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ABSTRACT
Pineapple (Ananas comosus (L.) Merr.) is an important tropical fruit with high
economic value. The quality and yield of pineapple will be affected by various environ-
mental conditions. Under adverse conditions, plants can produce a complex reaction
mechanism to enhance their resistance. It has been reported that themember of ethylene
responsive transcription factors (ERFs) plays a crucial role in plant developmental
process and stress response. However, the function of these proteins in pineapple
remains limited. In this study, a total of 74 ERF genes (AcoERFs) were identified in
pineapple genome, named from AcoERF1 to AcoERF74, and divided into 13 groups
based on phylogenetic analysis. We also analyzed gene structure, conserved motif and
chromosomal location of AcoERFs, and the AcoERFs within the same group possess
similar gene structures andmotif compositions. Three genes (AcoERF71,AcoERF73 and
AcoERF74) were present on unanchored scaffolds, so they could not be conclusively
mapped on chromosome. Synteny and cis-elements analysis of ERF genes provided
deep insight into the evolution and function of pineapple ERF genes. Furthermore,
we analyzed the expression profiling of AcoERF in different tissues and developmental
stages, and 22 AcoERF genes were expressed in all examined tissues, in which five genes
(AcoERF13, AcoERF16, AcoERF31, AcoERF42, and AcoERF65) had high expression
levels. Additionally, nineAcoERF geneswere selected for functional verification by qRT-
PCR. These results provide useful information for further investigating the evolution
and functions of ERF family in pineapple.

Subjects Agricultural Science, Genomics, Plant Science
Keywords Pineapple, ERF transcription factors, Phylogenetic analysis, Synteny analysis,
Expression profiles
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INTRODUCTION
Plant growth and development, yield and quality are frequently affected by unfavorable
environmental factors such as drought, salinity, high temperature and cold. In order to
survive these stress conditions, plants have developed complex reaction mechanisms at
the molecular, cellular, and system levels (Mittler, 2006; Loudet & Hasegawa, 2017). Gene
co-expression at the transcriptional level is one of the most important ways to regulate
biological processes. Transcription factors (TFs) play important roles in regulating the
expression of functional proteins when plants are exposed to unfavorable environmental
conditions (Cui et al., 2016). Among these TFs, ethylene responsive transcription factors
(ERFs) play important roles in various biological processes, such as defense responses
and hormonal signal transduction (Agarwal et al., 2010; Sharma et al., 2010; Rashid et al.,
2012). Therefore, it is important to study the evolution and function of these genes in order
to improve yield and the ability to resist the adverse environmental conditions of plant.

The AP2/ERF super-family is one of the largest family in plant, and the member of this
super-family characterized by one or two conserved AP2/ERF domains of approximately
60 to 70 amino acids (Sakuma et al., 2002). It has been reported that the AP2/ERF domain
contains tow conserved elements, YRG and RAYD element, and the core region of RAYD
element has been predicted to form an amphipathic α-helix (Okamuro et al., 1997).
The three-dimensional (3D) structure of the AP2/ERF domain from AtERF1 shows
that the domain is composed of a 3 anti-parallel β-sheets and an α-helix (Allen et al.,
1998). Furthermore, tryptophan (Trp) and arginine (Arg) residues of the β-sheet are
in contact with DNA during transcription (Sharma et al., 2010). Based on the number
of AP2/ERF domains and other DNA binding domains, the AP2/ERF super-family can
be divided into three families:AP2, ERF and RAV (Sakuma et al., 2002; Nakano et al.,
2006). Among the three families, only the AP2 family contains two conserved AP2/ERF
domains, whereas ERF and RAV family contain just a single AP2/ERF domain (Riechmann
& Meyerowitz, 1998). The members of the RAV family include an AP2/ERF domain and a
B3domain (Romanel et al., 2009). Based on the ERF domain binding to DNA sequences,
ERF family has been further classified into twomajor subfamilies: ERF (ethylene responsive
transcription factors) subfamily and CBF/DREB (C-repeat binding factor/dehydration-
responsive element binding factor) subfamily (Nakano et al., 2006). Proteins encoded by
ERF subfamily genes bind to GCC box (AGCCGCC) (Ohmetakagi & Shinshi, 1995; Hao,
Ohmetakagi & Sarai, 1998), whereas the CBF/DREB subfamily genes typically binds to the
DRE and/or C-repeat (A/GCCGAC) (Stockinger, Gilmour & Thomashow, 1997; Riechmann
& Meyerowitz, 1998). The residues at position 14 and 19 of ERF subfamily genes AP2/ERF
domain is alanine (Ala) and aspartic acid (Asp), respectively, whereas DREB subfamily
genes containing valine (Val) at position 14 and glutamine acid (Glu) at positions 19
(Sakuma et al., 2002).

