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Hyperhomocysteinemia (HHcy) is derived from the abnormal metabolism of homocysteine
(Hcy) and is related to metabolic-related diseases. In addition, HHcy combined with
hypertension increases the risk of cardiovascular diseases (CVD). However, the
mechanism of HHcy aggravating hypertensive arterial damage and the efficacy of folate
(FA) as a beneficial supplement have not been fully elucidated. In this study, we established
a rat HHcy model and a hypertension combined with HHcy model. Rat tail artery blood
pressure (BP), plasma Hcy, serum superoxide dismutase (SOD), and malondialdehyde
(MDA) were measured. Rat thoracic aorta was for pathological analysis after 12 weeks of
the experiment. The relative expression levels of oxidative stress and immune/inflammation
in rat arterial tissues were detected by quantitative real-time polymerase chain reaction
(qRT-PCR) and western blotting. The results demonstrated that the relative expression
levels of oxidative stress and immune/inflammation were the highest in the hypertension
combined with HHcy group, followed by the hypertension group. Compared with the
hypertension group, the hypertension combined with HHcy group up-regulated the
expression levels of interleukin-6 (IL-6) and nuclear factor-κ-gene binding (NF-κB) p65/
Rela, but not NADPH oxidase (Nox). Furthermore, folate inhibited the expression of IL-6
and NF-κB p65/Rela, reduced the levels of MDA and HHcy, but significantly increased the
SOD level. In conclusion, HHcy synergistically aggravated the arterial damage factor of
hypertension through immune/inflammatory response. However, folate demonstrated
anti-inflammatory properties and reversed the NF-κB p65/Rela/IL-6 level induced by
HHcy in hypertensive rats.
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INTRODUCTION

Epidemiological studies have found that the incidence of hypertension combined with
hyperhomocysteinemia (HHcy) is relatively high in China (Li et al., 2007). In addition, HHcy
also significantly increases the incidence of cardiovascular disease (CVD) (Chen et al., 1963). The
special feature of hypertension combined with HHcy is the combination of HHcy, which is the
abnormal accumulation of homocysteine (Hcy) in the body. Hcy is a metabolic-intermediate product
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of dietary methionine after demethylation and is also a pivotal
molecule connecting tetrahydrofolate metabolism and trans-
sulfur metabolism (Henrieta et al., 2016; Weber et al., 2016).
The main causes of HHcy (Fowler, 2005; Asfar and Safar, 2007;
Wierzbicki, 2007; Humphrey et al., 2008) include the metabolic
enzyme deficiency (catalytic enzyme involved in the Hcy
metabolic pathway), cofactor deficiency (vitamin B), excessive
intake of methionine, certain diseases, some drugs and the
excretion dysfunction of the kidney. Therefore some scholars
propose that HHcy is a marker (Fu et al., 2017) of abnormal
methyl metabolism (including methionine metabolism and folate
metabolism) and/or abnormal transsulfur metabolism in the
body. Another statement indicates that the unique thiol
structure of HHcy/Hcy has molecular toxicity and is the cause
of CVD (Gurda et al., 2015).

Studies have found that HHcy is mostly accompanied by an
increase in reactive oxygen species (ROS) and inflammation
(Hu et al., 2018; Yunkai et al., 2018), regardless of whether
HHcy is a marker of abnormal metabolism in the body or an
independent pathogenic factor for CVD. Additionally, the
levels of oxidative stress and immune/inflammation are also
increased in patients with hypertension (Guzik and Touyz,
2017). It is known that NADPH oxidase (Nox) enzyme is an
important member of integrated stress response in the body
and is also the main source of ROS (Cifuentes-Pagano et al.,
2012; Chuong Nguyen et al., 2015). In addition, the Nox family
is highly expressed in vascular tissues, among which Nox4 is
more expressed in endothelial cells (Bedard and Krause, 2007).
Furthermore, the NF-κB family is widely involved in tissue cell
metabolism and is also a significant immune/inflammation
response molecule (Polesso et al., 2017). Its activating
molecule NF-κB p65/Rela can induce inflammatory
cytokines, such as tumour necrosis factor-alpha (TNF-a)
and interleukin-6 (IL-6) (Proto et al., 2015), while inactive
molecule NF-κB2 is the opposite. However, the mechanism of
HHcy promoting hypertensive arterial damage and the
relationship between hypertension combined with HHcy
and the Nox/NF-κB pathway molecules are not fully
understood.

