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Abstract. During the coronavirus disease 2019 (COVID‑19) 
pandemic, cognitive impairment of varying degrees of 
severity began to be observed in a significant percentage of 
patients. The present study discussed the impact of immu‑
nological processes on structural and functional changes in 
the central nervous system and the related cognitive disor‑
ders. The purpose of the present review was to analyse and 
discuss available information from the scientific literature 
considering the possible relationship between severe acute 
respiratory syndrome coronavirus 2 (SARS‑CoV‑2) viral 
infection and cognitive impairment, including NeuroCOVID, 
frontal syndrome and cytokine storm. A systematic literature 
review was conducted using: Google Scholar, Elsevier and the 
PubMed database. When searching for materials, the following 
keywords were used: ‘cognitive dysfunctions’, ‘SARS‑CoV‑2’, 
‘COVID‑19’, ‘Neuro‑SARS2’, ‘NeuroCOVID’, ‘frontal 
syndrome’, ‘cytokine storm’, ‘Long COVID‑19’. A total of 96 
articles were included in the study. The analysis focused on the 
characteristics of each study's materials, methods, results and 
conclusions. SARS‑CoV‑2 infection may induce or influence 
existing cognitive disorders of various nature and severity. 

The influence of immunological factors related to the response 
against SARS‑CoV‑2 on the disturbance of cerebral perfusion, 
the functioning of nerve cells and the neuroprotective effect 
has been demonstrated. Particular importance is attached to 
the cytokine storm and the related difference between pro‑ and 
anti‑inflammatory effects, oxidative stress, disturbances in the 
regulation of the hypothalamic‑pituitary‑adrenal axis and the 
stress response of the body.
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1. Introduction

In the course of severe acute respiratory syndrome corona‑
virus 2 (SARS‑CoV‑2) viral infection, clinical manifestations 
mainly occur in the respiratory system. As of September 29, 
2023, according to World Health Organization estimates, there 
are 770,875,433 confirmed cases of coronavirus disease 2019 
(COVID‑19) infection. In this regard, 6,959,316 deaths were 
recorded, which corresponds to 0,9% of mortality (1). In the 
initial period of the pandemic, the activities undertaken focused 
mainly on the treatment of acute respiratory failure, which is 
the leading cause of death in infected patients (2). This was the 
third outbreak this century caused by coronaviruses. The two 
previous outbreaks were caused by SARS‑CoV/SARS‑CoV‑1, 
which caused Severe Acute Respiratory Syndrome beginning 
in 2002, and MERS‑CoV causing Middle East Respiratory 
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Syndrome, which was recognised in 2012. The aforementioned 
three viruses were detected in some patients with neurological 
symptoms in the cerebrospinal fluid and within the brain in 
post‑mortem examinations (2,3). A previously published 
systematic review and meta‑analysis showed the occurrence of 
nervous system symptoms in a number of patients. A decrease 
in neurocognitive functions was found during SARS‑CoV‑2 
viral infection. In the acute phase of the disease, memory 
disorders, confusion, insomnia, depressed mood and anxiety 
were observed. The aforementioned symptoms affected 
between 27.9 and 41.9% of respondents (3). In the post‑morbid 
phase, 32.2% of respondents experienced symptoms of 
post‑traumatic stress. A total of ~15% of the respondents 
were diagnosed with depression and anxiety disorders with 
the simultaneous occurrence of chronic fatigue syndrome and 
fibromyalgia (3,4).

2. Etiology of cognitive dysfunction in patients with 
COVID‑19 infection

SARS‑CoV‑2 activation occurs with the participation 
of proteases, such as transmembrane serine protease 2 
(TMPRSS2). In order to enter host cells, the expression of 
the angiotensin‑converting enzyme 2 (ACE‑2) receptor is 
required (5). According to a previous study, the binding of 
ACE‑2 to the spike (S) protein of SARS‑CoV‑2 is at least 
10‑fold more potent than in the case of other SARS viruses, 
which may significantly increase the incidence of infection (6). 
However, Rombel‑Bryzek et al (7) analysed the differences in 
ACE‑2 binding by SARS‑CoV‑1 and SARS‑CoV‑2 S proteins 
using isothermal titration calorimetry and showed that both 
receptor‑binding domains (SARS‑CoV‑1 and SARS‑CoV‑2) 
bind to the hACE‑2 with similar and high affinity but different 
thermodynamics.

