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signature predicting prognosis in patients with 
pancreatic adenocarcinoma
Dapeng Xu, MM, Rong Qin, MD, Ming Li, MM , Jun Shen, MD, Yongmin Mao, MM, Kai Tang, MM, 
Aiguo Zhang, PhD, Dafeng Wang, MD, Yingzuo Shi, MD*

Abstract 
Background: Growing evidence have indicated that cell cycle-related genes (CRGs) play an essential role in the progression 
of pancreatic adenocarcinoma (PAAD). Nevertheless, the application of CRGs in estimating the prognosis of PAAD patients is still 
lacking. This study aimed to establish a risk signature based on CRGs that can predict patients’ overall survival for PAAD.

Methods: The expression and corresponding clinical data of PAAD patients from The Cancer Genome Atlas database and 200 
cell cycle-related genes from the MSigDB were used for the generation and validation of the signature. LASSO Cox regression 
was applied to build the prediction model. The diagnostic value of signature was evaluated by receiver operating characteristic 
curves. Univariate and multivariate regression was used to construct the nomogram providing the clinicians a useful tool.

Results: A total of 103 CRGs were identified. Seven genes (RBM14, SMAD3, CENPA, KIF23, NUSAP1, INCENP, SMC4) with 
non-zero coefficients in LASSO analysis were used to construct the prognostic signature. The 7-gene signature significantly 
stratified patients into high- and low-risk groups in terms of overall survival, and the area under the receiver operating characteristic 
curve of 5-year survival reached 0.749. Multivariate analysis showed that the signature is an independent prognostic factor. We 
then mapped a nomogram to predict 1-, 3-, and 5-year survival for PAAD patients. The calibration curves indicated that the model 
was reliable. Finally, we discovered that TP53 and KRAS mutated most frequently in low and high-risk groups, respectively.

Conclusion: Our findings suggested that the seven genes identified in this study are valuable prognostic predictors for patients 
with PAAD. These findings provided us with a novel insight that it is useful for understanding cell cycle mechanisms and for 
identifying patients with PAAD with poor prognosis.

Abbreviations: AUC = area under the ROC curve, CRGs = cell cycle-related genes, DE-CRGs = differentially expressed cell 
cycle-related genes, GO = gene ontology, GSEA = Gene Set Enrichment Analysis, HR = hazard ratio, LASSO = least absolute 
shrinkage and selection operator, LNM = lymph node metastasis, OS = overall survival, PAAD = pancreatic adenocarcinoma, ROC 
= receiver operating characteristic, TCGA = The Cancer Genome Atlas, TMB = tumor mutation burden.
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1. Introduction

Pancreatic adenocarcinoma (PAAD), which mortality closely 
parallels incidence, is lethal and aggressive with a 5-year sur-
vival rate of only about 6% (ranging from 2% to 9%).[1] Most 
patients with PAAD remain asymptomatic until the disease 
reaches an advanced stage. Surgical resection is the most effec-
tive therapy and it significantly increases the 5-year survival 
rate to 20%–30%. However, only <20% of patients have the 
opportunity for resection treatment as most patients are diag-
nosed at an advanced stage when there is metastasis.[2] Despite 

improvements in surgery, radiotherapy, and chemotherapy, the 
survival rates for PAAD are still poor, even those with the same 
clinicopathological characteristics have different prognoses and 
treatment responses, and there are still lacking early diagnostic 
methods due to nonspecific symptoms and lacking effective test-
ing identification.[3] Hence, the development of a new strategy 
to reduce mortality and identify prognostic biomarkers during 
the early stage is an urgent task. Tang et al constructed a risk 
signature based on the ferroptosis-related genes and proved 
that immuno- and chemotherapy combined with a ferroptosis 
inducer is a feasible therapeutic approach for PAAD.[4]
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An increasing amount of evidence demonstrates that the dis-
covery and application of molecular biomarkers will improve 
the prognostic evaluation and identification of potential high-
risk patients with PAAD, and it could also help provide insights 
into tumor progression and uncover potential new therapeutic 
targets. Multigene risk signatures derived from primary tumor 
biopsy can guide clinicians in designing an appropriate course 
of treatment. One study revealed a seven-gene prognostic model 
for PAAD based on transcriptome dysregulation, and this risk 
signature is stable in internal and external validation.[5] However, 
there is still a deficiency in the performance of the newly devel-
oped biomarkers in PAAD. Therefore, finding a more efficient 
and sensitive signature is still a pressing problem to be solved.