Epidemiological studies found (Holt et al., 2009) that a diet high
in fruit and vegetables, rich in folate, is associated with lower levels of
markers of inflammation and oxidative stress. Folate is one of the
essential members of group B vitamins and provides a significant
one-carbon unit for the methylation modification required by the
body’smetabolism.Moreover, folate also promotes the conversion of
Hcy tomethionine to significantly reduce the concentration ofHHcy
(Chan et al., 2017; Vezzoli et al., 2020; Zhao et al., 2020). Therefore,
in China, folate has been used as an important pharmaceutical
ingredient against hypertension combined with HHcy (Li et al.,
2007). Besides, folate is also a powerful antioxidant (Jiang et al., 2010)
and is closely associated with activated immune cells that highly
express folate receptors (Cifuentes-Pagano et al., 2012; Chuong
Nguyen et al., 2015). However, the precise mechanism underlying
folate against arterial injury of hypertension combined with HHcy
has not been fully elucidated. In particular, it is still unclear whether
folate is involved in the mechanisms of anti-inflammation and
immune regulation.

In this study, we constructed three models: HHcy rats model
(HHcy group), spontaneously hypertensive rats (SHR) combined
with HHcy model (HHcy + SHR group), and folate (FA)
intervention SHR combined with HHcy model (HHcy + SHR
+ FA group). We observed the pathology of rat artery and
compared the oxidative stress and immune-inflammatory
factors, in order to explore the pharmacological effects of
folate on arterial damage exacerbated by HHcy and the
underlying cellular and molecular mechanisms of HHcy and
folate.

MATERIAL AND METHODS

Animals
Sixteen male Wistar-Kyoto rats (WKY) and 24 male
spontaneously hypertensive rats (SHR) (250–270 g,
12 weeks old) were obtained from the Beijing Vital River
Laboratory Animal Center (Beijing, China). They were
maintained on a 12:12 h light/dark cycle (lights on 08:
00–20:00) in an air-conditioned constant temperature (22 ±
2°C) colony room, with free access to water and food.
Animal care and experimental protocol for this study were
approved by the Committee on the Use of Live Animals in
Teaching and Research of Qianfoshan Hospital. The
Laboratory Animal Unit of Qianfoshan Hospital was fully
accredited by the Association for Assessment and
Accreditation for Laboratory Animal Care (AAALAC
International).

Experimental Grouping
The sixteen male WKYs were randomly distributed into two
experimental groups: WKY group and HHcy group (n � 8/
group); the 24 male SHRs were randomly distributed into
three experimental groups: SHR group, HHcy + SHR group
and HHcy + SHR + FA group (n � 8/group). The rats in the
WKY group and the SHR group were administered physiological
saline (PS, 5 ml/kg, twice a day) intraperitoneally for 12 weeks.
Additionally, the rats in the HHcy group, the HHcy + SHR group
and the HHcy + SHR + FA group were injected intraperitoneally
with 2% DL-Hcy (5 ml/kg, twice a day, H4628, Sigma-Aldrich, St.
Louis, United States) for 12 weeks. During the last 8 weeks of the
experiment, the HHcy + SHR + FA group was given folate
(0.4 mg/kg/d, F7876, Sigma) by gavage, and the other four
groups were given gavage of the same amount of PS. The
folate was freshly dissolved in 0.5 ml PS immediately before
gavage (Figure 1).

Blood Pressure Measurement
Systolic blood pressure (SBP) and diastolic blood pressure (DBP)
of rat tail artery were monitored at the same time of day with a
noninvasive BP measurement system (Beijing Ruolong
Biotechnology Company, BP-2010A) under rat conscious state.
All rats were tested for BP at least every 4 weeks in the 12-week
experiment. For each BP test, each rat was subjected to at least
three consecutive BP measurements, and an average BP value was
taken as the final BP of each rat.
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Specimen Preparation
Rats were anesthetized by intraperitoneal injection of sodium
pentobarbital (50 mg/kg, i. p.), and then blood samples were
collected from vena cava to measure plasma Hcy, serum
malondialdehyde (MDA), and superoxide dismutase (SOD).
Before regaining sensation, the rats were euthanized by
bleeding and then their thoracic aorta was harvested. Each
thoracic aorta was divided into two parts: one part was
prepared by standard methods for pathological analysis; the
other part was immediately frozen in liquid nitrogen, and then
was stored at −80°C to measure protein levels by western blotting
and mRNA levels by quantitative real-time polymerase chain
reaction (qRT-PCR).