ERFs are located downstream of the ethylene signaling pathway and regulate the
transduction of ethylene as well as the trans-activation of certain transcription factors
related to hormonal signal (Fujimoto et al., 2000; Sharma et al., 2010; Yu et al., 2012).
In addition, ERF proteins are involved in various plant biological processes, such
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as environmental stresses response (Liu, White & Macrae, 1999; Rashotte et al., 2006),
beneficial symbiotic interaction (Vernie et al., 2008), as well as other developmental
processes, such as leaf, flower and embryo development in some plants (Elliott et al.,
1996; Moose & Sisco, 1996; Boutilier et al., 2002; Vernie et al., 2008). To date, ERF family
has been reported in various plant species, such as Arabidopsis thaliana (Sakuma et
al., 2002; Nakano et al., 2006), soybean (Glycine max) (Li et al., 2005; Zhang et al., 2009),
rice (Oryza sativa) (Cao et al., 2006; Nakano et al., 2006; Sharoni et al., 2011; Rashid et
al., 2012), cotton (Gossypium barbadense L.) (Jin & Liu, 2008; Meng et al., 2010), Populus
trichocarpa (Zhuang et al., 2008), tomato (Solanum tuberosum L.) (Sharma et al., 2010; Pan
et al., 2012), grape ((Vitis vinifera L.) (Licausi et al., 2010), cucumber (Cucumis sativus L.)
(Hu & Liu, 2011) and tartary buckwheat (Fagopyum Tataricum) (Liu et al., 2019).

Pineapple (Ananas comosus (L.) Merr.) is one of the most important tropical fruit in
the world (Su et al., 2017; Xie et al., 2018; He et al., 2019). The growth and development of
pineapple is affected by various environmental conditions, such as drought, salt and cold
stress (He et al., 2019). Additionally, pineapple is also an important monocotyledonous,
and it can be considered as a proper model to study the monocot evolution (Ming et al.,
2015; He et al., 2019). Recently, a comprehensive study of the pineapple genome provide
a solid foundation for the study of pineapple gene functions (Ming et al., 2015; Fang et al.,
2016; Su et al., 2017). Due to the great economic and research value of pineapple, it would
be meaningful to make a further study ERF family in pineapple.

Previous study only proposed the existence of DREB subfamily in the ERF family of
pineapple (Chai et al., 2020). However, detail information about the whole ERF family
members in pineapple remains unexplored. In order to investigate the function and
evolution of other ERF family members in pineapple, we conducted a detailed analysis
of the entire ERF family. In this study, 74 pineapple ERF genes were identified and
classified into 13 groups. Furthermore, we also conducted a systematic analysis including
gene structure, motif compositions, chromosome distribution, phylogenetic and synteny
analysis of eachAcoERF gene. In order to further investigate the functions ofAcoERF genes,
we analyzed the expression profile of AcoERF genes in different tissues and stages. The
data generated in this study will help to select the appropriate candidate genes for further
functional studies during pineapple growth and development. This is of great significance
to the investigation of pineapple stress response and variety improvement.

MATERIALS & METHODS
Genome-wide analysis of the ERF family in pineapple
The AP2/ERF amino acid sequences of pineapple and Arabidopsis were downloaded from
Phytozome12 (https://phytozome.jgi.doe.gov/pz/portal.html) (Goodstein et al., 2012).
The Hidden Markov Model (HMM) profiles of the AP2 domain (PF00847) and the
B3 domain (PF02362) were obtained from PFAM database (http://pfam.sanger.ac.uk/)
(Finn et al., 2008) as the queries for search predicted AP2/ERF proteins in the pineapple
dataset using HMMER software 3.0 (http://hmmer.wustl.edu/) with a threshold of e-
value<e−5 (Eddy, 2011). BLAST searches were used to determine the predicted AP2/ERFs
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in pineapple database with all the Arabidopsis AP2/ERFs as queries. All of the candidate
genes were further examined by Simple Modular Architecture Research Tool (SMART,
http://smart.embl-heidelberg.de/) (Letunic & Bork, 2018) to confirm the protein sequences
derived from the selected pineapple AP2/ERF domains. ExPasy proteomics server
(http://expasy.org/) (Gasteiger et al., 2003) was used to predicate the basic information
of AcoERF proteins, including molecular weight (MW) and isoelectric points (pI ).