The cell cycle is significantly associated with the growth and 
proliferation of cancer cells. Growing evidence have indicated 
that genes can change the process of tumors by regulating the 
cell cycle, thereby achieving the goal of targeted therapy. The 
cell cycle features have been used in endometrial cancer and 
gastric cancer.[6,7] Both the two risk signatures have a high prog-
nostic accuracy in predicting overall survival and distinguishing 
patients from those with the same characteristics.

In this study, we speculated that cell cycle-related genes and 
tumor mutation could provide prognostic value for patients 
with PAAD. A prognostic multigene signature with cell cycle-re-
lated genes was constructed in the TCGA cohort and compared 
the tumor mutation burden (TMB) in two different risk groups. 
We aimed to provide novel biomarkers that would be effective 
in predicting the prognosis and monitoring the tumor microen-
vironment in PAAD patients.

2. Materials and Methods

2.1. Data acquisition

RNA-Seq data and clinical information from pancreatic ade-
nocarcinoma patients were downloaded from TCGA via the 
UCSC Xena platform (https://xena.ucsc.edu), which is routinely 
updated and integrated.[8] The transcriptome profiling of RNA 
expression was obtained by RNA-seq and measured by frag-
ments per kilobase of exon model per million mapped reads 
or FPKM values. The log2-based transformation was used for 
the normalization of RNA expression profiles. The cell cycle-re-
lated gene set was retrieved from “G2M checkpoint” from the 
GSEA database (http://www.gsea-msigdb.org/gsea/index.jsp). 
The mRNA expression of cell cycle genes in the TCGA database 
was extracted. Our study didn’t involve human beings or ani-
mals, so the approval of the Ethics Committee is not necessary 
for our study.

2.2. Identification of prognosis-associated differentially 
expressed CRGs

With the cut-off criteria set as |logFC| > 1 and P value < .05, 
we screened the DEGs via the “limma” R package.[9] Then, a 
univariate Cox regression analysis was performed to identify 
prognosis-associated DE-CRGs. Hazard ratio (HR)<1 indicates 
better overall survival (OS) outcomes while HR>1 indicates 
worse OS outcomes. Genes with P < .05 were regarded as prog-
nosis-associated cell cycle genes.

2.3. Functional enrichment analysis of the prognosis-
associated DE-CRGs

Gene ontology (GO)[10] and Kyoto Encyclopedia of Genes and 
Genomes (KEGG)[11] pathway enrichment analyses were per-
formed to explore the biological functions of the prognosis-re-
lated genes via the “clusterProfiler” R package. Adjusted P value 
< .05 was set as the significance threshold, and the enrichment 

analysis result maps were presented by the “ggplot2” and 
“GOplot” R packages.

2.4. Construction of the gene-related prognostic model

The LASSO regression model[12] was used to identify the most 
accurate predictive genes. For example, if there were two dif-
ferent genes in parallel, LASSO would automatically filter 
out the secondary related one and assign the selected genes a 
value, which equals the regression coefficient in the classifier 
formulas. The risk score for the signature as computed using 
the formula:

Risk score =
N∑
i=1

(Expi ∗ Coei)

where n represents the number of modules RNAs; Coef (i) 
is the coefficient; X(i) denotes the z-score-transformed rel-
ative N, Expi, and Coei represented the number of signature 
genes, gene expression level, and coefficient value, respectively. 
All patients in the cohort were classified into low- and high-
risk groups based on the median of risk scores. Based on the 
median risk score, we divided the patients into high- and low-
risk subgroups. In the two subgroups, each patient’s survival 
status, OS time, and gene expression profile were presented via 
the “pheatmap” and “survival” R packages. In addition, the 
Kaplan–Meier curve analysis was performed, and ROC curves 
were drawn to estimate the sensitivity and specificity of the 
prognostic signature.

