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Abstract: It is a well-demonstrated phenomenon that listeners can discriminate native phonetic con-
trasts better than nonnative ones. Recent neuroimaging studies have started to reveal the underlying
neural mechanisms. By focusing on the mismatch negativity/response (MMN/R), a widely studied
index of neural sensitivity to sound change, researchers have observed larger MMNs for native
contrasts than for nonnative ones in EEG, but also a more focused and efficient neural activation
pattern for native contrasts in MEG. However, direct relations between behavioral discrimination and
MMN/R are rarely reported. In the current study, 15 native English speakers and 15 native Spanish
speakers completed both a behavioral discrimination task and a separate MEG recording to measure
MMR to a VOT-based speech contrast (i.e., pre-voiced vs. voiced stop consonant), which represents a
phonetic contrast native to Spanish speakers but is nonnative to English speakers. At the group level,
English speakers exhibited significantly lower behavioral sensitivity (d’) to the contrast but a more
expansive MMR, replicating previous studies. Across individuals, a significant relation between
behavioral sensitivity and the MMR was only observed in the Spanish group. Potential differences in
the mechanisms underlying behavioral discrimination for the two groups are discussed.

Keywords: linguistic experience; speech perception; mismatch response; magnetoencephalography;
individual differences

1. Introduction

It is a well-demonstrated phenomenon that listeners’ sensitivities to speech contrasts
with small acoustic differences are affected by their language background. In the original
series by Abramson and Lisker, discrimination of pairs of speech sounds along the Voice
Onset Time (VOT) continuum was examined. First, they demonstrated that native English
speakers showed a single peak in discrimination along the VOT continuum, corresponding
to two phonemic categories in English (i.e., voiced vs. voiceless stops). In contrast, with
the same VOT continuum, Thai speakers demonstrated two peaks in discrimination, corre-
sponding to three categories in the Thai language (i.e., pre-voiced, voiced and voiceless) [1].
Further, when comparing English speakers to Spanish speakers, they showed that the cate-
gory boundaries in perception of voice timing are significantly different between the two
groups, with much shorter VOT as a boundary in Spanish speakers [2]. Such experiential
effects were replicated repeatedly later on with various speech contrasts utilizing different
acoustic cues [3–6].

Over the last few decades, researchers have been increasingly interested in the neural
mechanisms that may underlie such linguistic effect in speech perception. The mismatch
negativity (MMN), or mismatch response (MMR), is one of the most widely studied and
used neural measures which has been suggested to index the neural sensitivity to sound
change [7]. In its original form, a standard stimulus is repeated for the majority of the
sequence (e.g., 80%) while a deviant stimulus is randomly interspersed among the standards
(e.g., 20%). A difference wave is then calculated by subtracting the response to standards
from the response to deviants. When measured with electroencephalography (EEG), the
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MMN can be observed largely in the frontocentral scalp areas, roughly 200 ms after the
onset of the change in the difference wave. Both the magnitude and latency of the MMN
have been suggested to show the level of sensitivity. For example, a larger change in
stimulus (e.g., pure tone changing from 1000 Hz to 1032 Hz) elicited MMN with shorter
latency and larger magnitude than a smaller change (e.g., pure tone changing from 1000 Hz
to 1016 Hz).

In the realm of speech perception, Näätänen and colleagues were the first to demon-
strate a language effect on neural sensitivities to vowel contrasts using MMN [8]. Particu-
larly, for a vowel contrast varying on the second formant that is native to Estonians but
nonnative to Finnish speakers, Estonian speakers demonstrated significantly larger MMN
than Finnish speakers. This work was later followed to further examine stop consonant
processing. In a series of studies focusing on VOT contrasts, researchers also demon-
strated that in English speakers, a VOT contrast that crossed the phonemic boundary (i.e.,
/da/-/ta/) elicited larger MMN than a VOT contrast with the same acoustic distance
but within the /ta/ category [9]. Further, by focusing on a VOT contrast (−10 ms vs.
−50 ms) that is phonemic in Hindi but not in English, they demonstrated that, indeed, the
Hindi speakers had larger MMN than the English speakers along with higher behavioral
discrimination [10]. Similar effects have also been documented with many other speech
stimuli [11,12].

