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Abstract

Unraveling the mechanisms of hematopoiesis regulated by multiple cytokines remains a challenge in hematology. IL-3 is an
allergic cytokine with the multilineage potential, while CSF-1 is produced in the steady state with restricted lineage
coverage. Here, we uncovered an instructive role of CSF-1 in IL-3-mediated hematopoiesis. CSF-1 significantly promoted IL-
3-driven CD11c+ cell expansion and dampened basophil and mast cell generation from C57BL/6 bone marrow. Further
studies indicated that the CSF-1/CSF-1R axis contributed significantly to IL-3-induced CD11c+ cell generation through
enhancing c-Fos-associated monopoiesis. CD11c+ cells induced by IL-3 or IL-3/CSF-1 were competent in cellular maturation
and endocytosis. Both IL-3 and IL-3/CSF-1 cells lacked classical dendritic cell appearance and resembled macrophages in
morphology. Both populations produced a high level of IL-10, in addition to IL-1, IL-6 and TNFa, in response to LPS, and
were relatively poor T cell stimulators. Collectively, these findings reveal a role for CSF-1 in mediating the IL-3 hematopoietic
pathway through monopoiesis, which regulates expansion of CD11c+ macrophages.
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Introduction

Interleukin-3 (IL-3) is a hematopoietic cytokine that is secreted

by activated T and mast cells (MCs) [1,2,3]. It is produced during

allergic inflammations or in response to parasitic infections, and

has been considered a Th2 response promoter [3,4]. IL-3 is

necessary for optimal immunity against helminthes, reflecting its

role in enhancing generation of systemic basophils and tissue MCs

[5]. The hallmark of IL-3 is its capacity to stimulate proliferation

of pluripotent hematopoietic stem cells and progenitor cells,

particularly those of the myeloid lineage, at various developmental

stages [6,7]. As such, IL-3 has been recognized as a multi-potential

colony-stimulating factor (multi-CSF) [7,8]. IL-3 stimulates ex vivo

generation of MCs, macrophages, basophils and CD11c+ cells in

mouse bone marrow (BM) [9,10]. The hematopoietic effect of IL-3

has been shown to be strain-specific [11]. In contrast to IL-3, CSF-

1 or macrophage colony-stimulating factor (M-CSF) is produced in

the steady state, with a much more restricted hematopoietic

coverage, primarily regulating development of the monocyte

lineage [12,13,14], and has been reported to have a role in

developing dendritic cells (DCs) [15].

The capacity of IL-3 to promote multilineage development has

been examined in conjunction with several cytokines. For instance,

IL-3, IL-6 and stem cell factor mediate generation of granulocytes

and monocytes, and this combination has been used to study

myeloid lineage commitment of C57BL/6 mice [16,17]. Together

with TNFa, IL-3 is a potent cytokine in generation of Langerhans

cells from human cord blood CD34+ hematopoetic progenitor

cells (HPCs) [18]. In humans, IFNc cooperates with IL-3 to

enhance expansion of HPCs [19], while IFNb and IL-3 induce

monocyte differentiation into DCs, which potently stimulate

helper T cells [20]. IL-4 and IL-3 initiate human monocyte

differentiation into Th2-polarizing DCs [21]. While IL-3 and

CSF-1 were known to act synergistically in induction of BM

colonies and CSF-1R+ hematopoietic cells [22,23], their hemato-

poietic relationship has not been fully characterized. With

advanced knowledge in leukocyte biology and cellular/molecular

techniques, we revisited earlier studies on IL-3 hematopoiesis and

its lineage relationship with CSF-1 and addressed issues pertinent

to a) phenotypic identifications of leukocyte populations induced

by IL-3 with and without CSF-1 in BM ex vivo, b) the effect of CSF-

1 in IL-3 multilineage hematopoiesis and associated molecular

pathways and c) clarification of macrophage or DC induction as

previously reported and their immunological functions. We

identified an instructive role of CSF-1 in IL-3-mediated hemato-

poiesis and demonstrated that the combination of the two

cytokines stimulated expansion of CD11c+ macrophages that

produced IL-10 with a minimal T cell stimulation capacity.

