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Abstract: The present study considers a possible role of enzymatic reactions in the adaptive response of
cells to the beta-emitting radionuclide tritium under conditions of low-dose exposures. Effects of tritiated
water (HTO) on the reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase, as well as a
coupled system of these two reactions, were studied at radioactivity concentrations ≤ 200 MBq/L.
Additionally, one of the simplest enzymatic reactions, photobiochemical proton transfer in
Coelenteramide-containing Fluorescent Protein (CLM-FP), was also investigated. We found that
HTO increased the activity of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction (by up
to 230%); however, a rise of luciferase activity was moderate (<20%). The CLM-FP samples did
not show any increase in the rate of the photobiochemical proton transfer under the exposure to
HTO. The responses of the enzyme systems were compared to the ‘hormetic’ response of luminous
marine bacterial cells studied earlier. We conclude that (1) the oxidoreductase reaction contributes
significantly to the activation of the coupled enzyme system and bacterial cells by tritium, and (2) an
increase in the organization level of biological systems promotes the hormesis phenomenon.

Keywords: hormesis; low-dose radiation; tritium; enzymes; bacterial luciferase; oxidoreductase;
fluorescent protein

1. Introduction

All organisms on Earth are adapted to the natural background radiation. Natural or/and
anthropogenic incidents that resulted in an increased background radiation might induce different
radiobiological effects: the radiotoxic suppression of physiological functions or an adaptive response.
The latter usually occurs in the form of the activation of organismal physiological functions and takes
place under a low-dose irradiation.

Health risks for exposures to a low-dose ionizing radiation remain controversial and are still a
subject of intensive debates. The relevance of risk assessment criteria should be based on the molecular
mechanisms of the biological responses; this approach is recognized worldwide [1], providing
important tasks for radiation medicine and modern pharmacology. Modern medicine intensively
develops therapeutic methods based on low-dose radiation; these include therapy for rheumatoid
arthritis [2], prevention of tumor lesion growth [3], and a concomitant therapy for bacterial infections [4].
Understanding the molecular mechanisms can provide a tool for regulating the cellular response to
radiation exposure [5].
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Activation by a low-dose impact is a common phenomenon; it is associated with the term
“hormesis”, which usually implies a favorable biological response to a low dose of toxins, radiation,
or other stress factors. The hormesis phenomenon was described for the first time by H. Schulz and
R. Arndt at the end of the 19th century [6]. The current resurgence of the hormesis concept refers
back to Edward Calabrese [7–11]. The term ‘radiation hormesis’ was suggested by T.D. Luckey [12].
The phenomenon of radiation hormesis has been intensively studied [8,13,14].

Hormesis is considered as a basis for the most general toxicological model, which involves
opposite response types: the activation of physiological functions under low-dose exposures and their
inhibition by higher doses. Two other toxicological models, linear and threshold, might be considered
as particular cases of hormesis [8,15–17]. It is supposed that hormesis is a highly general phenomenon
that is independent from the biological model and the level of organization of a biological system
(e.g., cell, organ, or organism) [9]. Studies of cellular responses form a basis for understanding low-dose
effects on multicellular organisms. The role of enzymatic processes in the responses of living organisms
to low-dose exposures is yet not fully understood.

Luminous marine bacteria and their enzyme reactions are highly convenient objects for studying
and comparing the bioeffects of low-dose radiation at the cellular and enzymatic levels. The reasons
for this are as follows.

(1) Marine bacteria [18–21] and their enzymes [22] have been used as bioassays for several decades;
this is why the effects of exogenous compounds on these assay systems have been intensively
studied. The effects of a series of radionuclides [23–26] and gamma radiation [27,28] on the
bacteria and their enzymatic reactions were studied and compared. Thus, the predictive premise
for the bioassays was formed based on the molecular mechanisms of the radiation-induced effects.

(2) Bioluminescence intensity is a tested physiological parameter under monitoring. The registration
of luminescence is a convenient bioassay procedure; its advantages are a high sensitivity, high rates
(duration down to 1–3 min), simplicity, as well as the availability of reagents and instruments.
The high rates adapt the tests for a large number of measurements under comparable conditions
and hence for a proper statistical processing, which is extremely important for low-dose exposures
usually described in terms of “stochastic effects” [29]. Furthermore, the quick luminescence
response assumes a nongenetic mechanism of low-intensity effects [30,31].