2.5. Gene set enrichment analysis

We performed GSEA (http://www.broadinstitute.org/gsea/index.
jsp) to determine if the identified gene sets were significantly dif-
ferent between cancer and normal groups. Next, we analyzed 
the expression levels of 20,530 mRNAs in PAAD samples and in 
adjacent noncancerous tissues. Finally, we determined functions 
for subsequent analysis by using normalized P values < .05.

2.6. Evaluation of clinical independence and construction 
of the nomogram

Next, we removed PAAD patients who lacked detailed clini-
copathological information including survival status and time, 
age, grade, clinical stage, tumor grade, distant metastasis cancer 
status, and lymph node status. The clinicopathological charac-
teristics and the CRGs expression data of the remaining patients 
were compared between the high- and low-risk subgroups and 
comprehensively displayed in the heatmap. Moreover, the clini-
cal indexes and risk scores were included in univariate and mul-
tivariate Cox regression analyses to validate the independence 
of the risk model. ROC curves for the signature and other clin-
ical features were used to assess the predictive efficacy of the 
model. In addition, the correlation between the CRGs from the 
risk model and the clinical index was also measured. Finally, we 
utilized the “rms” R package to consolidate the risk score and 
clinical characteristics for nomogram construction.

2.7. Clinical correlation analysis

Univariate regression analysis and multivariate regression anal-
ysis were used to identify factors (including gender, age, TNM 
stage, and risk score) affecting survival and independent prog-
nostic factors in patients with PAAD. The correlation between 
survival-associated IRGs and clinicopathological characteristics 
was analyzed in R platform. P < .05 was considered to have a 
significant correlation.

https://xena.ucsc.edu
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
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2.8. Tumor mutation burden analysis
To explore the mutation landscapes of pancreatic adenocarci-
noma, the somatic mutation data were processed and analyzed 
by R software (version 4.0.2) with the “maftools” package. 
TMB was defined as the total number of somatic mutations 
including somatic mutations, insertion-deletion mutations, cod-
ing, and base replacement of per million bases. The pancreatic 

cancer patients were separated into the low-TMB and high-
TMB groups using the median value of TMB. To analyze the 
correlations between TMB and clinicopathological factors of 
patients with pancreatic cancer, we merged the TMB data with 
corresponding clinical information. The Wilcoxon rank-sum 
test was utilized for comparisons between two groups of clinical 
variables.

Figure 1. The flowchart of the study design. AUC = area under the ROC curve, DSS = disease-specific survival, GO = gene oncology, GSEA = gene set enrich-
ment analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes, K-M = Kaplan-Meier survival curve, LASSO = Least Absolute Shrinkage and Selection 
Operator, OS = overall survival, PAAD = pancreatic adenocarcinoma.
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3. Results

3.1. Identification and functional analyses of survival-
associated genes

The flow diagram for the present study was exhibited in 
Figure  1. Based on the gene set list from “Hallmark G2M 
checkpoint”, a total of 200 genes were extracted from the gene 
set. We then conducted the univariate Cox analysis to identify 
the CRGs that were associated with the survival and progno-
sis of patients because these genes may be the key biomarkers 
for evaluating patients. During further screening, we obtained 
103 survival-associated CRGs for adenocarcinoma cancer (see 
Table S1, Supplemental Digital Content, http://links.lww.com/
MD/G913, which illustrates the 103 survival-associated CRGs). 
To elucidate the potential function of these genes, GO and 
KEGG analyses were carried out. During enrichment analyses 
for these prognosis-associated CRGs, they were mainly found to 
be involved in “mitotic nuclear division” “nuclear division” and 
“organelle fissio” for GO enrichment (Fig. 2A), and “cell cycle” 
“FoxO signaling pathway” and “p53 signaling pathway” as 
shown in Kyoto Encyclopedia of Genes and Genomes (KEGG) 
(Fig. 2B). The above findings suggested that these CRGs might 
enrich these functions and play their roles through the pathways.