Gene ontology (GO) annotation
To investigate the putative function of the candidateAcoERF genes, the gene ontology (GO)
annotations of the pineapple ERF family members were downloaded from Phytozome12
(https://phytozome.jgi.doe.gov/pz/portal.html) (Goodstein et al., 2012).

Sequence alignment and phylogenetic analysis
Multiple sequence alignment of the AcoERF proteins was performed using DNAMAN
(version 9) with the default parameters (Wang, 2015), and the diagram was visualized
using ESPript 3.0 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) (Gouet, Robert &
Courcelle, 2003). To explore the evolution relationships of ERF gene family members
in pineapple, the ERF amino acid sequences from pineapple and Arabidopsis were
used. The multiple sequence alignments of all ERF proteins were performed by using
MUSCLE (http://www.ebi.ac.uk/Tools/msa/muscle/) (Edgar, 2004), with the default
parameters. Subsequently, the phylogenetic trees were constructed using MEGA6.0
software (http://www.megasoftware.net) (Tamura et al., 2013) via the Neighbor-joining
(NJ) method with the following parameters: node robustness was detected using the
bootstrap method, and the bootstrap was set to 1000 replications. Finally, the phylogenetic
trees were generated by iTOL (https://itol.embl.de) (Letunic & Bork, 2016).

Gene structure and conserved motif predictions
The exon/intron structures of AcoERF genes were obtained from the online program
Gene Structure Display Server (GSDS, http://gsds.gao-lab.org/) (Hu et al., 2015). The
conserved motifs in the AcoERF proteins sequences were investigated by Multiple EM for
Motif Elicitation (MEME, http://meme-suite.org/tools/meme) (Bailey et al., 2015). The
optimized parameters were as follows: maximum number of motifs was set to 20, the
optimum width of motifs was set to 10-50 residues, and other options were set to default.

Chromosomal localization and synteny analysis
The information of chromosome localization of all pineapple ERF genes was obtained
from Phytozome12 (https://phytozome.jgi.doe.gov/pz/portal.html). And then, each genes
was mapped on chromosomes using MapChart software based on positional information
in the pineapple genome project (Voorrips, 2002). For synteny analysis, the sequence of
rice and Arabidopsis ERF proteins were downloaded from Phytozome12. The potential
anchors within pineapple, between pineapple and Arabidopsis or rice were searched by
BLASTP with the score value of E<1e−5 and top 5 matches (Zhang et al., 2018). The
syntenic block of ERFs within pineapple was visualized using the Circos Program (version
0.69) (http://circos.ca/) (Krzywinski et al., 2009).
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The syntenic blocks between pineapple and 2 representative plants were constructed
using J. Craig Venter Institute (JCVI, https://github.com/tanghaibao/jcvi) (Tanenbaum et
al., 2010). The Synonymous (Ks) and non-synonymous (Ka) values of AcoERF sequences
were calculated using bio-pipeline-master (https://github.com/tanghaibao/bio-pipeline)
(Tang et al., 2008).

Expression analysis of AcoERF genes in different tissues
To investigate the expression patterns of the AcoERF genes in different development and
growth processes of pineapple, the RNA-Seq data of pineapple roots, leaves, flowers, fruits
(stage 1-6) were downloaded from the online website Pineapple Genomics Database (PGD,
http://pineapple.angiosperms.org/pineapple/html/download.html) (Ming et al., 2015). The
criterion of different stage of ovule, sepal, stamen and petal was referenced to the previously
described methods (Su et al., 2017). Total RNA of these tissues was extracted using RNA
extracted kit (Omega Bio-Tek, Shanghai, China) based on the supplier’s instruction, and
the samples were prepared based on the published method (Chen et al., 2017). The cDNA
libraries for sequencing were constructed using the NEBNext UltraTM RNA Library Prep
Kit for Illumina (NEB). The reads were aligned to pineapple genome by the TopHat 2.0.0
software with default parameters (Trapnell et al., 2012). The Fragments Per Kilobase of
transcript per Million fragments mapped (FPKM) value of each gene was calculated using
Cuffdiff and Cufflinks software with default parameters. Finally, a heatmap of AcoERF
expression profile was produced by the heatmaply R package (Galili et al., 2018).

Analysis of cis-elements from AcoERF promoters
The promoter sequences of the AcoERF genes were downloaded from the Pineapple
Genomics Database (http://pineapple.angiosperms.org/pineapple/html/index.html). And
then, the stress- related cis-elements of AcoERF genes were predicted using the Plant
Cis-Acting Regulatory Element (PlantCARE, http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/) (Lescot et al., 2002).