Measurement of Hcy, MDA, and SOD
All rat blood samples were sent to the laboratory of
Qianfoshan Hospital for measurement. The concentration
of plasma Hcy was measured by using a Cobas8000
automatic biochemistry analyzer (Roche, Switzerland). The
activity of serum SOD and the level of serum MDA were
determined by using commercial kits (Jiancheng Institute of
Biological Technology, Nanjing, Jiangsu, China) according to
the manufacturer’s instructions.

Histopathological Analysis
Thoracic aortas slices (5 μm thick) were deparaffinized and
subjected to hematoxylin-eosin (HE) staining (Service
Biological Technology Co., Ltd., Wuhan, China). Images of
three microscopic fields in each slice were captured
(magnification, ×400) under an inverted fluorescence
microscope (Olympus, Tokyo, Japan), and the relative count
of vascular smooth muscle cells (VSMCs) was measured by
Image-Pro Plus 6.0 software, independent of the orientation,
form or size of cell nucleus.

Thoracic aortas slices (5 μm thick) were deparaffinized and
subjected to Masson staining (Service Biological Technology Co.,
Ltd., Wuhan, China). Images of three microscopic fields in each
slice were captured (magnification, ×400) under an inverted
fluorescence microscope (Olympus, Tokyo, Japan), and
collagen deposition in the vascular wall was analyzed using
Image-Pro Plus 6.0 (Media Cybernetics, Inc., Rockville, MD,
United States). The ratio of collagen (blue) to the fixed area of
the thoracic aorta was calculated as the result of semi-quantitative
analysis of collagen deposition.

qRT-PCR
Total RNA was extracted from the homogenate of fresh-frozen
thoracic aorta without adipose tissue using TRIzol reagents
(Invitrogen, 15596026). Afterwards, the RNA was quantified
spectrophotometrically (Spectrophotometer, Merinton,
SMA4000) and was reverse transcribed into cDNA with RT
reagent kit with gDNA Eraser (Takara, RR047A) for qRT-
PCR. The primer sequences of IL-6, TNF-α, NF-κB p65/Rela,
NF-κB2, Nox2, and Nox4 were used to determine gene expression
using TB Green Premix Ex TaqⅡ (Takara, RR820A) in a real-time
PCRmachine (ABI ViiA 7, Applied Biosystems, Foster City, CA).
The program was run with reaction cycling of initial denaturing
(95°C, 30 s), followed by 40 cycles of denaturing (95°C, 5 s) and
extension (60°C, 30 s). Additionally, a melting curve was run to
confirm specificity of PCR products. At last, gene expression
levels were normalized to GAPDH expression levels, and the
relative quantity of mRNA expression was calculated according to
the cycle threshold (2−△△Ct) method. The primer sequences of
target genes for amplification are listed in Table 1.

Western Blotting
Total proteins were extracted from the homogenate of fresh-
frozen thoracic aorta without adipose tissue by using the Protein

FIGURE 1 |Diagram of the study design. The horizontal lines represent the intraperitoneal injection of different drug. The wavy lines represent the gavage of different
drug. The arrows refer to the intervention points of different experimental operations. WKY, Wistar-Kyoto; HHcy, hyperhomocysteinemia; SHR, spontaneously
hypertensive rat; FA, folate; PS, physiological saline; Hcy, homocysteine; MDA, malondialdehyde; SOD, superoxide dismutase; WB, western blotting; qRT-PCR,
quantitative real-time polymerase chain reaction.
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Extraction Kit (invent, SA-03-BV). Protein samples (30 μg per
lane) were separated by SDS-PAGE and were transferred to
PVDF membrane. Afterwards, the PVDF membrane was
blocked with 5% milk in Tris-buffered saline Tween and
incubated with primary antibodies (Anti-IL-6, PTG, 21865-1-
AP; Anti-TNF-α, PTG, 17590-1-AP; Anti-NOX2, Abcam,
ab129068) overnight at 4°C. Then the PVDF membranes
were washed with Tris-buffered saline Tween solution and
incubated with horseradish peroxidase-conjugated second
antibody for 1 h. The ChemiDoc™ Touch Gel imaging
system (Bio-Rad, Hercules, CA, United States) was used to
visualize immunoreactivity with a chemiluminescent HRP
substrate (Vazyme, Nanjing, Jiangsu, China). The band
intensities were determined using Image Lab software and
expressed relative to GAPDH.

Statistical Analysis
Statistical analysis was conducted using one-way ANOVA
followed by the LSD test. Results were expressed as means ±
SD. All statistical analyses were performed using SPSS
software version 13.0. p < 0.05 was considered statistically
significant.

