasian datasets to increase sample size when conducting haplotype match statistics.
Conversely, the difference between the two Hispanic (COHS and NTHS) datasets was noteworthy.
Though the largest proportions of haplogroups for both the COHS and NTHS Hispanic datasets were of
Native American ancestry (80.7% and 56.5%, respectively), the NTHS had a much larger proportion of
European and African lineages (42% total) compared to the COHS dataset (18.3% total). The difference
in haplogroup distribution between these two Hispanic datasets is likely due to the differing geographic
origin of each sample set, as the NTHS samples were collected in the northeast and southern United
States whereas the COHS samples were mostly from Colorado. Based on the 2010 U.S. Census,
Hispanics from the western United States (including Colorado) are predominantly from Mexico and
Central America, whereas a large proportion of Hispanics in the northeast and Florida originate from
the Caribbean [61]. As a result, the differing population structure of the Central American and Caribbean
parental populations likely contributed to the observed differences between the two Hispanic datasets.
In particular, the greater proportion of African ancestry in Caribbean populations [62] may explain
the prevalence of African lineages in the NTHS dataset [25]. The geographic sampling differences
between the Hispanic datasets is furthermore evident in their haplogroup B2 proportions. Haplogroup
B2 is a Native American lineage found in relatively high frequencies in the southwestern U.S. [63–65].
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Therefore, the proportion of B2 haplotypes in the COHS dataset, which includes individuals primarily
from Colorado (a southwestern state), was greater than that of the NTHS dataset originating from
eastern and southern states. These analyses highlight the distinctiveness of the two geographically
disparate Hispanic mitogenome datasets included in this study.

It was not unexpected that the Asian (DSAS) and Native American (DSNA) datasets were different
from the other datasets (and each other), given that there was only one dataset per metapopulation.
The mtDNA haplogroup distribution observed in the Native American (DSNA) dataset was interesting,
with 67% of haplotypes belonging to European haplogroups. This finding explains why the Native
American dataset plotted between the Caucasian and Hispanic datasets, considering the high proportion
of Native American haplotypes in the Hispanic datasets. The finding that the Native American
dataset contained a lower proportion of Native American haplotypes than the Hispanic datasets
underscores the complexity behind self-identification as it relates to DNA and genetic ancestry.
This demonstrates that mitochondrial ancestry may be inconsistent with expectations based on
the self-reported metapopulation, especially for admixed and indigenous groups.

5. Conclusions

In this study, platinum-quality mitogenome reference data were reported for 1327 individuals
representing five U.S. metapopulations: African American, Caucasian, Hispanic, Asian American, and
Native American. These haplotypes were generated using robust processing and analysis methods
with a rigorous QC procedure. The use of two-amplicon long-range enrichment minimized NUMT
co-amplification and allowed for the detection of low-level variants down to 5% minor base frequency.
An automated data analysis method combined with a dual-analyst review minimized the bias from data
interpretation and assisted with the detection of errors. Furthermore, a rigorous QC procedure ensured
the authenticity of reported heteroplasmy, demonstrated concordance with previous CR Sanger data,
and supported the removal of duplicate or related samples from the database. These platinum-quality
haplotypes will augment the forensic-quality EMPOP database, allowing for more accurate estimations
of mitogenome haplotype frequencies. These data will also be useful for downstream analyses of
mtDNA substitution rates and heteroplasmy trends.
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