3.2. Construction of the risk assessment model

The results of the univariate Cox regression analysis of 103 
genes were used in the LASSO regression to identify robust 
markers. A set of seven genes (RBM14, SMAD3, CENPA, 
KIF23, NUSAP1, INCENP, SMC4) and their coefficients 
were computed (Fig. 3A,B). Then, multivariate Cox regres-
sion analyses were performed, and a seven-gene model 
was constructed according to their coefficients (Table  1). 
Risk score=(CENPA*0.03992)+ (INCENP*0.04016) + 
(KIF23*0.10093) + (NUSAP1*0.01307)- (RBM14*0.4748) 
+ (SMAD3*0.07337)+ (SMC4*0.13318). We further ana-
lyzed the relationship between the 7 genes (Fig.  3C). We 
found that they were significantly relevant, especially 
between KIF23 and NUSAP1, CENPA and KIF23, CENPA 
and NUSAP1, KAF23 and SMC4. The mRNA expressions 
of these 7 signature genes in different tumor statuses were 
compared using 179 samples (69 patients with tumor-free 
status and 110 with tumor status). The mRNA expression 
of SMAD3, CENPA, KIF23, NUSAP1, INCENP, and SMC4 
were significantly up-regulated in patients with tumors (all 
P < .05). On the other hand, RBM14 was overexpressed in 
patients with tumor-free status (P < .05, Figure 3D). These 
7 genes were also differentially expressed in different grade 
groups (see Figure S1, Supplemental Digital Content, http://

links.lww.com/MD/G912, which showed the expression of 
seven genes in different grades). These findings suggested 
that these 7 signature genes may be involved in the devel-
opment of PAAD. GSEA was then conducted to explore the 
biological functions enriched in high and low-risk groups. 
The results indicated that “adherens junction”, “adipocy-
tokine signaling pathway”, “cell cycle”, “G2M checking”, 
and “glycolysis” were enriched in high-risk group (Fig. 3E). 
Meanwhile, “fatty acid metabolism”, “P53 signaling path-
way”, “TGF beta signaling pathway”, “mitotic spindle”, and 
“Notch signaling pathway” were enriched in low risk group 
(Fig. 3F).

3.3. Kaplan–Meier survival analysis of 7 gene

We further tested the survival assessment model by Kaplan–
Meier analysis in different subgroups of the 7 genes. Of the 
7 subgroups classified by their expression, patients with high 
expression of SMAD3, CENPA, KIF23, NUSAP1, INCENP, 
and SMC4 had a worse prognosis compared with low expres-
sion (Fig.  4A–F). In contrast, the high expression group of 
RBM14 had a better prognosis than the low expression group 
(Fig. 4G). Therefore, each of the seven genes has certain reli-
ability and practicability in evaluating the prognosis for PAAD 
patients.

3.4. Prognostic risk score indicated strong associations 
with clinical characteristics in PAAD

The expression levels of the 7 genes and clinicopathological 
characteristics in high-risk and low-risk groups were presented 
in the heatmap (Fig.  5). The distribution of the seven genes 
across all samples showed that the patients in the high-risk 
group were likely to have a higher expression of SMAD3, 
CENPA, KIF23, NUSAP1, INCENP, and SMC4. In contrast, 
the patients in the low-risk group were inclined to have higher 
expression of RBM14. The results also showed that there were 
significant differences between the high-risk and low- risk 
groups in term of living status (P < .001), cancer status (P < 
.001), stage (P < .05), stage T (P < .01), LNM (P < .05), recur-
rence (P < .001), and grade (P < .01). The risk score of each 
PAAD patient was computed, and the patients were assigned 
to the low-risk (n=80) or high-risk (n=79) group based on the 
median cut-off value. Intuitively, the number of deaths was 
significantly higher in the high-risk group (Fig.  5B,C). The 
Kaplan–Meier analysis of all patients indicated that the sur-
vival of the patients in the low-risk group was significantly 
better than that of the patients in the high-risk group (P = 
9.889e−06, Fig.  5D). The AUC of the survival assessment 

Figure 2. Gene annotation of 70 survival associated genes. (A) GO analysis. (B) The significantly enriched pathways of the genes determined by KEGG analysis. 
GO = gene ontology, KEGG = Kyoto Encyclopedia of Genes and Genomes.

http://links.lww.com/MD/G913
http://links.lww.com/MD/G913
http://links.lww.com/MD/G912
http://links.lww.com/MD/G912
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model of the 7-gene risk model was 0.719, 0.735, and 0.749 at 
1-, 3-, and 5 years of OS (Fig. 5E–G).