We used luminous marine bacteria to monitor low-dose radiation effects for the first time in [23],
with the alpha-emitting radionuclide americium-241 as an example. Later, the effects of the alpha-
and beta-emitting radionuclides americium-241, uranium-235 + 238, and tritium were additionally
investigated [24,26,32]. We demonstrated that the bioluminescence response of the bacteria to the
radionuclides included three stages: (1) threshold, (2) activation, and (3) inhibition. Such a complex
response was described in terms of the hormesis model. A signaling role of reactive oxygen species in
the low-dose effects of tritium and americium-241 was considered in [31–33].

In the current study, we have chosen tritium as a model beta-emitting radionuclide to compare
low-dose radiation effects on cells and enzymatic reactions. The choice was justified by the
environmental occurrence of tritium as the result of its natural and anthropogenic origin: on the one
hand, this isotope is generated in the top layers of the atmosphere because of the space irradiation;
on the other hand, tritium is a byproduct of many processes in the nuclear industry, and its local
increase occurs around nuclear power plants and rises dramatically after nuclear incidents.

The total energy of tritium beta-decay is low (18.6 keV), and the average energy of electrons is low
as well (5.7 keV). This is the reason for considering tritium as one of the less hazardous radioisotopes.
The products of the decay of tritium (T) include an electron (a beta particle) and an ionized isotope of
helium (3

2He+):

T
β
→

3
2He+ + e− + ν̃ (1)

These decay products are able to trigger electron/charge transfer in biochemical reactions and
hence to affect the rates of cellular processes. Our previous studies [24,25] demonstrated both activation
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and inhibition effects of tritium on marine bacteria (Figure 1A), as well as the absence of a monotonic
dependence of a luminescence response vs. the tritium activity concentration at a chronic low-dose
exposure (<0.03 Gy) in a wide range of tritium radioactivities: from 0.0001 to 200 MBq/L (Figure 1B).
This result was explained with the hormesis model involved in terms of the adaptation ability of the
bacterial cells to the low-dose radiation.
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Figure 1. Effect of tritiated water on bioluminescence of bacteria. (A) Bioluminescence kinetics of bacteria
in tritiated water, 2 MBq/L; red arrows denote times of sampling (20 and 50 h); (B) bioluminescence
intensity vs. activity concentration of tritiated water at 20 h (black) and 50 h (green) exposures [16].
Adapted from Kudryasheva, N.S.; Kovel, E.S. Monitoring of low-intensity exposures via luminescent
bioassays of different complexity: Cells, enzyme reactions, and fluorescent proteins. Int. J. Mol. Sci.
2019, 20, 4451.

An increase in the bacterial luminescence intensity in the presence of tritiated water, HTO,
was demonstrated in a series of experiments. The biphasic dependence (activation + inhibition) was
found in [24,26], while the monophasic dependence (activation only) was shown in [30,32,33].

The mechanism of the activation effect of tritium is a question of special interest. The first
hypothetical mechanism is based on repairing DNA damage [28,34,35]. The involvement of
nongenetic mechanisms in low-dose chronic radioactive effects in bacteria was proved earlier in [30,33].
Recently [32], we observed a 300% activation of bacterial bioluminescence by HTO; it was attributed to
a “bystander effect” and explained by the ‘trigger’ function of the tritium radioactive decay products,
as well as by a signaling role of reactive oxygen species.

An important way to explore the mechanisms of low-dose responses is based on the comparison
of responses from biological structures of different complexities—a multicellular organism, cells,
enzymatic reactions, etc. The effects of low-dose radiation on enzymatic processes and their comparison
with those on cells is currently a very important focus. Previously, low-intensity exposures were
investigated using the enzymatic bioassay—a system of coupled bacterial enzymatic reactions [23,24].
However, the enzymatic activity in individual biochemical reactions has not been studied yet.