RESULTS

Comparison on Hcy Between Groups
After intraperitoneal injection of DL-Hcy, rat plasma Hcy levels
were significantly increased in the HHcy group than the WKY
group (HHcy group, 25.48 ± 2.01 μmol/L vs. WKY group, 6.30 ±
1.47 μmol/L; p < 0.05, n � 8). Similarly, the levels of serum Hcy

TABLE 1 | Primer sequences for quantitative real-time polymerase chain reaction.

Name Sequence -F Sequence -R

TNF-α GGCGTGTTCATCCGTTCTC CTTCAGCGTCTCGTGTGTTTCT
IL-6 ATTGTATGAACAGCGATGATGCAC CCAGGTAGAAACGGAACTCCAGA
NOX2 CCTGGAGACCCAGATGCAAGA CGTGGTGCACAGCAAAGTGA
NOX4 ACTGGTGAAGATTTGCCTGGAAG CACAGTATAGGCACAAAGGTCCAGA
NF-κB p65/Rela ATCCCTGCTTCCCCTTTCTC CTGTCTTATGGCTGAGGTCTGGT
NF-κB 2 CTGATGGCACAGGACGAGAA TGGGCTATCTGCTCAATGACAC

FIGURE 2 | The levels of homocysteine (Hcy), superoxide dismutase (SOD), malondialdehyde (MDA), systolic blood pressure (SBP), and diastolic blood pressure
(DBP) in Wistar-Kyoto (WKY) group, hyperhomocysteinemia (HHcy) group, spontaneously hypertensive rat (SHR) group, HHcy + SHR group, and HHcy + SHR + folate
(FA) group. (A) The levels of Hcy. (B) The levels of SBP and DBP. (C) The levels of MDA. (D) The levels of SOD. Values represent means ± SD (*p < 0.05 vs. the WKY
group, $p < 0.05 vs. the SHR group, &p < 0.05 vs. the HHcy + SHR group, n � 8).
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were also significantly increased in the HHcy + SHR group than
the SHR group (HHcy + SHR group, 27.61 ± 1.53 μmol/L vs. SHR
group, 8.26 ± 1.77 μmol/L; p < 0.05, n � 8). The Hcy levels of both
the HHcy group and the HHcy + SHR group were more than
15 μmol/L, which fully complies with the HHcy standard (Hu and
Xu, 2009). After folate treatment, the plasma Hcy levels were
significantly lower in the HHcy + SHR + FA group compared
with the HHcy + SHR group (HHcy + SHR + FA group, 10.93 ±
2.34 μmol/L vs. HHcy + SHR group, 27.61 ± 1.53 μmol/L; p <
0.05, n � 8). However, the Hcy levels of the HHcy + SHR + FA
group were still significantly higher than those of the SHR group
(HHcy + SHR + FA group, 10.93 ± 2.34 μmol/L vs. SHR group,
8.26 ± 1.77 μmol/L; p � 0.007, n � 8). Moreover, the Hcy levels of
the SHR group were also higher than those of the WKY group
(SHR group, 8.26 ± 1.77 μmol/L vs. WKY group, 6.30 ±
1.47 μmol/L; p � 0.041, n � 8). (Figure 2A; Table 2).

Comparison on BP Between Groups
After intraperitoneal injection of DL-Hcy, the SBP, and DBP of
HHcy rats were slightly higher than those of the WKYs, but the
differences between the two groups were not statistically
significant (HHcy group: SBP, 121.88 ± 9.89 mmHg; DBP,
86.63 ± 6.80 mmHg vs. WKY group: SBP, 119.25 ±
11.85 mmHg; DBP, 81.13 ± 4.32 mmHg; p > 0.05, n � 8). A
similar result also existed in the HHcy + SHR group compared
with the SHR group (HHcy + SHR group: SBP, 209.75 ±
9.81 mmHg; DBP, 140.63 ± 7.39 mmHg vs. SHR group: SBP,
205.13 ± 9.54 mmHg; DBP, 134.88 ± 6.73 mmHg; p > 0.05, n � 8).
After folate treatment, there was no significant BP change
between the HHcy + SHR + FA group and the HHcy + SHR
group. In summary, the above results showed that neither HHcy
nor folate had a significant effect on BP changes (Figure 2B;
Table 2).