More recently, the underlying neural generator, or the neural source, of the MMN is of
research interest. Particularly, by using magnetoencephalography (MEG), which allows
for robust inference of source activity, researchers have suggested that while the main
contributor to the MMR is the bilateral temporal region, there is also contribution from
the frontal region, likely the inferior frontal region [13,14]. So far, very limited data exist
that examine the linguistic effect on MMR with a focus on the underlying sources. Only
Zhang and colleagues examined this question by focusing on a pair of speech contrasts
(i.e., /ra/-/la/) and measured MMR in Japanese speakers vs. English speakers using
MEG [15]. Critically, the /ra/-/la/ contrast is nonnative to Japanese speakers but native
to English speakers. Two types of methods were used to model the source-level activities
and the results converged and demonstrated that the Japanese speakers demonstrated
more widespread and longer activation for the speech contrast than the American English
speakers. The authors interpreted the results to reflect a more efficient processing of
native contrast in the English speakers, which is consistent with similar research using the
fMRI method also using the /ra/-/la/ contrast [16]. However, the authors also cautioned
an alternative account that the observed between-group difference could reflect ‘rather
fundamentally different types of neural processes used by native and nonnative speakers’,
instead of a difference in neural efficiency.

One way to elucidate this question is to examine the correspondence between the
MMR and behavioral discrimination across individuals and compare the correspondence
between groups. The rationale is as follows: if two groups of different language back-
grounds rely on the same mechanisms but with different efficiency, we can expect the same
MMR–behavioral discrimination correlation (i.e., the same slope) for native and nonnative
speakers. Alternatively, if the two groups rely on different mechanisms, the slopes for such
correlations will be different between the two groups.

However, a neural–behavioral correspondence at the individual level is rarely reported
and largely assumed in the MMN/R literature. Much research has only shown parallel
results between behavior and MMN/R at the group level. For example, as a group, higher
behavioral discrimination was observed for a native speech contrast compared to a nonna-
tive speech contrast. Similarly, as a group, a larger MMN/R was observed for the native
speech contrast compared to the nonnative contrast. It is then often assumed that individu-
als who demonstrate a higher behavioral discrimination score will also have a large MMR.
However, this type of analysis and subsequent results were in fact not reported [10,15]. It
was therefore unclear whether the lack of neural–behavioral correspondence is due to lack
of analysis/results or lack of significant findings. It is then crucial to directly examine and
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report the MMR–behavioral correspondence. Whether the MMR can explain a significant
portion of the variance in behavioral discrimination is key to state whether MMR is indeed
part of the neural underpinning of speech discrimination.

It is possible that previous studies have, indeed, conducted such correlational analyses
but failed to find significant results due to lack of sensitivity in statistical methods. Indeed,
in the most comprehensive review of MMN, the authors suggested that ‘in general, the
MMN replicability is quite good at the group level but at the individual level, there still is
ample space for further improvement before the MMN provides a reliable tool for clinics at
the level of individual patients’ [7]. To that end, we employed a more exploratory machine-
learning-based method to examine the correlation in addition to the traditional parametric
regression analysis. The ML-based method takes data across all spatiotemporal points into
consideration and, thus, may be more sensitive in detecting correlations between behavior
and MMR.

The goal of the current study is thus twofold: (1) to replicate the language effect on
MMR at the source level as reported by Zhang and colleagues [15], using a VOT contrast;
and crucially, (2) to investigate whether individual differences in MMR at the source level
can explain significant portion of variance in behavioral discrimination of speech contrast.
In other words, whether there is a significant neural–behavioral correspondence across
individuals, and if so, whether such neural–behavioral relation is different for native vs.
nonnative speakers.