Potential coreceptors or other receptors for infection have 
also been identified. These include the following: Integrins, 
glucose‑regulating protein 78 (GRP78), vimentin, sialic 
acid, heparan sulphate, receptor tyrosine kinase (AXL), 
asialoglycoprotein receptor‑1 (ASGR1), kringle containing 
transmembrane protein 1 (KREMEN1), furin, neuropilin‑1, 
cadherin‑17, CD133, CD147, CD209 and CD26 (8‑12).

Previous studies have demonstrated the widespread expres‑
sion of ACE‑2 mRNA. Nevertheless, its level varies depending 
on the location. Kidney and heart cells, lung epithelial cells 
and vascular endothelium are characterised by high expres‑
sion (13). Within the nervous system, these include neurons, 
oligodendrocytes, macrophages/microglia, astrocytes, epen‑
dymal cells, neural stem cells (NSCs)/non‑parenchymal cells 
(NPCs) (Fig. 1). The aforementioned cells vary depending on 
their function, shape, size, subtype and location (11). Neuronal 
ACE‑2 receptors are located mainly in the structures of the 
brain stem, which are responsible for the regulation of cardiac 
and respiratory functions (14‑17).

The infection routes of the SARS‑CoV‑2 virus within the 
nervous system remain a topic of research. Potential ones 
include retrograde axonal transport and transneuronal inva‑
sion, with transmission through the intranasal and olfactory 
epithelium, as well as through the oral cavity, gustatory nerves 
and trigeminal nerve and lymphatic drainage. Additionally, 
the subject of research is infection through the skin, peripheral 

nervous system and intestinal vasculature. Hematogenous 
pathways include the route through the ventricular system 
and choroid plexus, damaged blood‑brain barrier and infected 
immune cells (2,13). For a holistic approach to the impact 
of SARS‑CoV‑2 on the nervous system, both the mecha‑
nisms of infection, as well as the neurological‑psychiatric 
effects and direct and indirect cellular consequences are 
important (13,18‑23).

As a result of SARS‑CoV‑2 infection, anatomical and func‑
tional changes in the nervous system may occur. As a result of 
infection of the olfactory nerve, the virus can directly penetrate 
the brain. A weakened sense of smell or its loss is observed 
in patients with confirmed cognitive disorders and depres‑
sive disorders (3,24,25). There is also a known route through 
peripheral nerves using intersynaptic transmission (26,27). 
The results of studies on the presence of SARS‑CoV‑2 in 
the cerebrospinal fluid of the examined patients are ambig‑
uous (28). The presence of the virus was confirmed in NSCs, 
neurons and microglia. Infections also involve ependymal 
cells, endothelial cells and astrocytes (27,29). In numerous 
patients with symptoms of the nervous system, the presence 
of SARS‑CoV‑2 was detected by reverse transcription‑quanti‑
tative PCR (RT‑qPCR). However, there are anecdotal studies 
of negative test results in this group of patients (28,30‑34). The 
aforementioned differences may be related to the discrepancy 
in the time of collection of test samples as well as the stage 
of the patient's disease. An additional factor is the varying 
sensitivity of RT‑qPCR tests. The presence of neurological 
symptoms and the presence of SARS‑CoV‑2 in the cerebro‑
spinal fluid in some patients is evidence of the possibility of 
the virus affecting the nervous system. Nevertheless, this issue 
is a starting point for further research (28,30‑34).

3. Cytokine storm and neuroinflammation

The main role in the pathogenesis of cognitive impairment 
in the course of COVID‑19 is played by the cytokine storm, 
which activates numerous leukocytes, mast cells, macro‑
phages and endothelial cells. As a consequence, significant 
amounts of chemokines and pro‑inflammatory cytokines are 
released (27,35,36). The key released mediators that have a 
significant impact on the course of the cytokine storm include 
interleukins: Tumour necrosis factor‑α (TNF‑α), interferon‑γ 
(IFN‑γ), IL‑6, IL‑1, IL‑1β, IL‑2, IL‑3, IL‑8, IL‑12, IL‑17, IL‑18, 
IL‑33 and chemokines [C‑C motif chemokine ligand 2 (CCL2), 
CCL5, CCL8, CCL11, C‑X‑C motif chemokine ligand 1 (CXCL1), 
CXCL10 and CXCL12] as well as granulocyte‑macrophage 
colony‑stimulating factor (GM‑CSF) (35,37). In particular, the 
pathogenesis of the aforementioned phenomenon is related 
to the action of mast cells involved in the inflammatory and 
neuroinflammatory response (38‑43).