Materials and Methods

Animals
C57BL/6 and Balb/c mice (aged 6–10 wk) used throughout this

study were purchased from the Animal Resources Centre

(Canning Vale, Western Australia). These mice, together with

Csf1r-EGFP (MacGreen) [24] derived from the University of

Queensland, were maintained in the animal facilities of Griffith

University (Gold Coast, Australia). All experimental procedures
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were conducted following the animal ethics guideline of Griffith

University Animal Ethics Committee (GLY/06/12/AEC).

Bone marrow culture
BM cells from murine femurs and tibias were collected and

treated with red blood cell lysis buffer (BD Biosciences, Franklin

Lakes, NJ) for 5 min. Cells were washed and cultured with

complete RPMI 1640 media at 56105 cells/ml in 24-well plates.

Recombinant mouse IL-3 (eBioscience, San Diego, CA), GM-CSF

and CSF-1 (eBioscience) were used at 10 ng/ml. At days 3, 6 and

9, one half of the culture media was aspirated and slowly

replenished with media containing 20 ng/ml cytokines, without

disturbing cells as described [25]. In some experiments, cells were

co-incubated with 5 mg/ml CSF-1R blocking antibody anti-

CD115 (AFS98) (eBioscience) [26] or isotype control antibody

(Rat IgG2a k) (eBioscience).

Cell phenotype and morphology
Cells (26105) were pelleted and treated with Fc Block (2.4G2,

BD Biosciences). They were then labeled with fluorescent

antibodies including FITC-anti-CD11b (M1/70, BD), APC-

eflour780-anti-CD11c, APC-anti-FceRI (MAR-1, eBiosceince)

and Percp-anti-c-kit (2B8, Biolegend). The cell/antibody mix

was incubated at 4uC for 30 min. Cells were washed for flow

cytometry analysis (CyAn ADP, Beckman Coulter). To examine

cell morphology, cells were imaged by the 40X lens in bright field

in a 24-well plate, using the ECLIPSE TS100 microscope (Nikon,

Tokyo, Japan).

Purification of CD11c+ and T cells
CD11c+ and T cells were purified by magnetic cell sorting. To

purify CD11c+ cells, BM culture cells were incubated with anti-

CD11c (N418) MAC beads (10 ml/107 cells) (Miltenyi Biotec,

Auburn, CA) in the presence of 2% FCS and 2 mM EDTA in PBS

at 4uC for 15 min. Cells were positively selected with the MAC LS

column and the magnetic separator (Miltenyi Biotech). CD11c+

cell purity was at least 93%. T cells were isolated from spleen.

Briefly, splenocytes were incubated with a cocktail of biotin-

conjugated antibodies and anti-biotin microbeads (Miltenyi

Biotech) to label non-T cells. Cells were negatively selected with

the LS column as described. T cell purity was .90%.

Cytokine production
CD11c+ cells (106/ml) were seeded in triplicates in the 24-well

plates and stimulated by LPS (1 mg/ml) for 24 h. Supernatants

were collected for cytokine detection by ELISA. TNFa, INFc, IL-

1b and IL-6 were detected using BD Biosciences kits, while IL-10,

R&D Systems kits. Briefly, antibody-coated microtiter plates

(Sarstedt, Nümbrecht, Germany) were washed with 0.05% tween

in PBS, and samples were added after blocking with FCS for 2 h.

Plates were washed and biotin coated detection antibody added for

2 h. Streptavidin-horseradish-peroxidase and the substrate (R&D)

were added and the colorimetric reaction was stopped by 2N

H2SO4. The optical density of each well was determined at

450 nm by Wallac Vitor3 1420 Multi-label Counter (PerkinElmer,

Waltham, MA).