2. Materials and Methods
2.1. Participants

Monolingual English speakers (n = 15, male = 5, age = 21.4 (s.d. = 1.8)) and Native
Spanish speakers (n = 15, male = 5, age = 26.0 (s.d. = 5.0)) were recruited. All participants
were healthy adults with no reported speech, hearing or language disorders. All partici-
pants were right-handed (Edinburgh Handedness Quotient = 0.99 ± 0.04). All participants
completed a short survey on their language and music backgrounds. The Native Spanish
speakers all learned Spanish as their first language and still use the language as their
predominant language. However, because they have all moved to the U.S., they also speak
English to various degrees. Indeed, on the language background survey, the Native Spanish
group reported higher efficiency (mean = 3.67, s.d. = 0.95) in foreign languages than the
Monolingual English speakers (mean = 1. 70, s.d. = 0.67, t (28) = −6.49, p < 0.001). On the
other hand, the Monolingual English speakers (mean = 4.67, s.d. = 4.56) reported more
musical training experience (i.e., years of private lessons) than Native Spanish speakers
(mean = 1.30, s.d. = 1.59, t (17.3) = 2.69, p =0.015, equal variance not assumed). All proce-
dures were approved by the Institute Review Board of the University of Washington and
informed consent was obtained from all participants.

2.2. Stimulus

Bilabial stop consonants with varying VOTs were synthesized by the Klatt synthesizer
in Praat software [17]. The VOT values were −40 ms and +10 ms. The syllable with 0 ms
VOT was first synthesized with a 2 ms noise burst and vowel /a/. The duration of the
syllable is 90 ms. The fundamental frequency of the vowel /a/ began at 95 Hz and ended at
90 Hz. The silent gap (10 ms) and the pre-voicing (40 ms) were added after the initial noise
burst to create syllables with the positive and negative VOTs. The fundamental frequency
for the pre-voicing portion was 100 Hz. The waveforms of the stimulus pair, that is, voiced
/ba/ (VOT = +10 ms) and the pre-voiced /,ba/ (VOT = −40 ms), are shown in Figure 1A.

Critically, this stimulus pair represents a native phonetic contrast in Spanish but not in
English. Indeed, the stimulus pair was selected from a VOT continuum between −40 ms
and +40 ms that was previously tested and validated [18]. Particularly, Monolingual
English speakers demonstrated the category boundary to be above +10 ms while Native
Spanish speakers demonstrated the category boundary to be below +10 ms. Therefore,
the discrimination of the +10 ms/−40 ms (/ba/ vs. /,ba/) stimulus pair in this current
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study should capture the cross-linguistic difference between the two groups with different
language backgrounds. That is, it represents a cross-category phonetic contrast only for the
Native Spanish speakers and, therefore, should elicit higher sensitivity in them.

Figure 1. (A) Waveforms for the standard stimulus (top) and the deviant stimulus (bottom).
(B) Behavioral sensitivity (d’) is different between the two groups, with Spanish speakers exhibiting
higher d’ overall as this contrast is native to them. (C) Global MMR is different between the two
groups with Spanish speakers exhibiting reduced MMR after 200 ms.

2.3. Behavioral Discrimination

An AX behavioral discrimination task was first conducted to assess the sensitivity
to the speech contrast. This is the same task as used in previous studies [9,10,15,19], and
a cross-linguistic effect needed be established on the behavioral discrimination of this
contrast before the neural underpinning could be studied. All participants performed this
task on a Dell XPS13 9333 computer running Psychophysical Toolbox [20] in MATLAB
version 2016a (MathWorks. Inc., Natick, MA, USA) in a sound-attenuated booth. All
sounds were delivered through Sennheiser HDA 280 Headphones at 72 dB SPL.

In an AX discrimination trial, a fixation cross was first presented for 200 ms at the
center of the screen to indicate the start of the trial. Then, two speech sounds were played
with a 250 ms inter-stimulus interval between them. The two speech sounds can be either
the same or different (e.g., /ba/ followed by /ba/ or /,ba/). The participant was instructed
to judge whether the two sounds were the same or different through key presses within
1 s. All 4 possible pairings (i.e., AA (/ba//ba/), AB (/ba//,ba/), BB (/,ba//,ba/), BA
(/,ba//ba/)) were repeated 10 times in a randomized order.