The peripheral immune reaction may intensify or induce 
an acute or chronic neuroinflammatory response (44). 
SARS‑CoV‑2 viral infection may result in the activation of 
mast cells residing in the respiratory tract at the initial stage of 
the disease. At this level, they play the role of the body's first 
line of defence against infection. Thus, taking part in the direct 
elimination of the threat or in supporting the immune system 
response. Mast cells, having a role in inflammatory diseases, 
may also be associated with the genesis of neuroinflammatory 



BIOMEDICAL REPORTS  21:  103,  2024 3

diseases, the occurrence of stress‑related disorders, and may 
also participate in post‑traumatic brain damage and the devel‑
opment of stroke. Mast cells occur in large numbers in the nasal 
passage and the meninges. They are characterised by high 
heterogeneity of morphology, varying degrees of response to 
specific stimuli and performing different protective functions. 
In the case of long‑term protective effects, the nature of their 
response may change to a harmful response (41).

The cytokine storm results in an increased level of 
chemokines and pro‑inflammatory cytokines secreted by mast 
cells, mainly including TNF‑α, IL‑1, in particular IL1B, and 
IL‑6 (35,45,46). In addition, these cells secrete significant 
amounts of histamine, tryptase, granulocyte growth factor, 
proteases, as well as CC chemokine and ligand 2‑CCL2 from 
the granules (35‑37,45‑47). Additionally, they can release 
leukotriene C4 (LTC4) and prostaglandin D2 (PGD2) at a signif‑
icantly faster rate. Mast cells are also capable of synthesising 
further inflammatory mediators in the later stages of infec‑
tion (48‑50). The protease tryptase that is released from mast 
cell granules may also promote SARS‑CoV‑2 infection (49). An 
important aspect is that after entry, viruses can activate mast 
cells by influencing toll‑like receptors and, as a result, increase 
the expression of inflammatory mediators. Additionally, these 
cells have the ability to detect damage‑associated molecular 
patterns (DAMPs), which helps them detect and respond to 

infection with the SARS‑CoV‑2 virus. The infection is associ‑
ated with increased levels of procoagulant factors, D‑dimers 
and prolongation of prothrombin time (27,36,51,52). The 
occurrence of coagulation disorders, which may be associated 
with the formation of clots and an increased risk of cerebral 
bleeding, may be positively correlated with the occurrence of 
ischemic and haemorrhagic stroke and cognitive impairment. 
This may result in a deterioration of patients' condition, worse 
prognosis and increased mortality (53‑57) (Fig. 1).

According to a previous study, the occurrence of neuroin‑
flammation in severe cases in some patients could correlate with 
the occurrence of disorders such as cerebrovascular diseases, as 
well as being a risk factor for stroke, encephalopathy or epilepsy. 
The most common neurological symptoms include dizziness 
and headaches, fever, disturbances of consciousness, neuralgia, 
hyposmia and hypogeusia (58). A number of studies confirm 
the relationship between the aforementioned process and the 
occurrence of neuropsychiatric diseases. They indicate the rela‑
tionship between the severity of central nervous system (CNS) 
dysfunction and the negative prognosis of patients (58‑60).

4. Nerve vs. glial cell

ACE‑2 expression in neurons and glial cells makes the CNS 
more susceptible to COVID‑19 infection (61). Inflammatory 