CD11c+ cell maturation and antigen uptake
Cells were stimulated with LPS (1 mg/ml) derived from

Escherichia coli (0111:B4; Sigma-Aldrich, St. Louis, MO) at 37uC
for 24 h. Cells (56105) were collected, washed and incubated with

Fc Block at 4uC for 5 min. They were labeled with APC-

conjugated anti-CD40 (HM40-3, eBioscience), FITC-anti-CD80

(16-10.A1, eBioscience), PE-Cy7-anti-CD86 (GL1, BD), APC-

MHC-class I (H2Kb) (AF6-88.5.5.3, eBioscience) and PE-Cy7-

MHC class II (IA, IE) (M5/114.15.2, Biolegend, San Diego, CA),

together with APC-anti-eFlour780-anti-CD11c (N418, eBioscience)

or PE-anti-CD11c (HL3, BD) at 4uC for 30 min. In flow cytometry,

live CD11c+ PI-negative cells were gated to evaluate maturation. To

evaluate antigen uptake, cells were incubated with 10 mg/ml FITC-

dextran (Sigma Aldrich) at 4uC or 37uC for 15 min. Cells were then

labeled with APC-eFlour780-anti-CD11c. The capacity of CD11c+

cells in dextran uptake was evaluated.

Transcriptional analysis of hematopoiesis
BM cell culture was harvested at day 3 and lineage-depleted.

Briefly, cells were pelleted and incubated with biotin-lineage

antibody cocktail (10 ml/107 cells) (Miltenyi Biotec), followed by

anti-biotin MicroBeads (Miltenyi Biotec). Cells were negatively

selected using LS column as described. Lineage-negative cells were

collected and preserved in TRIzol (Invitrogen, Victoria, Australia)

at -80uC. Total RNA was isolated. RNA (1 mg) was reverse

transcribed using random primers (Promega, Madison, WI) and

M-MLV Reverse Transcriptase (Promega). cDNA (50 ng) was

used as a template for SYBR Green real-time PCR (Roche, NSW,

Australia) on a CFX96 Touch System (Biorad, Hercules, CA)

using a standard three-step melt program (95uC for 15 s, 55uC for

30 s and 72uC for 30 s). Primers were designed for the

quantification of C/EBPA (F 5 CGG TGC GCA AGA GCC

GAG AT; R 5 CCC GCA GCG TGT CCA GTT CA) and c-fos (F

5 ACT AGA GAC GGA CAG ATC TG; R 5 ATA ACG GGA

ACG CAG CAG TA). Data were normalized to the housekeeping

gene HPRT1 (QuantiTec, Qiagen, Victoria, Australia) and

presented as the relative level of expression.

Mixed lymphocyte reaction
Purified C57BL/6 CD11c+ cells (2–86103) derived from IL-3,

IL-3/CSF-1 and GM-CSF culture were co-cultured in triplicates

with purified 26104 Balb/c T cells, which had been labeled with

5 mM CFSE, in a 96-well round bottom plate. At day 3, cells were

collected and T cell proliferation was evaluated by CFSE

fluorescence in flow cytometry. The percentages of cells prolifer-

ated were determined by gating on CD3+ cell populations with

descended FITC fluorescence.

Statistical analysis
All data are shown as the mean 6 SEM, where statistical

analysis is required. Significance between experimental groups was

determined by the p value (,0.05), using student t test or one-way

ANOVA.