Comparison on Oxidative Stress Indicators
in Peripheral Blood
After intraperitoneal injection of DL-Hcy, the levels of serum
MDA, as a product of ROS oxidized lipids, were significantly
increased in the HHcy group rats compared with the WKYs
(HHcy group, 6.50 ± 1.07 nmol/ml vs. WKY group, 5.37 ±
0.85 nmol/ml; p � 0.026, n � 8). The same result also
appeared in the HHcy + SHR group compared with the SHR
group (HHcy + SHR group, 9.11 ± 1.12 nmol/ml vs. SHR group,

7.63 ± 0.70 nmol/ml; p � 0.004, n � 8). After folate treatment, rat
serumMDA levels were significantly lower in the HHcy + SHR +
FA group than the HHcy + SHR group (HHcy + SHR + FA group,
6.72 ± 1.05 nmol/ml vs. HHcy + SHR group, 9.11 ± 1.12 nmol/ml;
p < 0.05, n � 8). However, there was no significant difference
between the HHcy + SHR + FA group and the SHR group (HHcy
+ SHR + FA group, 6.72 ± 1.05 nmol/ml vs. SHR group, 7.63 ±
0.70 nmol/ml; p � 0.069, n � 8). (Figure 2C; Table 2).

After intraperitoneal injection of DL-Hcy, the levels of serum
SOD, as a molecule against ROS, were significantly lower in the
HHcy rats compared with the WKYs (HHcy, 479.64 ± 18.38
U/mL vs. WKY, 516.85 ± 28.69 U/mL; p � 0.004, n � 8). The same
result also appeared in the HHcy + SHR group compared with the
SHR group (HHcy + SHR group, 362.73 ± 30.23 U/mL vs. SHR
group, 432.50 ± 19.73 U/mL; p < 0.05, n � 8). After folate
treatment, rat serum SOD levels were significantly higher in
the HHcy + SHR + FA group than the HHcy + SHR group
(HHcy + SHR + FA group, 479.04 ± 20.62 U/mL vs. HHcy + SHR
group, 362.73 ± 30.23 U/mL; p < 0.05, n � 8). Moreover, the SOD
levels of the HHcy + SHR + FA group were still significantly
higher than those of the SHR group (HHcy + SHR + FA group,
479.04 ± 20.62 U/mL vs. SHR group, 432.50 ± 19.73 U/mL; p <
0.05, n � 8) (Figure 2D; Table 2).

In summary, the HHcy + SHR group significantly increased
the oxidative stress level (increasing MDA and decreasing SOD)
in the blood circulation, followed by the SHR group and the
HHcy group. Folate therapy reduced the level of oxidative stress
in peripheral blood, especially by significantly increasing the level
of anti-oxidative stress molecule SOD.

Comparison on Aortic Pathology
The images of HE staining (Figure 3A) showed that the arterial
wall of all SHRs was significantly thicker than that of all WKYs.
The arrow indicated more VMSCs degeneration and cytoplasmic
vacuolation in the HHcy group.

The relative number of VSMCs in the vascular medium was
measured by a computer microscope system at the same
magnification. Due to the proliferation and hypertrophy of
VSMCs and the deposition of extracellular matrix collagen in
the pathological groups, the number of VSMCs in the same area
under the same magnification was significantly reduced.
Therefore, our data showed that compared with the WKY
group, the number of VSMCs dropped the most in the HHcy
+ SHR group (p < 0.05), followed by the SHR group (p < 0.05) and

TABLE 2 | The levels of Hcy, MDA, SOD, SBP, and DBP in five groups.

Group WKY (n = 8) HHcy (n = 8) SHR (n = 8) HHcy + SHR
(n = 8)

HHcy + SHR + FA
(n = 8)

Hcy (μmol/L) 6.30 ± 1.47 25.48 ± 2.01* 8.26 ± 1.77* 27.61 ± 1.53*$ 10.93 ± 2.34*$&

MDA (nmol/mL) 5.37 ± 0.85 6.50 ± 1.07* 7.63 ± 0.70* 9.11 ± 1.12*$ 6.72 ± 1.05*a&

SOD (U/mL) 516.85 ± 28.69 479.64 ± 18.38* 432.50 ± 19.73* 362.73 ± 30.23*$ 479.04 ± 20.62*$a&

SBP (mmHg) 119.25 ± 11.85 121.88 ± 9.89 205.13 ± 9.54* 209.75 ± 9.81* 205.25 ± 9.45*
DBP (mmHg) 81.13 ± 4.32 86.63 ± 6.80 134.88 ± 6.73* 140.63 ± 7.39* 146.63 ± 11.50*$

Hcy, homocysteine; MDA, malondialdehyde; SOD, superoxide dismutase; SBP, systolic blood pressure; DBP, diastolic blood pressure; HHcy, hyperhomocysteinemia; FA, folate. Values
represent means ± SD (*p < 0.05 vs. the WKY group; $p < 0.05 vs. the SHR group; &p < 0.05 vs. the HHcy + SHR group; n � 8).