Figure 1. Systemic immune response to SARS‑CoV‑2 infection with particular emphasis on neuroinflammation. Figure was created using the Servier Medical 
Art Commons Attribution 3.0 Unported Licence [http://smart.servier.com (accessed 07.12.2023)]. SARS‑CoV‑2, severe acute respiratory syndrome corona‑
virus 2; DAMPs, damage‑associated molecular patterns; IFN‑γ, interferon‑γ; TNF‑α, tumor necrosis factor‑α; IL, interleukin; CCL, C‑C motif chemokine 
ligand; CXCL, C‑X‑C motif chemokine ligand.
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molecules secreted as a consequence by infected nerve cells 
can activate nearby immune cells, mainly remaining mast 
cells and glial cells. Additionally, other neurons and endo‑
thelial cells, pericytes and astrocytes are susceptible to this 
process. Infection of endothelial cells by SARS‑CoV‑2, which 
may be caused by the presence of the virus in the microcircu‑
lation, may result in bleeding and blood‑brain barrier (BBB) 
dysfunction (62,63). This may result in the death of nerve 
cells, deterioration of cognitive functions, and even in very 
advanced cases, brain swelling, which poses a direct threat 
to life. Inflammatory factors of the cytokine storm can acti‑
vate neurons, glial cells and subsequent mast cells, thereby 
exacerbating or causing acute and chronic neuroinflammatory 
reactions. Activated glial and immune cells as well as increased 
activity of cytokines and chemokines positively associate with 
the pathogenesis of neuroinflammatory and neurodegenerative 
diseases. These include Alzheimer's disease and Parkinson's 
disease (64,65). Infection of neurons by the SARS‑CoV‑2 virus 
may also directly result in their death (66,67). Thereby causing 
a greater release of PAMPs and DAMPs and contributing to 
the increased progression of neuroinflammation.

The susceptibility of white matter to be damaged as 
a result of ischemia is an element that reduces the mental 
performance of patients. Some cases of COVID‑19 showed 
decreased cerebral perfusion, which correlated with decreased 
functioning of the white matter (68). An increasing number of 
studies suggested that the aforementioned may be related to 
the pathology of TDP‑43 and tau proteins. Accumulation of 
amyloid beta has also been demonstrated. These changes also 
concerned the area of the hippocampus responsible for spatial 
and event memory. The observed memory deficits may be a 
precursor to dementia disorders and, consequently, contribute 
to the development of Alzheimer's disease (69‑71).

The hippocampal system is a structure particularly suscep‑
tible to stress. It has been revealed that as a result of direct and 
indirect stress, the hypothalamic‑pituitary‑adrenal (HPA) axis 
is disturbed among the studied patients. Increased release of 
steroid hormones and the stress response of the body disturb 
the functioning of the hippocampal system. Excessive secre‑
tion of corticosteroids in stressful situations also negatively 
affects the amygdala area. Due to the decreased function of the 
prefrontal cortex, neurocognitive functions are limited (71,72). 
Patients who succumbed due to SARS‑CoV‑2 infection were 
characterised by increased concentrations of pro‑inflammatory 
cytokines. The aforementioned relationship could be another 
stressor affecting cognitive functions.

Studies using TUNNEL staining and caspase 3 immu‑
nostaining reported increased neuronal cell death in the 
course of COVID‑19 (73‑76). Significant NSC/NPC cell 
mortality was also demonstrated. For other supporting cells 
within the nervous system, less data and researches are avail‑
able. However, infection of these cells is associated with an 
immune response, inflammatory reaction and weakening of 
the neuroprotective function. This may promote the death of 
neighbouring uninfected cells (73,74).

Transcriptomic analysis revealed transcription defects, 
particularly in genes related to the response to hypoxia and 
cytokine storm (73‑76). Increased expression of hypoxia induc‑
ible factor 1 subunit alpha (HIF1a) was observed in cells in a 
local hypoxia environment. The studies also showed impaired 

expression of genes related to intercellular connections, cell 
secretory function, and, as a result, potential impairment 
of the BBB and blood cerebrospinal fluid barrier (BCSFB). 
Furthermore, these studies indicated that the expression of 
vGLUT1 protein, a marker of presynaptic stimulation, was 
also reduced. In some cases, abnormal localization of the tau 
protein in the neuron body was identified (72). This localiza‑
tion was specific to pT231, correlating with cells producing 
caspase 3. Abnormal phosphorylation within the tau protein 
was associated with more frequent cell apoptosis. According to 
observations, this was more related to the response via type II 
interferon (INF‑γ) than type I interferon (IFN‑α/β) (73‑76).