Results and Discussion

CSF-1 modulates the IL-3 multilineage hematopoiesis in
BM

We have examined the effect of IL-3 on cell generation kinetics

of BM ex vivo. IL-3 primarily induced three cell populations,

CD11b+CD11c+ cells, FceRI+c-kit– basophils and FceRI+c-kit+

MCs (Fig. 1). The rapid increase in numbers of CD11c+ cells was

followed by moderate expansion of basophils, whereas the

development of MCs occurred later (Fig. 1). This sequential

induction of three distinct IL-3 regulated populations may be

linked to their specific roles at various stages of the allergic

immune response. While CSF-1 alone had a minimal effect on DC

generation, the addition of CSF-1 into IL-3 treated cultures

significantly increased both the percentage and absolute number

of CD11c+ cells, with the percentage peaking at day 12 and
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Figure 1. CSF-1 reinstructs IL-3-mediated hematopoiesis. BM cells were cultured with IL-3, CSF-1 or IL-3/CSF-1 in triplicates in the 24-well
plate. At days 3, 6, 9 and 12, cells in each well were collected and counted, labeled with specified antibodies and analyzed by flow cytometry. The
percentage and number of live CD11b+CD11c+ cells (A, B) and FceRI+c-kit– basophils and FceRI+c-kit+ MCs (C, D) were determined as the mean 6 SEM.
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absolute number at day 9 (Fig. 1A and 1B). CSF-1/IL-3 induced

more than a two-fold increase of the CD11c+ cell yield, compared

with IL-3 treatment alone (Fig. 1A and 1B). In contrast to CD11c+

cells, IL-3-induced generation of basophils and MCs, both in

percentages and numbers, was depressed by the addition of CSF-1

(Fig. 1C and 1D). Both IL-3 and IL-3/CSF-1 had a comparable

potent effect in inducing overall cell expansion (Fig. S1). There was

no effect of CSF-1 on expansion of CD11c+ cells with GM-CSF

Cellular compositions of IL-3 and IL-3/CSF-1 cultures at day 12 were compared in the pi chart. B, basophils; M, mast cells; O, other cells (E). Data shown
are representative of four separate experiments. *p,0.05 (IL-3 vs. IL-3/CSF-1), One-way ANOVA Bonferroni test for (B) and unpaired student’s t test for
(D).
doi:10.1371/journal.pone.0095208.g001

Figure 2. The CSF-1/CSF-1R axis contributes to IL-3-mediated CD11c+ cell expansion. (A) BM cells were cultured with IL-3 or IL-3/CSF-1, in
the presence of the anti-CSF-1R (AFS98) or isotype control antibody in triplicates in the 24 well plate. At day 6, cells were labeled for flow cytometry
analysis. The percentages and numbers of live CD11b+CD11c+ DCs derived from different conditions were compared. (B) BM cells from C57BL/6 or
MacGreen (MG) were isolated and incubated with media, IL-3 or IL-3/CSF-1 in triplicates in the 24 well plate. At 24 h, cells were collected and analyzed
for EGFP expression. (C) BM cells were cultured with IL-3 or GM-CSF in triplicates for 3 days. Supernatants were collected to determine CSF-1. (D) BM
cells were cultured with IL-3 or IL-3/CSF-1 in triplicates. At day 3, cells were collected and lineage-depleted. Total RNA was extracted and relative
expressions of c-Fos and C/EBPa transcripts were determined by real time PCR. Data shown are representative of three separate experiments.
*p,0.05, One-way ANOVA Bonferroni test for (B) and student’s t test, unpaired for (A) and (D).
doi:10.1371/journal.pone.0095208.g002
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Figure 3. Functional comparison between IL-3 and IL-3/CSF-1 DCs. BM cells were cultured with IL-3 or IL-3/CSF-1. At day 6, CD11c+ cell
functions were examined. (A) Isolated CD11c+ cells were stimulated with LPS for 24 h. The maturation state was evaluated using fluorochrome-
conjugated antibodies targeting CD40, CD80, CD86, MHC-class I and II. The shaded area represents cells treated with the isotype antibody. The green
and red areas represent cells with and without LPS stimulation, respectively. The numbers in colors denote respective MFI. (B) Cells were treated with
1 mg/ml FITC-dextran at 4uC for 30 min or 37uC for 15 min. The binding and uptake of dextran were determined by FITC fluorescence in flow
cytometry. The shaded area represents cells only, whereas the light and bright blue areas represent cells incubated with FITC-dextran at 4uC and
37uC, respectively. The numbers in colors denote respective MFI. (C) The morphology of IL-3 and IL-3/CSF-1-induced CD11c+ cell culture was
examined under the microscope. (D) Purified IL-3 or IL-3/CSF-1 DCs (26105/200 ml) were stimulated with LPS (1 mg/ml) in a 96-well plate. At 24 h,
supernatants were collected and cytokine levels were determined by ELISA. (E) C57BL/6 CD11c+ cells derived from IL-3, IL-3/CSF-1 and GM-CSF BM
culture were co-incubated with Balb/c CFSE-labeled T cells in specified (CD11c+/T cell) ratios in triplicates in the 96 well plate. Proliferation of T cells
was determined and compared, based on the gate of the CD3+ cell population with descended CFSE fluorescence. Data shown are representative of
at least three separate experiments. *p,0.05 (student’s t test, unpaired).
doi:10.1371/journal.pone.0095208.g003
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(Fig. S2A), a potent cytokine that is associated with the generation