Plant material and abiotic treatments
The pineapple materials were provided by the Qin Lab (Center for Genomics and
Biotechnology, Fujian Agriculture and Forestry University, Fujian, China). The seedings
were grown in a greenhouse at 25 ◦C, 16-h light/8-h dark photoperiod and a relative
humidity of 70% for one month. And then the one-month-old pineapple plants were
exposed to the following treatments: cold stress (4 ◦C), drought stress (350 mMMannitol)
and salt stress (150 mM NaCl). The samples of pineapple roots and leaves were collected
after 6, 12, 24 and 48 h treatments. The one-month-old plants that without any stress
treatment were used as controls in the expriment. The leaves and roots were harvested at
the indicated time, and stored at −80 ◦C for subsequent analysis.

RNA isolation and qRT-PCR analysis
Total RNA of the pineapple sample was extracted from roots and leaves using plant RNA
extraction kit (OMEGA, Shanghai, China) according to the manufacturer’s protocol. And
then, total RNA was reverse-transcribed using AMV reverse transcriptase (Takara, Japan)
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Figure 1 The evolutionary relationship of the ERFs. (A) Unrooted phylogenetic tree representing rela-
tionship among AP2/ERF genes between pineapple and Arabidopsis; (B) Phylogenetic analysis of ERF pro-
teins from pineapple and Arabidopsis. The genes in pineapple are marked in red, while those in Arabidopsis
are marked in black. The pineapple DREB proteins are classified into five groups: I, II, III, IV and V.

Full-size DOI: 10.7717/peerj.10014/fig-1

based on the supplier’s instruction. qRT-PCR analysis was conducted using SYBR Premix
Ex Taq II system (Takara, Japan) and Bio-Rad Real-time PCR system (Foster city, CA,
USA). The reactions were performed in a 20 µl volume containing 10 µl of 2× SYBR
Premix, 8.2 µl of RNase free water, 1 µl of template, 0.4 µl of each specific primer. The
primers used for RT-PCR were showed in Table S1 . The RT-PCR reactions program was
completed with the following conditions: 95 ◦C for 30 s; 40 cycles of 95 ◦C for 5 s and 60 ◦C
for 34 s; 95 ◦C for 15 s (Cai et al., 2017; Cai et al., 2019). The analyses were confirmed in
triplicate. The relative expression level of each AcoERF gene was calculated based on the
comparison threshold period (2−11Ct) method (Pan et al., 2012). The protein phosphatase
2A gene from pineapple was used as the reference gene (Sang et al., 2013). The final data
were subjected to an analysis of variance test.

RESULTS
Genome-wide identification and characterization of pineapple ERF
family
A total of 103 pineapple genes were identified as possible encoding proteins containing
AP2/ERF domain (Fig. 1A). Among these, 27 genes containing two conserved AP2/ERF
domains and 2 genes possessed a single AP2/ERF domain together with a B3 domain were
assigned to AP2 and RAV family, respectively; Remaining 74 genes with a single AP2/ERF
domain were grouped into ERF family, including 20DREB and 54 ERF subfamilymembers.
Earlier, the DREB subfamily members of pineapple had been divided into 5 groups: I, II,
III, IV and V (Chai et al., 2020). To maintain uniformity, all the pineapple ERF genes were
provisionally named as AcoERF1- AcoERF74 according to the gene ID in ascending order
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(Table S2). The full-length of the 74 AcoERF proteins range from 105 (AcoERF36) to 605
(AcoERF17) amino acid residues, while the coding sequence (CDS) length ranges from
318 to 1819 bp, and relative molecular weights (MW) range from 11.21 to 66.74 kDa.
The predicted isoelectric points (pI ) varied from 4.71 (AcoERF18 and AcoERF52) to 9.63
(AcoERF30) (Table S2). Moreover, the Go annotation of AcoERFs included biological
process (GO: 0006355) and molecular function (GO: 0003700) (Table S2). Within
biological process, 72 AcoERF genes were associated with regulation of transcription and
DNA-templated. For the molecular function categories, 73 AcoERF genes were involved in
transcription factor activity and sequence-specific DNA binding.