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 6515825

Zhang et al. Anti-Inflammatory and Anti-Oxidative Properties of Folate

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


the HHcy + SHR + FA group (p � 0.002). However, there was no
statistical difference between the HHcy + SHR + FA group and
the HHcy + SHR group (p � 0.064). (Figure 3B).

Collagen deposition, as another feature of vascular
remodeling, was semi-quantified by Masson staining.
Representative images of masson staining of rat aorta are in
Figure 3C. Our data showed that collagen deposition in the aorta
increased markedly in the HHcy + SHR group (p � 0.017), the
SHR group (p � 0.018), and the HHcy + SHR + FA group (p �
0.003) compared with the WKY group. However, there was also
no statistical difference between the HHcy + SHR + FA group and
the HHcy + SHR group (p � 0.398) (Figure 3D).

In short, hypertension combined with HHcy significantly
induced vascular structural changes, including VSMC
proliferation and hypertrophy and extracellular matrix
collagen deposition. Among them, hypertension was the main
contributor. However, folate did not significantly reverse the
changes in vascular structure.

Comparison on Immune/Inflammation
Indicators in Aortic Tissue
The aorta mRNA relative expression levels of IL-6, TNF-α, NF-κB
p65/Rela and NF-κB2 were significantly increased in the
hypertension combined with HHcy group compared with the

WKY group (p < 0.05) (Figures 4A–D). What’s more, the aorta
protein relative expression levels of IL-6 and TNF-α were also
significantly increased in the hypertension combined with HHcy
group compared with the WKY group (p < 0.05) (Figures 5A,B).
Furthermore, the protein relative expression levels of IL-6 were
increased in the HHcy group than the SHR group (p � 0.029;
Figure 5A), whereas, the mRNA relative expression levels of
TNF-α were increased in the SHR group than the HHcy group
(p � 0.001; Figure 4B). After folate intervention, the aorta mRNA
expression levels of IL-6 and NF-κB p65/Rela were significantly
decreased in the HHcy + SHR + FA group than the HHcy + SHR
group (p < 0.05) (Figures 4A,C), and the aorta protein expression
levels of IL-6 were also significantly decreased in the HHcy + SHR
+ FA group than the HHcy + SHR group (p < 0.05) (Figure 5A).

In summary, both HHcy and hypertension were related to rat
arterial inflammation, and HHcy combined with hypertension
could significantly increase arterial inflammation. Conversely,
folate showed a significant inhibitory effect on the immune/
inflammation caused by hypertension combined with HHcy.

Comparison on Oxidative Stress Indicators
in Aortic Tissue
The aorta mRNA relative expression levels of Nox2 and Nox4
were only an increasing trend in the HHcy + SHR group

FIGURE 3 | Hematoxylin and eosin (HE) and masson staining of aorta in Wistar-Kyoto (WKY) group, hyperhomocysteinemia (HHcy) group, spontaneously
hypertensive rat (SHR) group, HHcy + SHR group, and HHcy + SHR + folate (FA) group. (A) Representative images of HE staining of rat aorta (original magnification,
×400). (B) Relative cell count of vascular smooth muscle cells (VSMC). (C)Representative images of masson staining of rat aorta (original magnification, ×400). (D) Semi-
quantitative analysis of collagen deposition. The data are presented as the mean ± SD (*p < 0.05 vs. theWKY group, $p < 0.05 vs. the SHR group, &p < 0.05 vs. the
HHcy + SHR group).
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compared with the WKY group (p > 0.05), and there was no
significant change between the HHcy + SHR + FA group and the
HHcy + SHR group (p > 0.05) (Figures 4E,F). However, the
protein relative expression level of Nox2 was significantly
increased in the HHcy + SHR group (p � 0.001) and the SHR
group (p � 0.002) compared with the WKY group. Additionally,
the protein relative expression level of Nox2 was significantly
decreased in the HHcy + SHR + FA group than the HHcy + SHR
group (p < 0.05; Figure 5C).

In summary, the HHcy + SHR group rats highly expressed
Nox2 protein molecule, and folate showed a positive effect on
reducing Nox2 protein expression. However, the difference in the
mRNA relative expression of Nox2 was not as obvious as that in
the protein expression, which needs further verification.