The d’ values for the stimulus pair were calculated for each participant and used as
the measure of sensitivity. The d’ measure takes into consideration both hit and false alarm
responses, and therefore addresses the issue of response bias [21]. Specifically, the ‘hit’ is
defined as when participants respond ‘different’ when sounds were different (i.e., for the
AB and BA pairs), and the ‘false alarm’ is defined as when participants respond ‘different’
when the sounds were the same (i.e., for the AA and BB pairs). Then, d’ is calculated as the
normalized hit rateminus the normalized false alarm rate. The hit rate for the Monolingual
English speakers was 0.594 (SD = 0.318) and 0.846 (SD = 0.22) for Native Spanish speakers.
The false alarm rate for the Monolingual English speakers was 0.076 (SD = 0.117) and 0.107
(SD = 0.169) for Native Spanish speakers.

2.4. MMR Measurement in MEG

MEG recordings were completed inside a magnetically shielded room (MSR) (IMEDCO
America Ltd., IN), using a whole-scalp system with 204 planar gradiometers and 102 mag-
netometers (VectorViewTM, Elekta Neuromag Oy, Helsinki, Finland). Five head-position-
indicator (HPI) coils were attached to identify head positions under the MEG dewar at
the beginning of each block. Three landmarks (LPA, RPA and nasion) and the HPI coils
were digitized along with 100 additional points along the head surface (Isotrak data) with
an electromagnetic 3D digitizer (Fastrak®, Polhemus, Colchester, VT, USA). In addition,
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a pair of electrocardiography sensors (ECG) was placed on the front and backside of the
participants’ left shoulder to record cardiac activity and three pairs of electrooculogram
(EOG) sensors were placed horizontal and vertical to the eyes to record saccades and blinks.
All data were sampled at 1 kHz.

The sounds were delivered from a TDT RP 2.7 device (Tucker-Davis Technologies,
Alachua, FL, USA), controlled by custom Python software on a HP workstation, to insert
earphones. The stimulus was processed such that the RMS values were referenced to 0.01
and it was further resampled to 24,414 Hz for the TDT. The sounds were played at the
intensity level of 80 dB through tubal insert phones (Model TIP-300, Natus Neurology,
Pleasanton, CA, USA). A traditional oddball paradigm was used for stimulus presentation.
The syllable with +10 ms VOT was used as the standard (600 trials, 80%), and the syllables
with −40 ms VOT were used as deviants (150 trials, 20%) with at least two standards
in between deviants. The stimulus onset asynchrony (SOA) values were jittered around
800 ms. The participants listened passively and watched silent videos during recording.

2.5. MEG Data Processing

All MEG data processing was carried out using the MNE-python software [22]. MEG
data were first preprocessed using the Oversampled Temporal Projection (OTP) method [23]
and the temporally extended Spatial Signal Separation (tSSS) method [24,25] to suppress
sensor noise and magnetic interference originating from outside of the MEG dewar. Signal
space projection was used to suppress the cardiac and eye movement signals in the MEG
data [26]. Then, the data were low pass filtered at 50 Hz. Epochs (−100 to 900 ms) for
the standards and deviants were extracted and any epochs with peak-to-peak amplitude
exceeding 4 pT/cm for gradiometers or 4.0 pT/cm for magnetometers were rejected. All
deviants as well as the subset of standard trials immediately preceding the deviants were
averaged to calculate the evoked responses.

To estimate the location of neural generators underlying the evoked responses, each
subject’s anatomical landmarks and additional scalp points were used with an iterative
nearest-point algorithm to rescale the average adult template brain (fsaverage) to match
the subject’s head shape. FreeSurfer was used to extract the inner skull surface (water-
shed algorithm) and the cortical and subcortical structures segmented from the surrogate
MRI [27]. A one-layer conductor model based on the rescaled inner skull surface was
constructed for forward modeling [28]. The surface source space consisted of 20,484 dipoles
evenly spatially distributed along the gray/white matter boundary (i.e., ‘ico-5’). Because
surrogate head models and source spaces were used for each subject, source orientations
were unconstrained (free orientation). Baseline noise covariance was estimated using
empty room recordings made on the same day of the MEG session. Dipolar currents were
estimated from the MEG sensor data using an anatomically constrained minimum-norm
linear estimation approach to obtain dSPM values at each source location [29].

The mismatch responses (MMRs) were subsequently calculated at the source level
by subtracting the standards from each deviant. That is, the MMR was calculated by
subtracting the vectors of standard from the vectors of deviant and then the magnitude of
the vectors was calculated.