3.5. The construction and validation of nomogram

To provide a better quantitative method for clinicians to predict 
cancer prognosis, a nomogram was constructed by combining 
the risk score with other clinicopathological risk factors. We 
combined the risk model with other clinical factors and per-
formed univariate and multivariate analyses to examine the 
clinical independence of the model. The results showed that 

the risk model was able to serve as an independent prognostic 
indicator (P < .001, Fig. 6A). The nomogram showed that our 
risk score was an important factor among the various clinical 
parameters (Fig. 6B). The specific points of each parameter was 
shown in Table 2. The 45° line represented the best prediction. 
Calibration plots uncovered that the nomogram performed well 
(Fig.  6C). Calibration curves revealed that the predicted and 
actual survival rates were well matched. The total points of each 
patient were calculated and the patients were then divided into 
three subgroups including low-score, moderate-score, and high-
score groups. As shown in Fig. 6D, patients in the high-score 

Figure 3. Ten-fold cross-validation for tuning parameter selection and a gene expression. (A) Plots of the ten-fold cross-validation error rates. (B) LASSO coeffi-
cient profiles of the seven cell cycle-related genes. (C) Relationships between the seven genes. (D) Gene expression of the seven genes in different tumor status. 
(E,F) GSEA analysis in low- and high-risk groups.
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group had the worst survival rate. The predictive abilities of the 
nomogram were analyzed by the AUC values (AUC of 1/3/5-
year OS = 0.798/0.812/0.844, Fig.  6E–G). In addition, These 
findings suggested that the nomogram has high accuracy in pre-
dicting overall survival.

3.6. Landscape of genome-wide mutation files in different 
risk models

We obtained somatic mutation profiles of 179 patients with 
PAAD from the TCGA database. Mutation information of each 
gene in the low-risk group was shown in the waterfall plot. As for 
the top 30 mutated genes shown in Figure 7A, we discovered that 
gene TP53 mutated most frequently approximately accounting 
for 26%, followed by KRAS (25%), SMAD4 (11%), CDKN2A 

Table 1

Seven cell cycle associated genes and corresponding 
coefficient values.

Metabolic associated gene Coefficient 

CENPA 0.03992
INCENP 0.04016
KIF23 0.10093
NUSAP1 0.01307
RBM14 −0.47484
SMAD3 0.07337
SMC4 0.13318
Risk score Low: <0.344
 High: ≥0.344

Figure 4. Prognostic significance of low and high expression of each of the 7 genes. (A) CENPA. (B) INCENP. (C) KIF23. (D) NUSAP1. (E) RBM14. (F) SMAD3. 
(G) SMC4.
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(8%), and TTN (7%). In the high-risk group, KARS mutation 
occupied the most frequency accounting for 39%, followed by 
TP53 (30%), SMAD4 (12%), MUC16 (8%), and CDKN2A 
(6%) (Fig. 7B). We then calculated the TMB of each patient and 
divided total patients into the low-TMB group and the high-TMB 
group by the median TMB value, and we discovered that the low-
TMB group possessed worse OS (P < .05) and disease-specific 
survival (DSS, P < .01) than the high-TMB group (Fig. 7C,D). 
These results suggested that mutation characteristics in the two 

risk groups were different and the TMB score had a high accuracy 
in distinguishing the patients with worse prognoses.

4. Discussion
PAAD is a highly malignant tumor with a rather poor prognosis, 
and the 5-year survival rate for PAAD is about 5%.[1] Accurate 
prognosis prediction can determine whether the patients ben-
efit from more adjuvant treatment, such as intensive surgery, 

Figure 5. Correlation between the risk score and clinicopathological features. (A) Relationship between the risk model and clinical significance. (P value*** 
<.001, P value ** <.01, and P value * <.05). (B,C) Distribution of risk score and patient survival status of pancreatic cancer. (D) The Kaplan–Meier curve demon-
strates that patients in the high-risk group have a poorer prognosis. (E–G) Time-dependent ROC curve of 1-, 3-, and 5-year analysis for survival prediction by 
the risk score.
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chemotherapy, radiation therapy, neoadjuvant therapy, and 
targeted molecular therapy. Traditional clinicopathological 
parameters have been used to reflect the occurrence, develop-
ment, and important role of PAAD, and become a new thera-
peutic target. However, individualized treatment is urgent to 
improve the prognosis of PAAD patients due to their poor sur-
vival rate.