DISCUSSION

Our study found that the Hcy level of SHR was significantly
higher than that of WKY. It indicates that hypertension may have
metabolic abnormalities, especially when hypertension is
accompanied by HHcy that is the accumulation of Hcy under
an abnormal metabolic state. Therefore, in a sense, hypertension
combined with HHcy is related to metabolic-related diseases.
Furthermore, our results demonstrated that hypertension
combined with HHcy had the most significant arterial

pathological changes, and the overall expression levels of
oxidative stress and immune/inflammation molecules in the
arterial tissue were also the most significant. Moreover,
hypertension is the main contributor for the pathological
changes of the arteries in the hypertension combined with
HHcy rats, and hypertension itself is more important than
HHcy in inducing oxidative stress and immune/inflammation
to cause arterial damage.

Epidemiological studies have suggested that HHcy is
associated with increased risk of vascular disease (Boushey,
1995; Graham et al., 1997). Studies have proposed that HHcy
causes atherosclerosis by oxidative stress and immune
inflammation (Koch et al., 1998; Charalambos et al., 2006).
However, our experimental results showed that HHcy alone
did not induce rat arterial remodeling. Although HHcy
increased the levels of oxidative stress in the circulation, it did
not induce the high expression of NOX2 and NOX4 in rat arterial
tissue. Only after cooperating with hypertension, HHcy increased
the expression levels of IL-6 and NF-κBp65/Rela. Furthermore,
studies have suggested that the inflammatory response induced
by HHcy is related to Hcy-protein modification (Jakubowski,
2019). Hcy-protein changes the normal structure and function of
the protein and even acts as an abnormal antigen to trigger an
immune/inflammatory response. Together these findings suggest
that HHcy promotes an inflammatory status and can
synergistically aggravate the arterial damage of hypertension,

FIGURE 4 | The mRNA relative expression levels by quantitative real-time polymerase chain reaction (qRT-PCR) analysis in Wistar-Kyoto (WKY) group,
hyperhomocysteinemia (HHcy) group, spontaneously hypertensive rat (SHR) group, HHcy + SHR group, and HHcy + SHR + folate (FA) group. (A) The mRNA relative
level of interleukin-6 (IL-6). (B) ThemRNA relative level of tumour necrosis factor-alpha (TNF-α). (C) ThemRNA relative level of nuclear factor-κ-gene binding (NF-κB) p65/
Rela. (D) The mRNA relative level of NF-κB2. (E) The mRNA relative level of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox)2. (F) The mRNA
relative level of Nox4. Values represent means ± SD (*p < 0.05 vs. the WKY group, $p < 0.05 vs. the SHR group, &p < 0.05 vs. the HHcy + SHR group, n � 8).
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at least in part, through the NF-κB p65/Rela/IL-6 molecular
pathway.

Folate participates in an essential one-carbon metabolism in
the body and affects hyper-methylation patterns of genetic
material and/or metabolic molecules (Stenvinkel et al., 2010).
In addition, folate provides one-carbon molecule for Hcy to
promote the reverse synthesis of methionine (Henrieta et al.,
2016) and then significantly reduces the concentration of Hcy. A
study found that low folate concentration, independent of HHcy,
may promote atherogenesis (Durga et al., 2005), not only through
a decrease of antioxidant capacity and endothelial function but
also through exacerbation of inflammation and adhesion of
inflammatory molecules in the vessel wall (Li et al., 2006).
Whereas, supplementing vegetables and fruits rich in folate
can reduce inflammation and oxidative stress (Holt et al.,
2009). Our research showed that folate significantly reduced
the levels of HHcy and MDA (oxidative stress product) and

significantly increased the level of SOD (antioxidant stress
molecule). Moreover, the SOD activity level in the HHcy +
SHR + FA group even exceeded the SHR group. However,
folate did not significantly reduce the gene expression of
NOX2 and NOX4. Therefore, we infer that folate has a strong
anti-oxidative stress ability, not by inhibiting or at least not by
significantly inhibiting NOX2 and NOX4, but by directly
stimulating the activity of antioxidant molecule, for example,
nuclear factor erythroid 2-related factor 2 (Nrf-2)/heme
oxygenase-1 (HO-1)/SOD pathway molecules. The Nrf-2/HO-
1/SOD is an important antioxidative stress pathway (Fujiki et al.,
2019), and another study by our experimental team has
confirmed that folate can increase the expression level of Nrf-
2/HO-1/SOD.