of inflammatory DCs [27], even though CSF-1 was able to enhance

generation of total cells in cultures containing this cytokine (Fig. S2B).

CSF-1/CSF-1R interactions contribute to IL-3-induced
CD11c+ cell generation by enhancing monopoiesis

We further investigated the mechanism by which CSF-1

modulates the IL-3-mediated hematopoietic pathway. CD11c+

cell generation mediated by IL-3 was significantly inhibited when

CSF-1R was blocked with AFS98 (Fig. 2A). In contrast, the AFS98

antibody had no effect on the generation of CD11c+ cells induced

by GM-CSF (Fig S3). In a positive control, AFS98 blocked the

action of CSF-1, resulting in a similar level of CD11c+ cell

generation to that seen in the AFS98 treated IL-3 culture (Fig. 2A).

The dependence of IL-3 on CSF-1R in inducing CD11c+

generation was further validated by two findings. First, expression

of the CSF-1R reporter c-fms/EGFP in MacGreen BM cells was

rapidly induced by IL-3 with or without CSF-1 (Fig. 2B). Second,

albeit at a low level, CSF-1 was produced and remained at a

constant level at the early stage of IL-3 culture (Fig. 2C), while IL-

34, another cytokine known to signal through CSF-1R, was not

detected (data not shown). We next examined how CSF-1

transcriptionally regulates IL-3 induction of CD11c+ cells.

Monopoiesis and granulopoiesis have been linked to transcrip-

tional factors c-Fos and C/EBPa, respectively [16,17,28]. Indeed,

in early lineage-depleted progenitor cells, CSF-1 significantly

enhanced expression of transcriptional factor c-Fos, whereas it

reduced expression of C/EBPa (Fig. 2D) [16]. IL-3 stimulates

JAK/STAT, which activates and upregulates c-Fos and cell

proliferation [29]. CSF-1 preferentially activates ERK and induces

expression of c-Fos that enhances monopoiesis [17,28]. Thus,

CSF-1 skews IL-3-mediated hematopoiesis towards monopoiesis

through reinforcing c-Fos, promoting differentiation of the

CD11c+ monocytic pool [16,17].

Phenotypic and functional comparison between IL-3 and
IL-3/CSF-1 CD11c+ cells

We next compared the maturation phenotype and functions of

IL-3 and IL-3/CSF-1 CD11c+ cells. Phenotypically, both popu-

lations expressed similar levels of costimulatory molecules CD40,

CD80, CD86 and MHC-class I (H2Kb) and II (IA, IE) (Fig. 3A).

After LPS stimulation, IL-3/CSF-1 CD11c+ cells exhibited a more

mature phenotype, expressing higher levels of co-stimulatory

markers, particularly CD86 (Fig. 3A). Both populations were

comparable in their abilities to take up antigens based on FITC-

dextran binding at 4uC and internalization at 37uC for 15 min

(Fig. 3B). After 7 days of culture, both cell populations were

adherent; however, IL-3/CSF-1 cells were more elongated/

spreading in appearance resembling macrophages (Fig. 3C).