Multiple sequence alignment and phylogenetic analysis of pineapple
ERF genes
Multiple sequence alignment of the 74 AcoERFs indicated that most ERF family members
possessed conserved YRG andRAYD elements within the AP2/ERF domain region (Fig. S1).
ERF subfamily proteins containing Ala at position 14 and Asp at position19. However, the
residues at position 14 and 19 of DREB subfamily proteins is Val and Glu, respectively.
Evolution of ERF TFs was further explored based on the phylogenetic tree constructed with
pineapple and Arabidopsis ERF genes (Fig. 1B). Earlier, seven Arabidopsis ERF proteins
having low homology with other member of ERF family, were assigned to group VI-L
and Xb-L according to the analysis of gene structure and conserved motif (Nakano et al.,
2006). In this study, these seven Arabidopsis ERF proteins were also used for phylogenetic
reconstruction and formed group G and L. The Arabidopsis ERF proteins of group I and
III were from the same group in previous study (Nakano et al., 2006). Therefore, group I
and III in this study were renamed as C1 and C2, respectively. The result showed that the
AcoERFs were divided into 13 groups, except for AcoERF21. Group I contained the most
AcoERFs, accounting for 16.22% of total ERF genes. Followed by group J, which has 10
AcoERFs. However, group L has only one AcoERF.

Gene structure and motif composition of pineapple ERF family
To gain more insight into the evolution and structural diversity of the ERF family in
pineapple, we analyzed the gene structure and conserved motif of the AcoERF genes. As
shown in Fig. 2, 49 AcoERF genes have no intron, accounting for 66.22% of the total
number of AcoERF genes, and all genes of group J have no intron. Moreover, the number
of introns in these genes varied from 1 to 16, and most AcoERF genes have 1 to 3 introns,
whereas AcoERF17 has the maximum number of introns. All genes of group H have 2
introns, except for AcoERF8. To further explore the divergence and functional relationship
of AcoERF proteins, a total of 10 conserved motifs in the pineapple ERFs were identified
by the MEME software, and the height of each letter in the logo was proportional to the
conservation level of amino acid in all sequences analyzed (Fig. S2). As displayed in Fig. 3,
motif 1 is present in every pineapple ERF protein, and almost all the proteins contain
motif 2, except for AcoERF38 and AcoERF69. In addition, the motifs in different groups
indicated that varying degrees of divergence among them. For example, motif 8 is unique
to group H. Motif 6 is only present in group H and I. Motif 10 is only present in the
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Figure 2 The exon-intron structure of AcoERF genes based on the evolutionary relationship. The
yellow round-corner rectangle represents exons, the black shrinked line represents introns, and the blue
round-corner rectangle represents UTR.

Full-size DOI: 10.7717/peerj.10014/fig-2
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Figure 3 Motif distribution of AcoERF proteins. The conserved motifs in the AcoERF proteins were
identified with MEME software. Grey lines denote the non-conserved sequences, and each motif is indi-
cated by a colored box numbered at the bottom. The length of motifs in each protein was presented pro-
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Full-size DOI: 10.7717/peerj.10014/fig-3

members of group C1 and C2. In general, the pineapple ERF proteins in the same group
usually contained similar motifs, which indicates that they may play similar roles in the
development and growth of pineapple.

Chromosomal distribution and synteny analysis of AcoERF genes
According to Fig. S3, 71 AcoERF genes were unevenly distributed on the 23 pineapple
linkage groups (LG). Among them, LG02 contains the most diverse AcoERF genes,
accounting for 12.16% of total genes, whereas LG04, LG14, LG19, and LG25 possessed
only one AcoERF gene, respectively. Additionally, AcoERF71, AcoERF73 and AcoERF74
exist on unanchored scaffolds, so they could not be conclusively charted on any pineapple
linkage groups (Table S2).