We also discovered that folate significantly reduced the
expression levels of IL-6 and NF-κB p65/Rela, but not TNF-α
level. Moreover, the reduction in NF-κB p65/Rela/IL-6 level was

FIGURE 5 | Protein quantitative analysis after normalized to GAPDH and representative western blotting (WB) images in Wistar-Kyoto (WKY) group,
hyperhomocysteinemia (HHcy) group, spontaneously hypertensive rat (SHR) group, HHcy + SHR group, and HHcy + SHR + folate (FA) group. (A) The relative protein
expression level of interleukin-6 (IL-6). (B) The relative protein expression level of tumour necrosis factor-alpha (TNF-α). (C) The relative protein expression level of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox)2. (D) Representative WB images of IL-6, TNF-α, NOX2 and GAPDH. Values represent
means ± SD (*p < 0.05 vs. the WKY group, $p < 0.05 vs. the SHR group, &p < 0.05 vs. the HHcy + SHR group, n � 8).
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in parallel with the impact of folate on HHcy level. It is worth
noting that both IL-6 and TNF-α were increased in hypertension
combined with HHcy rats, among which HHcy was the
contributor for increased IL-6, while hypertension was the
main factor for increased TNF-α. Therefore, we speculate that
folate reverses the NF-κB p65/Rela/IL-6 induced by HHcy. So,
does folate reduce inflammation indirectly by inhibiting HHcy, or
does it have anti-inflammatory properties itself? In order to
explore this issue, we reviewed and summarized the related
literature on folate and immune/inflammation, focusing on
hypertension and CVD.

Literature results show that the role of folate in anti-
inflammation and immune regulation is controversial. Some
studies believed that folate has anti-inflammation and immune
regulation effects. For example, Lei et al. (2019) found that folate
can serve as a potential therapeutic agent against vascular disease
through potential suppression on angiogenesis, inflammation
and oxidative stress. Ahmed et al. (2018) found that folate
protects against prenatal nicotine -induced cardiac injury by
decreasing serum TNF and cyclooxygenase-2 (COX-2)
expression. Kemse et al. (2017) found that the combined
supplementation of folate, vitamin B12, and omega-3 fatty
acids decreases TNF-α level. Tousoulis et al. (2014) found that
folate decreases IL-6 level. Solini et al. (2006) found that a short-
term folate supplementation reduces the circulating levels of
certain inflammatory mediators independently of weight
changes, thus suggesting a potential therapeutic role for folate
in preventing atherosclerosis and CVD. On the contrary, some
studies believed that folate cannot change the inflammatory state
of the body. For example, Christen et al. (2018) found that
combined treatment with folate, vitamin B6 and vitamin B12
lowers HHcy concentration, but it does not alter major
biomarkers of vascular inflammation. Mierzecki et al. (2014)
found that folate supplementation has no influence on the
coagulation, inflammatory and lipid parameters in subjects
with atherosclerosis risk factors. Bleie et al. (2010) found that
in patients with stable coronary atherosclerotic heart disease
(CAD), HHcy-lowering therapy with vitamin B (including
folate) does not affect the levels of inflammatory markers
associated with atherogenesis. Mangoni (2006) summarized
epidemiological studies and interventional studies and then
concluded that folate does not significantly change
inflammatory markers. Besides the above arguments, there are
some viewpoints that folate indirectly leads to a decrease in
inflammation by reducing the concentration of HHcy
(Baszczuk et al., 2015) or by intervening in the one-carbon
cycle (Kemse et al., 2014).

In short, some literature indicate that folate does not
significantly change the level of inflammatory markers of
CVD, which may be related to the inherent etiology of CVD
that may trigger a unique immune inflammatory response.
Furthermore, folate can neither eliminate the inherent etiology
of CVD nor completely block its pathogenesis. This is why folate
fortification is unsuccessfully tested in humans with established
CVD. Although there are more studies supporting the potential
anti-atherosclerosis and anti-inflammatory effects of folate, the

current evidence is still limited. Because the research results of
folate in preventing CVD are ambiguous, it seems necessary to
conduct further research, which will explain in which cases folate
supplementation is useful. However, we can at least confirm that
folate indeed reverse the inflammatory response which is caused
by HHcy, regardless of whether folate indirectly inhibits the NF-
κB p65/Rela/IL-6 pathway by reducing HHcy or whether it has
direct anti-inflammation and immune regulation effects. Our
findings may provide additional explanations and further insights
into the arterial protection mechanism of folate. Therefore, folate
will gain more attention because of its potential to weaken arterial
damage factors in hypertension combined with HHcy.

CONCLUSION

HHcy synergistically aggravated the arterial damage factor of
hypertension through NF-κB p65/Rela/IL-6 signaling pathway,
which could be the target of folate against immune/inflammation.
Additionally, folate also exhibited powerful antioxidant
properties.
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