The Destrieux Atlas (i.e., ‘aparc.a2009s’ atlas in Freesurfer) was then applied to reduce
the data by averaging across vertices within each label [30]. Four regions-of-interest (ROIs)
were identified a prior based on the existing literature for further statistical analysis: left
and right inferior frontal region (i.e., inferior frontal label) and superior temporal region
(i.e., superior temporal label). All data reported in this study are publicly available at Open
Science Framework.

2.6. Regression Methods
2.6.1. Parametric Multiple Regression

To investigate the correspondence between the behavioral sensitivity (d’) and neural
sensitivity (MMR), we first took a region-of-interest (ROI) approach to reduce the dimension
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of the MMR data for the parametric multiple regression analyses (see MEG data processing
section for details). Four ROIs were selected a priori based on existing research on MMR
sources, including the left and right superior temporal gyrus (STG) and inferior frontal
gyrus (IFG) [13,14]. In addition, we selected the time window between 200 and 500 ms that
captures maximum differences between group. The averaged MMR values were further
log-transformed to reduce skewness in preparation for the multiple regression analyses.

In each multiple regression model, the main effects of the MMR value were averaged
across the ROI and the selected time window and the language group (i.e., English vs.
Spanish speakers) were entered. In addition, the interaction between the MMR and lan-
guage group was also entered into the model to predict the behavioral sensitivity d’ (IBM
SPSS Version 19.0.0).

2.6.2. Machine-Learning-Based Regression

The machine-learning-based regressions were carried out using the open source scikit-
learn package [31] in conjunction with the MNE-python software. This method was
adopted from a previous study [32]. All spatial and temporal samples were used in this
method. Specifically, for each time sample, we employed a support-vector regression (SVR)
where the model uses MMR values from all 150 label regions, thus taking the spatial pattern
of the MMR into consideration, to predict individual behavioral d’ value [33]. The dataset
is first split into a training and a testing set (see below details regarding leave-one-out
cross-validation). The MMR spatial–temporal patterns in the training set were first used
to fit the model with a linear kernel function (C = 1.0, epsilon = 0.1). Once the model
is trained, the MMR spatial–temporal patterns from the testing set were then used to
generate predictions of the d’ value. A leave-one-out cross-validation method was used
to enhance model prediction. That is, all 15 possible splits of the data (i.e., every one of
the 15 participants were assigned as the testing set while the rest of the individuals (14)
were the training set) were used to build 15 models and derive an averaged model. The R2

coefficient of determination between actual measured d’ and model predicted d’ is taken as
an index of model performance. The same process was repeated for every time sample of
the MMR, which generates a temporal sequence of R2.

To further evaluate the model performance, within each time sample, we shuffled
the correspondence between the d’ and MMR spatial pattern across individuals and then
conducted the same SVR analyses. In such cases, the MMR spatial pattern should bear no
predictive value to d’ score and the R2 should reflect a model performing at chance level. We
repeated this process 100 times for each time point. Then, we generated an empirical null
distribution of R2 by pooling all the R2 values from each time point (i.e., 100 permutations
for each time point) and we compared our originally obtained R2 coefficient against this
distribution [34]. Specifically, we considered that if our originally obtained R2 value at
a specific time point is larger than the 99th percentile of the empirical null distribution,
then the spatial pattern of that time point can significantly predict d’ of an individual.
This procedure allows a conservative way to correct for multiple comparison given the
explorative nature of the analysis. A final SVR was then fit by using all the time points that
were deemed significant by permutation.

3. Results
3.1. Behavioral and Neural Sensitivity to the Speech Pair Is Modulated by Language Background

To examine the effect of language background on behavioral sensitivity to the speech
contrast, an independent t test was conducted to compare the d’ values between the two
groups (IBM SPSS Statistics, version 19.0.0). Supporting our hypothesis and replicating
the existing literature, the results revealed (Figure 1B) that the Native Spanish speakers
exhibited significantly higher d’ than the Monolingual English speakers (t (28) = −1.83,
p = 0.039, 1-tailed, Cohen’s d = 0.668). That is, the contrast being a phonetic contrast in
one’s native language enhanced the sensitivity to the contrast.
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To examine the effect of language background on neural sensitivity, as indexed by the
MMR, we first visualized the MMR at the source level averaged across the whole brain for
each group (Figure 1C). The first two peaks prior to 200 ms reflect the intrinsic timing dif-
ference between the standard and the deviant stimuli (100 ms vs. 130 ms in duration). The
divergence between the group largely began after 200 ms and the global MMR amplitude
at the source level is much more reduced in the Native Spanish speaker group.