Neither of the cell populations exhibited the conventional DC

morphology. In response to LPS, both CD11c+ purified popula-

tions produced comparable levels of TNFa, IL-1b and a relatively

high level of IL-6, (Fig. 3D). Both produced IL-10, with IL-3/CSF-

1 CD11c+ cell expression detected at a lower level, while IFNc
expression was not detected at all (data not shown). In the mixed

lymphocyte reactions (Fig. 3E), both IL-3 and IL-3/CSF-1

CD11c+ cells failed to efficiently stimulate allogeneic T cell

proliferation, with much lower levels of percentages on prolifer-

ated T cells, in contrast to GM-CSF-derived DCs. These data

support that IL-3 and IL-3/CSF-1-derived CD11c+ cells are

macrophages with a possible regulatory phenotype. Although both

express CD11c, CD11b, costimulatory molecules and MHC-class

II (Fig. 3A), in contrast with the data reported in a previous study

[9], we did not find any evidence to suggest that they have

conventional myeloid DC properties. Hence, expression of these

cell surface markers under specific cytokine conditions or in

response to certain inflammatory cues is insufficient to classify a

monocytic cell population as DCs [30].

Conclusions

The ability of CSF-1 to modulate the IL-3-driven hematopoietic

pathway may have implications in allergic inflammations. IL-3 is

the major inducer of blood basophils and tissue mast cells, which

are FceRI+ effector cells that regulate immediate hypersensitivity.

CSF-1 may on one hand mitigate overproduction of basophils and

mast cells that can cause undesired tissue damage, while on the

other hand mobilizing IL-10-producing monocytic cells that exert

anti-inflammatory functions and/or facilitate the development of

Th2 and humoral responses [31]. An alternative perspective is

that, because CSF-1 drives CD11c-MHC-class II- macrophage

generation, IL-3 may function to divert from a wound healing

(mediated by CSF-1 alone) to an immunomodulatory phenotype.

Nevertheless, the ability of IL-3 together with CSF-1 to regulate

CD11c+ macrophage expansion highlights the role of cytokine

combination in plasticity of the BM progenitors that further

contributes to the heterogeneity of the antigen-presenting cell system.

Supporting Information

Figure S1 Total cells are comparable in IL-3 and IL-3/
CSF-1 cultures. BM cells were isolated and cultured with IL-3,

CSF-1 or IL-3/CSF-1 in triplicates in the 24 well plate. At days 3,

6, 9 and 12, total cells were collected and counted from each well.

Cell numbers are presented as the mean 6 SEM. Data shown are

representative of four separate experiments.

(TIFF)

Figure S2 CSF-1 does not enhance GMDC generation.
BM cells were isolated and cultured with GM-CSF and GM-CSF/

CSF-1 in triplicates in a 24 well plate. At days 3, 6 and 9, total cells

were numerated. Cells were labeled with fluorochrome-conjugated

antibodies. (A) Live DCs from different culture conditions were

identified as the CD11b+CD11c+ population in flow cytometry.

(B) Total cell numbers, together with DC percentages and

numbers, were determined as the mean 6 SEM in the kinetic

analysis. Data shown are representative of three separate experiments.

(TIFF)

Figure S3 CSF1R-blocking does not impair generation
of GMDCs. BM cells were isolated and cultured with GM-CSF

in the presence of AFS98 or the isotype control antibody in

triplicates in a 24 well plate. At day 7, cells were collected and

counted. Cells were labeled with fluorochrome-conjugated anti-

bodies. (A) Representative dot plots from treated cultures were

shown. (B) Percentages and numbers of CD11b+CD11c+ cells

were determined by flow cytometry and presented as the mean 6

SEM. Data shown are representative of three separate experiments.

(TIFF)
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