The current study elucidates the low-dose effects of tritium in individual (i.e., noncoupled) enzyme
reactions. Enzymatic reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase were chosen.
We compared the tritium effects on the individual enzymatic reactions with those on the coupled
system of these reactions and on bacterial cells.

Additionally, one of the simplest enzymatic bioassay systems, i.e., a Coelenteramide-containing
Fluorescent Protein (CLM-FP), was used to evaluate the activation bioeffect of tritium. CLM-FPs are
products of bioluminescent reactions of coelenterates that constitute a potential use in biomedicine
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as biomarkers [36–38]. The fluorescence characteristics of CLM-FPs were intensively studied [39–46];
they were found to be sensitive to external exposures: excitation energy [44], chemical agents [47,48],
and radioactivity [49,50]. Recently, [51] suggested CLM-FPs for intracellular application as being the
simplest toxicity bioassay.

The CLM-FP-based bioassay applies the simplest enzymatic reaction, i.e., photochemical proton
transfer; its efficiency depends on the structure of the CLM-FP complex. Any destructive exposures,
chemical or radioactive, can change this efficiency and, therefore, change contributions of the
components of the reaction—protonated and deprotonated forms of CLM. Hence, as a result of the
CLM-FP photoexitation, one can observe changes in the fluorescence contributions of the protonated
(violet) and deprotonated (green) forms of CLM. An illustration of such changes is presented in
Figure 2.
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Previously, a low-dose exposure of the CLM-FP to tritium radiation did not reveal the intensification
of the photobiochemical proton transfer; only inhibition was observed [49]. However, a variation of the
initial characteristics of the CLM-FP preparation might change its sensitivity to the radioactive impact.

Our studies of enzymatic responses can provide a more detailed understanding of the mechanisms
of low-dose effects and expand the application of enzyme systems for the diagnosis and/or regulation
of intracellular processes. For example, bioluminescent reactions of coelenterates are widely used as
genetically encoded markers in biological and medical research [36–38], and the parallel use of the
products of their reactions (CLM-FPs) to assess the radiation-induced processes in the intracellular
media would provide these reagents with multifunctionality.

A prospect for evaluating the radiotoxic or radioprotective response can occur for luminous bacteria,
systems of their coupled enzymatic reactions [16,25], as well as for individual enzymatic reactions.

The current report compares the activation effects of tritium in luminous marine bacteria and
coupled enzymatic reactions (Section 2.1) with those in individual enzymatic reactions catalyzed
by bacterial luciferase (Section 2.2), NAD(P)H:FMN-oxidoreductase (Section 2.3), and different
preparations of CLM-FP (Section 2.4). By this, we compare the sensitivity of the biological systems of
different levels of organization (cells, a coupled enzyme system, individual enzyme reactions of two
types, and the photobiochemical process of proton transfer) to the chronic low-dose tritium irradiation.
The study develops the approach [16] for comparing the responses of biological systems of different
complexities to low-intensity factors.
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2. Experimental Section

Tritiated water (HTO) of radiochemical purity 98% was used as a source of beta-type ionizing
radiation. The effects of tritium on four enzymatic systems were studied: the reaction of bacterial
luciferase (Section 2.1), NAD(P)H:FMN-oxidoreductase (Section 2.2), a coupled system of two enzymatic
reactions: bacterial luciferase–NAD(P)H:FMN-oxidoreductase (Section 2.3), and the photoluminescence
of Coelenteramide-containing Fluorescent Protein (CLM-FP) (Section 2.4).

2.1. Reaction of Bacterial Luciferase. Reagents, Procedure, and Data Analysis

The reaction catalyzed by bacterial luciferase is shown below:

FMN·H− + RCHO + O2
luciferase
−−−−−−−→FMN + RCOO− + H2O + hv (R1)

Reagents: bacterial luciferase from Photobacterium leiognathi (99% purity) was purchased from
Biolumdiagnostika Ltd. (Russia). FMN (Sigma) and decanal (Acros Organics) were of analytical grade;
EDTA (ROTH) and NaCl (Khimreactiv, Russia) were of chemical grade. The freshly prepared stock
solution of 2 × 10−2 M decanal in ethanol was used. All the other reagents were dissolved in 0.05 M
phosphate buffer, pH 6.8. A set of HTO samples of 0.0001−200 MBq/L specific radioactivity was used
for adding to bacterial luciferase; the samples were prepared by mixing different volumes of the stock
HTO solution with 3% sodium chloride.