We then further assessed the spatial distribution of MMR within each group as well
as the between-group difference. The spatial distribution of the MMR over time for the
Monolingual English speakers can be visualized in the left column in Figure 2 and, similarly,
the spatial distribution for the Native Spanish speaker can be visualized in the middle
column in Figure 2. The spatial distributions for the two groups are largely the same
but with much reduced intensity in the Native Spanish group after 200 ms. Complete
visualization of MMR for both groups over time can be seen in the Supplementary Materials
(Videos S1 and S2).

Figure 2. (A) MMR across the whole brain over time for the Monolingual English speakers. (B) MMR
across the whole brain over time for the Native Spanish speakers. (C) The spatial regions that are
significantly different between the two groups over time. They largely occur after 200 ms and are
predominantly in the right hemisphere.

To examine the between-group difference in MMR at the whole-brain level, a spatial–
temporal cluster test based on the threshold-free cluster enhancement method (TFCE) was
conducted [35]. This test is nonparametric and based on permutation and is designed to
allow for improved sensitivity and more interpretable output than the traditional cluster-
based method. Specifically, the TFCE values were generated by summing across a series
of thresholds, thus avoiding the selection of an arbitrary threshold, and then the p values
for each spatial temporal sample were calculated through permutation. The og(p) for
the between group comparison can be visualized in Figure 2 in the right column. The
larger the −log(p), the smaller the p, and the more significant the between-group effect
is. As can be seen, the between-group difference is significant largely after 200 ms and
becomes more prominent in the right hemisphere than the left hemisphere across a wide
range of regions, including the superior temporal regions (200 ms) and the inferior frontal
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regions (450, 650 ms) that are largely thought to underlie the MMR. Interestingly, the
differences were also observed in parietal regions as well as the temporoparietal junction
(TPJ) (650 ms). Complete visualization of −log(p) values over time can be seen in the
Supplementary Materials (Video S3).

3.2. Behavioral–Neural Connection Is Affected by Language Background
3.2.1. Parametric Multiple Regression

Multiple regression analyses were carried out for each ROI (see Section 2.6.1 for details
on the models). For the left IFG and left STG, the models show significant fit and marginally
significant fit (left IFG: R2 = 0.312, p = 0.019, left STG: R2 = 0.230, p = 0.074). Crucially, in
both models, neither the MMR nor the language background were significant predictors,
but the interaction between the two factors was significant and marginally significant (left
IFG: B = 4.42, p = 0.049, left STG: B = 4.865, p = 0.095). As can be visualized in Figure 3A in
the top row, in both ROIs, the MMR is significantly predictive of behavioral d’, but only
in the Native Spanish group, not in the Monolingual English group. Conversely, similar
models with right ROIs yielded nonsignificant fit (p > 0.1) (see Figure 3A, bottom row).

Figure 3. (A) Top row: Scatter plot between MMR in the left IFG and behavioral d’ (left) and between
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MMR in the left (STG) and d’ (right). The multiple regression analyses show that MMR in these two
regions are significant predictors of behavioral d’ but only in the Native Spanish speakers. Bottom
row: Scatter plot between MMR in the right IFG and behavioral d’ (left) and between MMR in
the right (STG) and d’ (right). (B) A machine-learning-based regression confirmed the multiple
regression based on ROIs. In the Spanish speaker group, a machine-learning-based regression can
significantly predict behavioral d’ using the whole brain MMR (left column). The areas that are
significant contributors to the model overlap with the a priori selected ROIs. However, no significant
prediction was achieved in the Monolingual English speaker group.