Due to the lack of effective and reliable prognostic biomark-
ers or models, improving the clinical prognosis of PAAD patients 

is still a major clinical problem. In this study, we constructed a 
prognostic risk model for PAAD patients based on the sequenc-
ing results in TCGA and CRGs. Seven CRGs, including RBM14, 
SMAD3, CENPA, KIF23, NUSAP1, INCENP, and SMC4, were 
used to determine the risk score of PAAD patients. It was found 
that the overall survival rate of patients in the high-risk group 
was low. By comparing the AUC of the overall survival rate, 
the prediction accuracy of the risk model constructed by the 
seven genes is very high. As some of the bioinformatics studies 

Figure 6. Nomogram to predict the probability of patients with PAAD. (A) Univariate and multivariate regression analyses of the prognostic value of clinicopath-
ological features. (B) The nomogram to predict 1-, 3-, or 5-year OS in the PAAD patients. (C) The calibration plots for predicting patient 1-, 3-, or 5-year OS. (D) 
The Kaplan–Meier curves represent the survival probability of low, moderate, and high score group patients based on the nomogram. (E-G) The ROC of 1-, 3-, 
5-year survival curves by the nomogram. PAAD = pancreatic adenocarcinoma.
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in PAAD have been carried out from different angles, genetic 
analysis has been widely used in the prediction of various types 
of cancer. In the past few decades, many studies have explored 
the prognostic model of PAAD patients. One study identified 
three methylated genes (SULT1E1, IGF2BP3, and MAP4K4) 
to construct a prognostic model. The results showed that the 
risk model exhibited significant prognostic accuracy for PAAD 
patients (AUC of 5-year OS=0.69), especially for those with 

advanced stage and metastatic lymph nodes.[13] In another study, 
Wu et al established a nine-gene signature to predict the overall 
survival of PAAD patients. The AUC for the 3-year survival pre-
diction of the risk model was 0.621 in the training cohorts.[14] 
The previously mentioned 4-gene model based on transcriptome 
imbalance proved that the AUC of 1-year and 3-year survival in 
the validation group reached 0.747 and 0.695, respectively.[5] 
However, our 7-gene model predicted AUCs of 1-, 3-, and 
5-year survival rates of 0.719, 0.735, and 0.749, respectively. 
Therefore, compared with the nine-gene model, the prognostic 
features in our study obtain higher accuracy with less complex-
ity. To the best of our knowledge, this is the first study of cell 
cycle-related genes (CRGs) in pancreatic cancer. The AUC of our 
study is higher than that of most existing studies.

In addition, we also combined the 7-gene risk signature with 
clinicopathological characteristics to construct a nomogram. 
According to the results of the time-dependent ROC curve, our 
nomogram showed high stability and accuracy in predicting 
prognosis. Our nomogram indicated that the clinical outcome 
prediction of 1-, 3- and 5-year OS in PAAD patients had high 
accuracy. These results showed that our risk model and compre-
hensive nomogram have high accuracy in predicting the overall 
survival rate of PAAD patients.

Among the seven genes identified, some of the genes have 
been reported to play roles in the initial and progression of 
various cancers. Six genes were up-regulated in the tumor 

Table 2

Corresponding risk score for each variable and total score.