The activity of bacterial luciferase was determined in a single-turnover reaction using the
stopped-flow technique [52]. A buffer solution containing 3 × 10−5 M FMN and 10−2 M EDTA
(solution A) was made anaerobic by bubbling with argon for 5 min. Photoreduction of FMN was
carried out by exposure to the light of an incandescent lamp for 5 min. A separate air-equilibrated
buffer solution of 2 × 10−6 M bacterial luciferase was incubated for 5 min with HTO of various
specific radioactivities or 3% sodium chloride (control experiment). Then, a small volume of decanal
solution was added to get a 6 × 10−5 M concentration (solution B). The stopped-flow experiment was
initiated by rapid mixing of 75 µL solution A and 75 µL solution B at 20 ◦C using an SX-20 analyzer
(Applied Photophysics). The kinetics of the bioluminescence intensity was recorded for 15 s with a
photomultiplier directly from the observation cell without additional filters. All experiments were
carried out in three replications.

To evaluate the luciferase activity, the value of the quantum yield, Q, was calculated. The Q-values
evaluate the number of quanta emitted per single turnover of the enzyme; they were estimated as an
area under the kinetic curve for all specific HTO radioactivities. The relative quantum yields, Qrel,
were calculated as a ratio of the Q-values after incubation in the radioactive solutions to those in the
control (nonradioactive) solutions. The average Qrel values and experimental errors were evaluated.

Additionally, the luciferase preparation was exposed to HTO (2 MBq/L) for 0.08, 0.43, 0.76, 1.5, 2.5,
20, 29, and 87.5 h; the enzyme activity was determined at the different times of exposure.

2.2. Effect of Tritium on the Reaction of NAD(P)H:FMN-Oxidoreductase. Reagents, Procedure, and
Data Analysis

The reaction catalyzed by NAD(P)H:FMN-oxidoreductase is shown below [19]:

NADH + FMN
NAD(P)H:FMN-oxidoreductase
−−−−−−−−−−−−−−−−−−−−−−−−−→FMN·H− + NAD+ (R2)

NAD(P)H:FMN-oxidoreductase was obtained from the Photobiology lab, Institute of Biophysics,
SB RAS, Krasnoyarsk, Russia; FMN was from SERVA, Germany; NADH was from ICN, USA.
To construct the reaction mixture, we used the oxidoreductase solution (0.15 activity units), 10−4 M FMN,
10−4 M NADH. The specific radioactivity of HTO varied in the range of 0.0002 to 200 MBq/L. The reaction
was performed in 0.05 M phosphate buffer, pH 6.8, at 20 ◦C.
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A double beam UV/VIS spectrophotometer UNIKON-943, Italy, was used to measure the optical
density and enzymatic activity of NAD(P)H:FMN-oxidoreductase. The registration wavelength
(340 nm) corresponded to the NADH absorption maximum. The enzymatic activity was estimated as
an angular coefficient in the exponential dependence of the optical density on time; it was determined
using the built-in program. The reliability of the determination was controlled by the coefficient of
approximation R2 being within the range of 0.98–0.99.

The enzymatic activity of NAD(P)H:FMN-oxidoreductase was studied in the control and
radioactive solutions in five parallel experiments for different HTO specific radioactivities; the relative
enzymatic activity was calculated and plotted vs. (1) the time of exposure and (2) the specific
radioactivity of the solutions at 0 and 110 min of exposure. Experimental errors for the relative
experimental activity did not exceed 10%.

2.3. Coupled System of Two Enzymatic Reactions: Bacterial Luciferase–NAD(P)H:FMN-Oxidoreductase.
Procedure and Data Analysis

The reactions of bacterial luciferase and NAD(P)H:FMN-oxidoreductase are presented above
(R1 and R2, respectively); enzymes and reagents are described in Sections 2.1 and 2.2. Reaction mixtures
are presented in [24]. The standard procedure for bioluminescence measurements was described
earlier [24].