Segmental duplication provide an important mechanism for the expansion of gene
families (Lynch & Conery, 2000; Vision, Brown & Tanksley, 2000; Cannon et al., 2004;
Zhang et al., 2018). A total of 16 segmental duplication evens with 24 AcoERF genes
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were found from pineapple genome, such as AcoERF13/AcoERF5, AcoERF16 /AcoERF31,
AcoERF19/AcoERF35, all of these were segmental duplicates (Fig. 4, Table S3), and these
segmental duplication pairs play crucial roles in the expansion of ERF family in pineapple
genome. In order to further study the phylogenetic and evolutionary trait of ERF family
in pineapple, we set up 2 comparative syntenic maps of pineapple associated with 2
representative plant, including Arabidopsis and rice (Figs. 5A, 5B). According to the
syntenic results, there are 37 and 44 orthologous gene pairs in Arabidopsis and rice,
respectively (Tables S4 and S5). Some AcoERF genes had multiple orthologous gene pairs
(one pineapple gene associated with multiple Arabidopsis or rice genes), such as AcoERF62
associated with AtERF008/019/020, and AcoERF29 associated with OsERF025/026 /027,
suggesting these genes might play crucial roles in the evolution of ERF family. Some
AcoERF genes could be found orthologous gene pairs in Arabidopsis and rice, such as
AcoERF15, AcoERF22 and AcoERF32, suggesting that these genes might already exist before
speciation. Some AcoERF genes only existed orthologous gene pairs between pineapple and
rice, such as AcoERF15, AcoERF22 and AcoERF32, suggesting that the appearance of these
orthologous gene pairs before the divergence of monocotyledonous and dicotyledonous
plants. In order to further understand the evolution of ERF gene family, the Ka/Ks ratios
of the ERF gene pairs were calculated. The Ka/Ks ratio can represent different selection
categories for duplication genes, such as the Ka/Ks >1 indicates positive selection , the
Ka/Ks = 1 indicates neutral evolution, and the Ka/Ks <1 indicates negative selection (Li et
al., 2019). According to the results, the Ka/Ks ratio of most orthologous ERF gene pairs are
less than 1, indicating that they might have experienced strong negative selection pressure
during the evolution of pineapple.

Expression patterns of AcoERF genes in different tissues of
pineapple
The expression profiles of 74 AcoERF genes in various pineapple tissues at different
development stages was performed using RNA-seq expression data from MD2 pineapple
plants recently published (Ming et al., 2015). According to the result, a total of 70 AcoERF
genes were expressed in different tissues, whereas 4 AcoERF genes (AcoERF22, AcoERF32,
AcoERF43, AcoERF72) were not found in the RNA-seq libraries (Fig. 6, Table S6). 22 genes
were expressed in all tested tissues, in which 5 genes (AcoERF13, AcoERF16, AcoERF31,
AcoERF42, AcoERF65) showed relative high expression levels (value> 10), suggesting these
genes might played the indispensable roles in pineapple development. Moreover, 8, 16,
6, 9 genes showed high expression levels at all selected stages in ovule, sepal, stamen and
petal, respectively; 16, 13, 12 genes showed high expression levels in leaf, flower and root,
respectively; 10 genes showed high expression levels in fruit at all detected stages, indicating
that these genes might be involved in the growth of relative tissues. Additionally, AcoERF42
and AcoERF65 showed the highest expression levels in fruit, suggesting that these genes
might play positive roles in the growth and development of fruit.

Identification of cis-elements in AcoERF promoters
In order to determine the response mechanisms of AcoERFs, 13 stress-related cis-elements
were found in pineapple ERF promoters, such as low temperature response elements
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Figure 4 Schematic representations for the chromosomal distribution and interchromosomal rela-
tionships of pineapple ERF genes. The red lines indicate duplicated ERF gene pairs, and the chromosome
number is indicated at the bottom of each chromosome.

Full-size DOI: 10.7717/peerj.10014/fig-4

(LTR), dehydration responsive elements (DRE) and defense and stress responsive elements
(TC-rich) (Table S7). LTRs are involved in low-temperature stress response (Choudhury
et al., 2008); DRE and TC-rich repeats play roles in dehydration, low temperature, and
salt stress response (Diazdeleon, Klotz & Lagrimini, 1993; Germain et al., 2012). According
to the results, all AcoERF genes contain more than two cis-elements in their promoters.
The promoter of AcoERF23 only contained two cis-elements, whereas the most ten in the
promoter of AcoERF46. In addition, at least one ABRE was present in 85.13% (63 out of
74) AcoERF gene promoters. The analysis of the 13 cis-elements suggested that most of
AcoERF genes could response to different stress conditions.
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Expression profiles of AcoERF genes under various abiotic stresses
According to previous studies, some ERF genes were involved in abiotic stress response
in various plants, such as Arabidopsis (Sakuma et al., 2002), grape (Zhuang et al., 2009),
tomato (Sharma et al., 2010), peach (Amygdalus persica L.) (Zhang et al., 2012). However,
there was no report about the function of ERF genes in response to abiotic stress in
pineapple. To investigate the roles of AcoERF genes in abiotic stress response, 9 AcoERF
genes in roots and leaves were selected for functional verification. RT-PCR experiments
were performed to analyze the expression patterns in response to different abiotic stress
treatments, including cold, drought and salt stress (Figs. 7–9, Tables S8–S10). Overall, we
found that the expression of these genes was influenced by the treatments. Among these
treatments, some AcoERF genes in different pineapple tissues were significantly induced by
the treatments, such as AcoERF36 AcoERF45, and AcoERF67. Interestingly, the expression
patterns of AcoERF genes from root and leaf were different under the same treatments,
such as AcoERF13, AcoERF16 and AcoERF42 under cold stress, AcoERF7, AcoERF36 and
AcoERF60 in response to drought and salt stress, indicated that these genes may have
different functions in various tissues of pineapple. Under cold and drought stress, the
expression level of most AcoERF genes in leaves was higher than that in roots, while it was
the opposite under salt stress, suggesting that AcoERF genes in root were sensitive to salt
stress. Besides, most of AcoERF genes had maximal expression before 12 h in drought and
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colors in map represent gene transcript abundance values as shown in bar by the side of the figure.
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salt stress, indicating these genes might play key roles in the early stage of drought and salt
stress responses.