5. Neuro‑SARS, cognitive dysfunction, and COVID‑19 
infection

In order to define neurological deficits associated with 
SARS‑CoV‑2 infection, the following terms were introduced: 
Neuro‑SARS and neuroCOVID (77). It is estimated that in the 
acute phase of the disease, more than 1/3 of patients exhibit 
symptoms typical of neuroCOVID (78). These symptoms 
correlate with a more severe clinical course of the infection 
and significantly increase the risk of complications. The most 
common symptoms include loss of taste and smell, recur‑
rent headaches and dizziness, qualitative disturbances of 
consciousness and depressive symptoms. It has been revealed 
that the severity of the disease may correlate with the number 
of lymphocytes in the blood and the current level of anti‑
bodies (78,79). Rare occurrences of encephalopathy, strokes 
and peripheral neuropathies have also been observed. They 
mainly concern older individuals with predominant immuno‑
deficiencies (78).

The aforementioned group of patients is characterised 
by a diverse set of cognitive disorders. They include mild 
deficits, selective, specific and generalised changes with 
significant symptom severity. The symptoms most frequently 
mentioned in the literature include: Impaired concentration, 
attention and executive functions, as well as short‑term 
memory disorders (77‑80). According to the authors of most 
studies, the assessment of cognitive dysfunction in this group 
cannot be limited only to the use of the so‑called screening 
tests (78‑81).

The next group of symptoms includes a syndrome of cogni‑
tive dysfunction ‑ frontal syndrome. Its features were observed 
by Helms et al (82) and Zhou et al (83) in their research. To 
assess cognitive functions, Zhou et al (83) used the Continuous 
Performance Test and the Trail Making Test. In both studies, 
symptoms of cognitive impairment syndrome were observed 
in a significant group of patients. A correlation of the obtained 
results with the concentration of pro‑inflammatory cytokines 
and C‑reactive protein was also demonstrated (83). These 
inflammatory processes, which are often chronic, may nega‑
tively affect the functioning of the developing brain. Their 
influence on the development of neurodegenerative diseases 
and the manifestation of some mental diseases, mainly 
schizophrenia, is suggested. The symptoms include decreased 
ability to think abstractly, self‑control and assess the own 
capabilities of the individual. Short‑term memory disorders 
and reduced effectiveness of attention‑related processes are 
also observed (82,83).
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6. Long COVID‑19

Prolonged COVID‑19 infection may cause psychiatric and 
neuropsychiatric disorders in patients and their environ‑
ment (3,60,84). Stressful conditions during the disease worsen 
the prognosis of patients. As a result, prolonged infection may 
result in post‑stress depression, anxiety and other disorders, 
including post‑traumatic stress disorder (27,36,85,86). Mental 
stress caused by long COVID‑19 results in increased secre‑
tion of corticotropin‑releasing hormone (CRH) as well as 
activation of the HPA axis. This process is intensified by the 
production of additional amounts of CRH and other neuropep‑
tides by mast cells, thereby contributing to the deepening of 
neuroinflammation (40).

Numerous mediators of the immune response secreted 
by mast cells play an important role in the pathogenesis of 
stress‑induced diseases, including neuroinflammatory and 
autoimmune diseases. The presented pathologies related to 
uncontrolled cytokine storm and neuroinflammation may 
contribute to neurodegeneration and related disorders (40,41,87). 
Cytokine storm increases the influx of inflammatory mediators 
into the brain due to BBB disruption. A defect in this barrier 
may facilitate the entry of the SARS‑CoV‑2 virus and, conse‑
quently, an uncontrolled influx of immune cells into the brain. 
In a prolonged immune response in the CNS, activated immune 
cells, including mast cells and glial cells, release significant 
amounts of additional inflammatory chemokines and cytokines, 
increasing inflammation (41,65). A number of studies showed 
that mast cells may play a significant role in acute and chronic 
diseases caused by SARS‑CoV‑2 viral infection. Prolonged 
infection, in addition to neurological symptoms, may result in 
other systemic disorders, including the previously mentioned 
coagulation disorders (88,89). Additionally, it may worsen 
existing respiratory diseases, including asthma and obstructive 
pulmonary disease (2,9,49,88). Acute and chronic stress caused 
by the aforementioned infection may worsen neuroinflamma‑
tory disorders, including nerve injuries, traumatic brain injury 
and stroke (89).