The bioluminescence intensity was registered with a microplate luminometer Luminoskan Ascent
(Thermal Fisher Corp.) at 20 ◦C. Bioluminescence kinetics was recorded in control (nonradioactive) and
radioactive samples of different specific radioactivities (≤200 MBq/L). The time of the exposure was
restricted to 2 h because of the bioluminescence decay in the control samples. The experiments were
conducted in four replications. The bioluminescence intensity in samples with different radioactivities
was compared to that in the control samples; the relative bioluminescence intensities, Irel, were
calculated. Experimental errors for Irel did not exceed 10%.

2.4. Effect of Tritium on Photoluminescence of CLM-FP Reagents, Procedure, and Data Analysis

To construct a bioassay system based on CLM-FP, the recombinant preparation of the photoprotein
obelin from the hydroid polyp Obelia longissima was applied. The preparation was obtained from the
Photobiology Lab, Institute of Biophysics, SB RAS, Krasnoyarsk, Russia [53]. Tris and ethanol were
obtained from Fluka, Switzerland; EDTA from Sigma, Germany.

The detailed methodology of the experiment was described in [49]. HTO was added to the
CLM-FP solutions. The characteristics of the sample solutions were: 200 MBq/L specific radioactivity
and 10−5 M obelin concentration. The overall time of exposure to HTO was 19 days; t = 20 ◦C.

The fluorescent spectra were registered with a Cary Eclipse Fluorescence Spectrophotometer,
Agilent, USA, at 350 nm photoexcitation, 20 ◦C. The fluorescence quantum yields Q were calculated in
the coordinates: fluorescence intensity vs. wavelength number.

The complex fluorescence spectra of CLM-FP were deconvolved into individual components
using the Gaussian distribution with mathematical processing by the software packages OriginPro
2018 SR1 b9.5.1.195 and Excel 2010. To determine the maxima and number of the spectral components,
we used the method of the second derivative. The deviation d of the calculated spectrum from the
experimental one was evaluated as:

d =

∣∣∣Sexp −
∑

Scomp
∣∣∣

Sexp
·100%, (2)

where Sexp is the area of the overall experimental spectrum, and Scomp is the area of the individual
spectral components. The value of d did not exceed 0.5%.
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The contributions W of the ‘violet’ or ‘blue-green’ spectral components to the overall fluorescence
spectrum were calculated as follows:

W =
Scomp∑

Scomp
. (3)

The values of Q and W were obtained in two parallel 19-day experiments with three measurements
for all irradiated and control (nonradioactive) CLM-FP solutions. The time courses of Q and W
were corrected according to the time-dependent spectral changes in the control (nonradioactive)
samples; the values of Qrel and Wrel were calculated and plotted vs. the time of exposure to HTO.
The experimental errors for Qrel and Wrel did not exceed 8%.

3. Results and Discussion

3.1. Effect of Tritium on the Bioluminescence System of Coupled Enzymatic Reactions: Bacterial
Luciferase–NAD(P)H:FMN-Oxidoreductase

We studied the effect of tritiated water, HTO, on the bioluminescence system of the
coupled enzymatic reactions: bacterial luciferase–NAD(P)H:FMN-oxidoreductase. This system
is supposed to model the intracellular light-emitting processes in luminous marine bacteria [54,55].
The bioluminescence intensity at different radioactivities of the media is presented in Figure 3. One can
see that no monotonic dependency of Irel was observed on the HTO activity concentration; the effect
was of a stochastic character with the predominant activation of the bioluminescence. This response of
the enzyme system mirrors that of luminous bacteria at the initial stage of their lifetime, as shown in
Figure 1B for the 20 h exposure.
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In the current experiment, we did not observe any inhibitory effects of HTO. However, previous
results [24] demonstrated not only the activation but also the inhibition of the bioluminescence of the
coupled enzymatic system by tritium.