DISCUSSION
The ERF family is one of the most important transcription factor families, and it belongs
to AP2/ERF super-family, which also contains AP2 and RAV family (Sakuma et al., 2002;
Nakano et al., 2006). It has been reported that the member of ERF family plays a crucial
role in the growth and development of various plants (Fits & Memelink, 2000; Banno et
al., 2001; Yu et al., 2012; Muller & Munnebosch, 2015). Previous studies have identified
120 ERF family members in soybean (Li et al., 2005), 103 in cucumber (Hu & Liu, 2011),
85 in tomato (Sharma et al., 2010), 139 and 122 in rice and Arabidopsis, respectively
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Figure 7 Expression profile of nine selected AcoERF genes in response to cold stress treatment. The
expression level of the 9 AcoERF genes (A–I) were gained by qRT-PCR. Error bars indicate the standard
deviation. Asterisks on top of the bars indicating statistically significant differences between the stress and
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(Nakano et al., 2006; Sharoni et al., 2011), but the identification of pineapple ERF gene
family has not been reported. Pineapple has great economic and research value, so it
is necessary to investigate the function of ERF family in pineapple. In this study, 103
candidate AP2/ERF genes were identified in pineapple genome, including 27 AP2 family
members, 2 RAV family members and 74 ERF family members (Fig. 1A). Compared with
soybean, cucumber, tomato, rice and Arabidopsis, the pineapple ERF family is relatively
small, indicating that some ERF members of pineapple may be lost during the evolution of
species. To reveal the phylogenetic relationship of pineapple ERF family, a phylogenetic tree
was constructed, 74 pineapple ERF family members were divided into 13 groups (Fig. 1B).

Gene structure analysis plays a crucial role in revealing the function of genes. Here, our
results suggested that AcoERFs possess introns with number varying from 0 to 16, and the
ERF members within the same group exhibited similar gene structure (Fig. 2). 66.22%
AcoERF genes had no introns, which is similar to the status in Arabidopsis, cucumber and
tartary buckwheat (Nakano et al., 2006; Hu & Liu, 2011; Liu et al., 2019). Presence of long,
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multiple intros can delay transcriptional output, which may suppress the expression of
genes under adverse conditions. Conversely, the genes with small or fewer intronsmay have
efficient expression in response to stress environments (Jeffares, Penkett & Bahler, 2008;
Heyn et al., 2015). Hence, a large number of intron-less AcoERF genes may react rapidly
when the external environment changes. For instance, AcoERF13, AcoERF36, AcoERF45
and AcoERF67 had no introns, and they had efficient expression under various stresses
within 48 h (Figs. 7–9, Tables S8–S10).

The domains and motifs of transcription factors play essential roles in proteins
interaction, transcriptional activity and DNA binding (Liu, White & Macrae, 1999). Here,
a total of 10 conserved motifs in the pineapple ERFs were identified (Fig. 3). Different
types and numbers of motifs in the pineapple ERF proteins could affect the diversity
of gene function. Motif 1, 2 and 3 correspond to the AP2/ERF domain region, and
were highly conserved in pineapple ERF family members. Motif 4 is present in several
AocERFs and specifically rich in glutamine (Q). The presence of poly (Q) motif is related
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to protein aggregation and can stabilize protein-protein interactions (Liu et al., 2011;
Schaefer, Wanker & Andradenavarro, 2012). Motif 5 containing multiple serine residues,
and the poly serine repeats role as flexible linker, as well as an important site of several
posttranslational modifications (Uversky, 2015). Therefore, AcoERFs containing motif 5
may paly crucial roles in various pathways. Motif 8 is specifically detected in group H,
and the ‘‘MCGGAI’’ residues were highly conserved in the N-terminal region of the motif
8. It has been reported that the overexpression of the ERF genes with the ‘‘MCGGAI’’
motif can improve plant tolerance under hypoxia stress (Xu et al., 2006). Besides, the genes
containing ‘‘MCGGAI’’ motif is also involved in ethylene transcription activation (Buttner
& Singh, 1997). Although the function of some conserved motifs is still unknown, they may
also be involved in transcriptional regulation. In general, the ERF family members within
the same group shared similar gene structures and motif compositions, which suggests that
they may have similar roles in plant development and growth.