3.2.2. Machine-Learning-Based Regression

In order to further explore additional spatiotemporal patterns outside of the a priori
selected ones that may also be important in predicting the behavioral sensitivity, we
conducted a whole-brain machine-learning-based regression using the whole MMR time
series (see Section 2.6.2 for detail on the method). Given the potential differences between
the two groups, we ran these analyses separately for the Monolingual English group vs.
the Native Spanish group.

Using this method, we examined whether MMR could predict behavioral d’ in Native
Spanish speakers and Monolingual English speakers. Consistent with the ROI analyses
approach, for the Native Spanish speakers, a time window from 290 to 295 ms was deemed
significant and by using that time window, the model can significantly predict individual d’
(Figure 3B, left). That is, the actual measured d’ and the model predicted d’ are significantly
correlated (r = 0.48, p = 0.06). Critically, the areas that significantly contribute to the
prediction (Figure 3B, right) show large overlap with the a priori selected ROIs. It is worth
noting that the areas involve a larger frontal region including the medial frontal regions.

On the other hand, similar with the ROI analysis, the same ML-based regression did
not yield any significant results for the Monolingual English Speaker group, suggesting no
spatial–temporal patterns to be a good predictor of the behavioral d’ values.

4. Discussion

The current research extended the rich literature documenting the linguistic effect on
speech processing and further examined its neural basis. Particularly, the current study
examined the MMR to a speech contrast at the source level and, more importantly, the
correlation between the neural MMR measure and the behavioral discrimination of the
speech contrast. The speech contrast was a stop consonant contrast based on the Voice
Onset Time (i.e., pre-voiced vs. voiced), which is a native phonemic contrast for Spanish
speakers, but nonnative to English speakers. Monolingual English speakers and Native
Spanish speakers’ behavioral discrimination of this contrast was examined along with
their MMR, the most widely studied neural signature suggested to index sensitivity to
sound change. The MEG-measured MMR allows a focus of examination on the source-
level activities. Behaviorally, Native Spanish speakers demonstrated significantly higher
sensitivity to this contrast compared to the Monolingual English speakers, demonstrating
the expected linguistic effect. For the MMR at the source level, Native Spanish speakers
demonstrated significantly widespread reduction compared to the Monolingual English
speakers, with the difference predominantly in the right hemisphere. The behavior–MMR
relation was further investigated across individuals and the results demonstrated that a
significant correlation between MMR and behavioral discrimination was only observed
within the Native Spanish group, but not in the Monolingual English group. Additionally,
for the Native Spanish group, the cortical regions driving the behavior–MMR correlation
are largely in the left frontal region.

The largely reduced MMR across multiple regions at the cortical source level for the
native speakers (i.e., Native Spanish speakers), compared to the nonnative speakers (i.e.,
Monolingual English speakers), replicated a previous study examining linguistic effect on
MMR at the source level, using a different speech contrast and populations (i.e., /ra/-/la/,
Japanese vs. English speakers) [15]. This is also in line with a subsequent MEG study by
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Zhang and colleagues demonstrating that after intensive perceptual training to discriminate
the /ra/-/la/ contrast, Japanese speakers’ MMR at the source level was also observed to
be reduced [19]. These results focusing on the MMR at the source level may seem counter
to the EEG-measured MMN results where MMN to native contrasts have repeatedly been
shown as larger than MMN to nonnative contrasts [8,10]. However, it is important to keep
in mind that while the measurement paradigms are similar for EEG and MEG, the intrinsic
differences between the two technologies (i.e., measuring electric potential vs. magnetic
field) dictate that they are sensitive to overlapped but different neural populations [36] and
are thus picking up different signals. It is important for future research to understand more
about the relationship between MEG- vs. EEG-measured MMRs and reconcile the results
from these two methods to allow for unified interpretation. For example, simultaneously
measured MMR using both M/EEG will allow the investigation of the relationship between
MMR in EEG sensors and MMR at the source level.