Therefore, luminous bacteria at initial stages of exposure (Figure 1B [16]) and the bacterial system
of the coupled enzyme reactions (Figure 3) demonstrated similar bioluminescence responses to tritium.
The conclusion can be made that the coupled enzymatic reactions contribute to the adaptive response
of the bacteria. The responses of the individual enzymatic reactions to the similar exposure are
considered below.
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3.2. Effect of Tritium on the Enzymatic Activity of Bacterial Luciferase

The enzymatic activity of bacterial luciferase (R1) was studied after enzyme incubation in HTO
solutions under different specific radioactivities. The bioluminescence kinetic curves in the control and
radioactive samples were recorded; examples of the curves are presented in Figure 4. One can see that
tritium slightly increases the bioluminescence intensity in the course of the luciferase reaction.
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Figure 5 shows that no monotonic dependence of Qrel on the solution’s radioactivity was
observed. The average Qrel values slightly exceeded 1 in all of the used HTO radioactivity range;
the deviations from the control did not exceed 20%. Hence, HTO did not significantly increase
the bioluminescence quantum yields in the reaction of bacterial luciferase when compared to the
nonradioactive (control) samples.
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The slight increase in the bioluminescence yield can probably be associated with the optimization
of the structure of luciferase through the ionization of the medium in the course of the low-energy
radioactive tritium decay.
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Additionally, the time of incubation of bacterial luciferase with HTO (2 MBq/L) varied from 1 to
87 h. It was found that such an incubation did not noticeably change the parameters of the luciferase
reaction (data not shown).

Thus, we demonstrated the independence of the luciferase enzymatic activity from the HTO
radioactivity and time of the radiation exposure. The exposures did not increase the luciferase activity
by more than 20%. Nevertheless, this increase contributed to the bioluminescence activation of
the coupled system of the enzymatic reactions bacterial luciferase–NAD(P)H:FMN-oxidoreductase
presented before in Section 3.1.

3.3. Effect of Tritium on the Enzymatic Activity of NAD(P)H:FMN-Oxidoreductase

The effect of tritium on the enzymatic reaction catalyzed by NAD(P)H:FMN-oxidoreductase was
studied; the enzymatic activity was measured with intervals of 10 min for 2 h. Figure 6 shows examples
of the enzymatic activity time courses in the control and radioactive samples. The maximal dose
accumulated by the sample of 200 MBq/L radioactivity was ~2 mGy, which was much lower than the
tentative limit of a low-dose interval (about 100 mGy, according to [56]).
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(nonradioactive) sample; 2—radioactive sample, 10 MBq/L.

Figure 6 shows that the initial stage of the reactions (<40 min) reveals higher enzymatic activities
in the radioactive sample as compared to the control. The final stage of the reaction showed an
inhibition of the enzyme activity. The solutions with other radioactivities demonstrated similar results.
The illustration of the HTO effects at the initial and final stages of the reaction is presented in Figure 7
for different HTO radioactivities.

The figure shows an increase (up to 230%) and decrease of the oxidoreductase activity at 1- and
110-min exposures to HTO, respectively. It is evident that oxidoreductase is more sensitive to tritium
than bacterial luciferase (Section 3.2). Since oxidoreductase supplies the bioluminescence reaction
of bacterial luciferase with the substrate, FMN·H− (R2 and R1, respectively), the coupling of these
enzymatic reactions can be responsible for the effects of tritium on the bioluminescence of the system
of the coupled enzyme reactions (Figure 4) and luminous bacteria (Figure 1B). Since the bacterial cells
produce this enzyme endogenously [57], it provides the long-term effects of the radionuclide on the
bioluminescence intensity.
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3.4. Effects of Tritium on Coelinteramide-Containing Fluorescent Protein

Tritium bioeffects were studied using the simplest enzymatic process, i.e., the photobiochemical
reaction of Coelinteramide-containing Fluorescent Protein (CLM-FP). Previously, the low-dose exposure
of CLM-FP to tritium was studied by Petrova et al. [49]. No activation was found, but only an inhibition
effect of tritium: the 18-day chronic exposure to HTO resulted in an increase in the violet fluorescence
component contribution. This effect revealed a decay in the efficiency of the photobiochemical
reaction in CLM-FP, likely due to protein destruction in the presence of tritium. The tritium activity
concentration was 200 MBq/L; the maximal accumulated dose (0.28 Gy) was close to the tentative
border of the low-dose range. The work by Petrova et al. used the CLM-FP preparation with a ratio of
the “violet” to the “green” fluorescence intensity (415 and 500 nm maxima, respectively) equal to 0.3.