Segmental duplication occurs frequently in plants since most plants are diploidized
polyploids (Zhu et al., 2014). In this study, a total of 16 segmental duplication evens with
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24AcoERF geneswere found frompineapple genome (Fig. 4, Table S3). The diversity of gene
combinations may be one of the factors that make the regulatory relationship complicated
(Zhang et al., 2018; Zhang et al., 2020). Polyploidization, a widespread phenomenon
among plant, is considered an important process of plant speciation and evolution,
and the formation of polyploid includes hybridization and genomic doubling process
before or after hybridization (Kohler, Scheid & Erilova, 2010; Zeng et al., 2020). Various
Arabidopsis and rice ERF genes have been reported to be involved in the regulation of plant
stress tolerance. For instance, At5g52020 and OsDREB1F have been shown to play crucial
roles in high-salt, low-temperature and drought stresses (Nakano et al., 2006). The synteny
analysis could reveal the functional and evolutional connections between two species. Here,
15 pineapple ERF genes and 25 Arabidopsis ERF genes, 23 pineapple and 32 rice ERF genes
were identified as orthologous gene pairs, and different kinds of syntenic orthologous gene
pairs could be investigated the evolutionary process of ERF family members in pineapple
(Figs. 5A, 5B, Tables S4– S5). Some ERF genes did not find any orthologous gene pairs,
which can be attributed to the rearrangement or fusion of chromosomes during their
evolution (He et al., 2014; Zhang et al., 2018).

The analysis of gene expression patterns can be preliminarily predicted the function of
genes (Peng et al., 2015; Su et al., 2017; Zhang et al., 2018). In this study, 5 genes (AcoERF13,
AcoERF16, AcoERF31, AcoERF42, AcoERF65) showed high expression levels in all selected
pineapple tissues (Fig. 6, Table S6), indicating that ERF genes may play a crucial role in
pineapple development. Some AcoERF genes showed high expression levels in fruit, such
as AcoERF16, AcoERF45, AcoERF62, suggesting that these genes play important roles in
fruit ripening. Moreover, some AcoERF genes are expressed in various tissues or diverse
stages, indicating that these genes could be more stable than those that only expressed in
specific tissues or one stage of an organ (He et al., 2019).

When plants encounter stress conditions, a series of cell activities and molecules
reaction mechanisms can improve the resistance of plants (Chinnusamy, Schumaker &
Zhu, 2004; Mittler, 2006). According to previous studies, some ERF genes were involved in
various stresses responses in plants, such as high-salt, low-temperature and drought stress
(Ohmetakagi & Shinshi, 1995; Sakuma et al., 2002; Nakano et al., 2006). The expression
profile of AcoERF genes suggested that several genes may be involved in the mechanism
of abiotic stresses response (Figs. 7–9, Tables S8–S10). Besides, AcoERF16, AcoERF42 and
AcoERF65 came from the same group H, and AcoERF16 and AcoERF65 was segmental
duplication gene pair. Although these three genes had similar gene structure and motif
compositions, the expression patterns ofAcoERF16 andAcoERF65weremore similar under
different treatments. The differential expression indicated that segmental duplicationmight
influence the expression of gene. Overall, the above findings provide foundation to further
investigate the potential function of pineapple ERF genes. These analyses are not only
helpful in selecting valuable candidate ERF genes for further functional studies but also
has important implication for genetic improvement for agricultural production and stress
tolerance in pineapple crop.
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CONLUSIONS
Based on genomic data of pineapple, a genome-wide identification of pineapple ERF
family was performed, and 74 AcoERFs were identified. A comprehensive analysis of their
phylogenetic relationships, gene structures and conserved motifs compositions showed
high levels of similarity within the same group. Synteny analysis of ERF genes revealed the
evolutionary characteristic of pineapple ERF family. The expression profile of AcoERFs
verified their roles in responding to various abiotic stresses (cold, drought and salt stress).
These results will help to further study the ERF genes and their role in abiotic and biotic
stress tolerance for improve the agricultural productivity of pineapple crop.
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