Variables Category Score 

Grade G1 0
G2 15
G3 26

LNM Negative 0
Positive 75

Tumor status Tumor free 0
With tumor 85

Risk signature Low 0
High 77.5

Total score Low risk 0-101
 Moderate risk 103.5–178.5
 High risk ≥186

Figure 7. Tumor mutation characteristics in PAAD patients. Waterfall plot showing mutation profiles of patients in (A) low-risk group and (B) high-risk group. The 
survival analysis of patients’ (C) disease-specific survival and (D) overall survival based on tumor mutation burden scores. PAAD = pancreatic adenocarcinoma.
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group and high-risk group consisting of SMAD3, CENPA, 
KIF23, NUSAP1, INCENP, and SMC4. Therefore, we spec-
ulate that these genes play a role of oncogenes in the devel-
opment and progress of PAAD. For example, linc00462 
promotes PAAD proliferation, cell migration, invasion, and 
tumor metastasis through the Smad2/3 pathway.[15] What’s 
more, KIF23, NUSAP1, and SMC4 enhanced cell prolifera-
tion and invasion and acted as potential biomarkers for the 
diagnosis and prognosis of PAAD.[16–18] Our results showed 
that due to the high expression of CENPA in PAAD, CENPA 
was initially identified as an oncogene and confirmed that 
its expression was related to tumor invasiveness. CENPA has 
long been considered to be up-regulated in a variety of malig-
nant tumors, especially prostate cancer, and can promote 
tumor growth, drug resistance, and metastasis.[19,20] In our 
risk model, RBM14 is the only highly expressed gene in the 
low-risk group. RBM14 is an RNA binding protein (RBP), 
which can encode ribonucleoprotein and act as a nuclear 
coactivator and RNA splicing regulator. RBM14 prevents 
the assembly of the centromeric protein complex and main-
tains the integrity of the mitotic spindle. RBM14 also played 
a role as a new centromeric protein complex assembly inhib-
itor.[21] Finally, we integrated genomic and clinicopatholog-
ical features to diagnose and predict the overall survival of 
PAAD. In future research, we may design a rapid detection 
kit to indicate the expression of seven genes and calculate 
the risk score of each patient, to make this process simple 
and convenient.

Combined with GO enrichment analysis and KEGG 
enrichment analysis, the results suggest that these genes 
are closely related to the cell cycle. Cell-cycle-related genes 
had been reported in many other cancers such as endome-
trial cancer and gastric cancer[6,7] Cell cycle progression 
increased with sequential inactivation of PAAD suppressors, 
yet remained higher in metastases and driven by cell cycle 
regulatory genes.[22] Cell cycle inhibitors had outperformed 
in many types of tumors, and this treatment would act as a 
new therapeutic direction for advanced PAAD.[23] In GSEA 
analysis, metabolism-related functions and certain pathways 
were found to be significant. PAAD cells have extensively 
reprogrammed metabolism, which is driven by oncogene-me-
diated cell-autonomous pathways, the unique physiology of 
the tumor microenvironment, and interactions with non-can-
cer cells.[24] Hu et al found that UHRF1 promotes aerobic 
glycolysis and proliferation in PAAD.[25] Tumor cells of PAAD 
utilized “metabolic reprogramming” to satisfy their energy 
demand and support malignant behaviors including metasta-
sis. What’s more, PAAD cells show extensive enhancement of 
glycolysis.[26] To better understand the specific mutant char-
acteristics of patients in different risk groups, we conducted 
the mutation analysis and calculated the TMB scores. In 
our study, we also found that mutations of KRAS and TP53 
were very common in both high- and low-risk groups. Most 
PAADs arise from microscopic non-invasive epithelial pro-
liferation within the pancreatic ducts. There are four major 
driver genes for PAAD: KRAS, CDKN2A, TP53, and SMAD4. 
KRAS mutation and alterations in CDKN2A are early events 
in pancreatic tumorigenesis.[27] What’s more, tumor mutation 
burden was also a significant factor for both DSS and OS in 
PAAD.[28]

Our research still has some limitations and deficien-
cies. First of all, since the model was developed based on 
sequenced expression profiles, we need more research to 
confirm whether the expression level of these genes is con-
sistent with the transcription level in PAAD. Then, due to 
the limited clinical information of patients, we cannot con-
duct subgroup analysis by layering more factors. Last but 
not least, we still need a large, multicenter, and prospective 
clinical cohort to confirm the accuracy of our study, because 

the construction and evaluation of the prediction model are 
based on public data sets.

5. Conclusion
In conclusion, we constructed a cell cycle-related prognostic 
model for PAAD that can accurately predict prognosis and 
facilitate therapeutic decision-making and clinical monitoring. 
Further construction of the nomogram presented greater advan-
tages in stability and accuracy for prognosis prediction and was 
promising to be applied for clinical prognostic evaluation of 
PAAD patients.
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