We looked for an activation of the photobiochemical reaction of CLM-FP by tritium. To find this
effect, we varied the initial fluorescence characteristics of the CLM-FP preparation by its exposure to a
high temperature (40 ◦C) for 60 h according to [45]. The ratios of the violet to the green components’
fluorescence intensities for the chosen CLM-FP samples differed from those reported in [49]; they were
ca. 0.2 and 0.8 (Figure 8A,B, respectively), detecting a different efficiency of the proton transfer in the
photobiochemical reaction of CLM-FP. We assumed that the partly thermo-damaged CLM-FP samples
could be more sensitive to tritium, providing the conditions for the tritium activation effect.

Figure 8 presents the photoluminescence spectra of CLM-FPs (samples A and B), as well as
the results of their chronic exposure to tritiated water, HTO (Figure 8(A1,A2,B1,B2)). The maximal
accumulated dose was 14 mGy. Sample A did not demonstrate any evident changes from the control:
the violet and green fluorescence contributions Wrel (Figure 8(A1)) and overall fluorescence quantum
yields Qrel (Figure 8(A2)) did not show any deviations from those for the control samples during the
observation course (19 days). Sample B demonstrated slight deviations of Wrel from those for the control
samples: Figure 8(B1) shows insignificant (10–15%) changes of the violet and green contributions;
a slight increase in the violet component contribution and decrease in the green one indicated a
decay of the efficiency of the proton transfer, likely due to an additional protein destruction by HTO.
Hence, we did not find any rise of efficiency for the photobiochemical reaction of the proton transfer.
These results are similar to those obtained earlier [49] with other CLM-FP samples that were not
subjected to a preliminary destructive treatment. The results confirmed the conclusion [49] that the
simplest bioassay system based on CLM-FP does not demonstrate an activation of photobiochemical
processes under the conditions of a low-dose exposure to HTO.
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An insignificant (10–15%) rise of the overall fluorescence quantum yields Qrel is evident from
Figure 8(B2). This effect might be explained from a photophysics point of view: in the course of the
tritium radioactive decay, the rigidity of the fluorophore structure in the CLM-FP might rise due to the
ionization of the medium. The ionic strength increase might result in the electrostatic stabilization of
the fluorophore and, hence, in a decrease of the nonradiative efficiency in the fluorescence emitter.
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4. Conclusions

The hormesis phenomenon is usually attributed to organisms. Nevertheless, a study of
molecular processes that provide an activation of physiological functions in organisms is crucial
to understanding this phenomenon. The present study considers one of the simplest cellular organisms,
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a marine bacterium, and its enzymatic reactions. Additionally, the simplest enzymatic reaction,
photochemical proton transfer in coelenteramide-containing fluorescent protein, was also under
consideration. We compared the activation effects of the beta-emitting radionuclide tritium on the
cellular organism and on the enzymatic reactions. It has been found that tritium increases the activity
of NAD(P)H:FMN-oxidoreductase at the initial stage of its reaction. Through the coupling (via reduced
FMN) with the bioluminescence reaction of bacterial luciferase, this reaction probably contributes to
the escalation of the bioluminescence of the coupled system NAD(P)H:FMN-oxidoreductase—bacterial
luciferase, resulting in the further activation of the bacterial light emission. Additionally, it has recently
been shown [58] that the bacterium environment influences its response: natural bioactive compounds,
humic substances, were found to mitigate the adaptive response of the bacteria to the low-dose
ionizing radiation of tritium. The variation of the bacterial response in complex water solutions in
the presence of redox-active compounds (such as phenolic substances including microbial secondary
metabolites) [59] is a question of special interest.

An intracellular increase of the oxidoreductase activity caused by tritium might be a more
complicated mechanism, as tritium can activate bacterial luminescence without penetrating into the
cells [33], probably through the ionization of water and activation of membrane processes. This could
be a subject of additional investigations. A comparison of the role of reactive oxygen species in
cellular [32] and enzymatic processes in HTO should be provided in further studies as well.