According to studies, a total of 36% of patients infected 
with COVID‑19 experienced neurological symptoms, of which 
25% had CNS‑related symptoms (64,78,82). In this group, 88% 
of patients reported taste disturbances and 85.6% of smell 
disturbances (90). In 11% of patients, anosmia preceded other 
clinical disorders (90). In total, 5.7% of patients with neuro‑
logical symptoms experienced ischemic stroke (78) (Table I).

7. Prevention and treatment of cognitive dysfunction in the 
course of COVID‑19

COVID‑19 infection may result in both short‑ and long‑term 
complications and symptoms related to inf lammatory 
processes correlating with the activation of immune cells 
and the cytokine storm (49,91). Due to the confirmed rela‑
tionship between neuropsychiatric diseases and infections, 
especially viral ones, primary and secondary prevention is 
recommended. The first one involves health education and the 
use of recommended vaccinations. In the case of secondary 
prevention, activities aimed at early detection of the disease 
and implementation of appropriate treatment are involved. In 
the next stage, activities are based on limiting the medium‑ 
and long‑term negative effects of the disease process on the 
patient's health (91). Research on the impact of inflammatory 
processes in the course of SARS‑CoV‑2 on the functioning 
of the CNS suggests enhancing neuroprotective effects. 
Knowledge about the pathophysiological processes in the 
course of the aforementioned infection is still developing. The 
presented research results suggest actions aimed at stabilising 
proper perfusion and, as a result, adequate oxygenation and 
nutrition of nerve cells (92,93). A significant part of research 
deals with the impact of inflammation and immunological 
factors on the aforementioned processes. Modifying their 
action is a potential way to reduce the short‑ and long‑term 
negative consequences of SARS‑CoV‑2 infection. Conducting 
neurological and psychiatric diagnostics and psychological 
tests is necessary in the event of worsening neurological 
symptoms (94,95).

Research indicates that inhibiting the activation of mast 
cells and their subsequent degranulation may contribute to 
reducing the intensity of the inflammatory process. The use 
of antiviral and anti‑inflammatory drugs, or those with a 
neuroprotective effect, may support the therapeutic process 
of patients and at the same time positively correlate with an 
improved prognosis (41,64,96).

8. Conclusions

The presented studies demonstrated the impact of SARS‑CoV‑2 
on cognitive dysfunctions of various nature and severity. A signif‑
icant impact of immunological factors related to the response 
against SARS‑CoV‑2 on impaired perfusion, neuroprotective 
effect and functioning of nerve cells has been proven. Particular 

Table I. Selected neurological disorders occurring in patients in the course of COVID‑19.

Author Percentage (%) Neurological symptom (Refs.)

Mao et al, Helms et al 36 All patients infected with the SARS CoV‑2 virus (78,82)
Mao et al 25 Direct involvement of the CNS (78)
Lechien et al 88 Gustatory dysfunctions (90)
Lechien et al 85.6 Olfactory dysfunctions (90)
Lechien et al 11 Anosmia before other clinical symptoms (90)
Mao et al 5.7 Ischemic stroke in severe cases (78)

SARS‑CoV‑2, severe acute respiratory syndrome coronavirus 2; CNS, central nervous system.
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attention is paid to the cytokine storm and the related dispropor‑
tion between pro‑ and anti‑inflammatory effects, oxidative stress, 
disturbances in the regulation of the HPA axis and the body's 
stress response. An additional element are changes in the expres‑
sion of genes related to the response to hypoxia and cytokine 
storm, such as: HIF1a, pT231, vGLUT1, genes related to intercel‑
lular connections within the BBB and BCSFB barriers, as well as 
IFN‑γ and IFN‑α/β (69‑72). These mechanisms directly affect the 
metabolism of endothelial cells, nerve cells and BBB dysfunction. 
These processes may be the starting point for cognitive function 
disorders, including mild, selective, specific and generalised defi‑
cits with significant symptom severity. Primary and secondary 
prevention related to neurological and psychological diagnostics, 
as well as symptomatic treatment is recommended. The processes 
occurring as a result of SARS‑CoV‑2 infection require further 
research and analysis in order to improve understanding of the 
pathophysiological mechanisms and expand the possibilities of 
prevention and treatment.
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