The whole brain comparison of the group-level MMR between Monolingual English
speakers and Native Spanish speakers revealed that the reduction is bilateral in nature,
involving regions known to be important for MMR, such as the superior temporal gyrus
and inferior frontal regions. Interestingly, the reduction for the Native Spanish group is
much more prominent in the right hemisphere than the left hemisphere, particularly in the
temporal–parietal junction (TPJ) region (Figure 2). Based on the speech processing model,
spectrotemporal analysis of the speech signal at the STG level is bilateral in nature before
traveling up the dorsal stream in the left hemisphere where integration of information from
other modalities occurs (e.g., sensorimotor, visual) [37]. In this case, the MMR reduction
in the left hemisphere and the right STG before 450 ms (Figure 2, right column) may be
attributable to a more ‘efficient processing’ of the acoustic signal in the Native Spanish
group. Yet, it remains unclear what the large reduction in the right hemisphere after 450 ms
would entail. It was therefore crucial to examine whether any of the MMR was directly
relevant for behavioral discrimination of the speech contrasts for the two groups.

As alluded to in the introduction, previous studies have hardly ever reported a corre-
lation between MMR and behavioral discrimination. It was unclear whether it was due
to lack of analysis or lack of significant findings. The current study addressed this issue
directly and used two methods to evaluate whether MMR is correlated with behavioral
discrimination across individuals. The results converged and demonstrated a robust cor-
relation between behaviorally measured discrimination (d’) and MMR measured at the
source level, but only in the Native Spanish group. The two types of analyses confirmed
and complemented each other regarding this behavior–MMR correlation, that is, (1) tradi-
tional multiple regression analysis based on MMR extracted from a priori defined ROIs and
time windows and (2) a data-driven exploratory machine-learning-based regression that
takes the whole brain and the whole MMR time series into consideration. Critically, the
behavioral–MMR correlation was only observed in the Native Spanish group, but not in
the English speakers. This provides evidence that different mechanisms may be underlying
native vs. nonnative speech MMR.

For the Native Spanish group, both types of regression analyses show that regions
driving the behavior–MMR correlation are restricted to the left hemisphere and the effect
seems larger in the frontal region. Further, the correlation is positive in nature, that is, the
larger the MMR, the better the behavior discrimination. This result aligns well with both
the theories regarding MMR as well as the speech processing model [7,14,37]. This suggests
that native speakers may be processing the speech in a ‘phonetic mode’ where utilizing
information from the motor planning region (e.g., left IFG) is crucial for them to distinguish
two acoustically very similar speech sounds. This result is also in line with our recent
studies examining the development of MMR at the source level in infants, demonstrating
that the most substantial increase in MMR during the sensitive period for phonetic learning
is in the left IFG region for native speech contrasts [32].

On the other hand, the lack of any behavior–MMR correlation in the Monolingual
English group is surprising and puzzling, especially given the substantially enhanced
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MMR across the whole brain at the group level. Nonnative speech processing has generally
been considered more to be at the ‘acoustic level’ of processing, such that one would
expect correlation between behavior and MMR in the auditory region (e.g., STG). However,
neither type of regression showed indication of such correlation. The multiple regression
examined both left and right STG, while the machine-learning-based regression explored
the whole brain across all time points over the MMR. One possibility is that the effect
for nonnative speech is much smaller and would require a larger sample to detect the
correlation. Another possibility is that attention plays a larger role in nonnative speech
discrimination as attention is required for the behavioral task while MMR is measured
pre-attentively. This may explain the lack of correlation between MMR and behavioral
discrimination in the existing literature. Future research will need to replicate with larger
samples driven by power analysis and further understand the behavioral relevance of
MMR for nonnative speech. On the other hand, future research will also need to better
understand the neural mechanisms for nonnative speech processing, compared to native
speech processing.

5. Conclusions

The current study extended our current understanding of neural mechanisms under-
lying the linguistic effect on speech discrimination. It demonstrated that the MMR at the
source level is reduced for native speakers, compared to nonnative speakers. Yet, a robust
neural–behavior relation was only observed in the native speakers, suggesting potentially
different mechanisms to be involved for the nonnative speakers. Future research is war-
ranted to replicate and further elucidate the mechanisms for speech processing, particularly
for the nonnative speech.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12040461/s1, Video S1: MMR across the whole brain
over time in Monolingual English speakers, Video S2: MMR across the whole brain over time in
Native Spanish speakers, Video S3: Difference in MMR between group across the whole brain over
time, −log(p) is plotted.
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