The isolated reaction of bacterial luciferase showed a negligible activation by tritium, and no
increase in the rates of the photobiochemical proton transfer in the fluorescent protein was observed.
Hence, it is evident that a lower level of organization of living matter, without conjugation with other
processes, hardly facilitates an activation of biological processes and related adaptive responses in
multicellular organisms.

Author Contributions: T.V.R. was involved in experimental bioluminescence methods, data processing,
interpretation, writing, and editing the manuscript. M.V.G. carried out experiments with bacterial luciferase and
reductase. A.V.R. conducted experiments with fluorescence protein. E.V.N. and A.E.L. provided measurements
of bacterial luciferase activity by the stopped-flow technique and data analysis. G.A.B. was involved in the
methodology of tritium application, writing, and editing. N.S.K. was involved in general leadership of the
work, data analysis, and manuscript preparation. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by RFBR-Krasnoyarsk Regional Foundation N 18-44-240004, 18-44-242002.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

CLM Coelenteramide
FP Fluorescent Protein
ROS Reactive Oxygen Species
FMN Flavin mononucleotide
NADH Nicotinamide adenine dinucleotide
HTO Tritiated water

References

1. Vaiserman, A.; Koliada, A.; Zabuga, O.; Socol, Y. Health impacts of low-dose ionizing radiation: Current
scientific debates and regulatory issues. Dose-Response 2018, 16, 1559325818796331. [CrossRef] [PubMed]

2. Kojima, S.; Thukimoto, M.; Cuttler, J.M.; Inoguchi, K.; Otaki, T.; Shimura, N.; Koga, H.; Murata, A. Recovery
from rheumatoid arthritis following 15 months of therapy with low doses of ionizing radiation: A Case
Report. Dose-Response 2018, 16, 1559325818784719. [CrossRef] [PubMed]

http://dx.doi.org/10.1177/1559325818796331
http://www.ncbi.nlm.nih.gov/pubmed/30263019
http://dx.doi.org/10.1177/1559325818784719
http://www.ncbi.nlm.nih.gov/pubmed/30013458


Int. J. Mol. Sci. 2020, 21, 8464 13 of 15

3. Lehrer, S.; Green, S.; Rosenzweig, K.E. Reduced ovarian cancer incidence in women exposed to low dose
ionizing background radiation or radiation to the ovaries after treatment for breast cancer or rectosigmoid
cancer. Asian Pac. J. Cancer Prev. 2016, 17, 2979–2982. [PubMed]

4. Dhawan, G.; Kapoor, R.; Dhamija, A.; Singh, R.; Monga, B.; Calabrese, E.J. Necrotizing fasciitis: Low-dose
radiotherapy as a potential adjunct treatment. Dose-Response 2019, 17, 1559325819871757. [CrossRef]
[PubMed]

5. Azzam, E.I.; Colangelo, N.W.; Domogauer, J.D.; Sharma, N.; de Toledo, S.M. Is ionizing radiation harmful at
any exposure? An echo that continues to vibrate. Health Phys. 2016, 110, 249–251. [CrossRef] [PubMed]

6. Kaiser, J. Sipping from a poisoned chalice. Science 2003, 302, 376–379. [CrossRef]
7. Calabrese, E.J. Hormesis: A revolution in toxicology, risk assessment and medicine. Re-Fram. Dose–Response

Relatsh. EMBO Rep. 2004, 5 (Suppl. 1), S37–S40. [CrossRef]
8. Calabrese, E.J. Hormesis: Path and progression to significance. Int. J. Mol. Sci. 2018, 19, 2871. [CrossRef]
9. Calabrese, E.J. Hormetic mechanisms. Crit. Rev. Toxicol. 2013, 43, 580–606. [CrossRef]
10. Calabrese, E.J. Hormesis: A fundamental concept in biology. Microb. Cell 2014, 1, 145–149. [CrossRef]
11. Agathokleous, E.; Calabrese, E.J. A global environmental health perspective and optimisation of stress.

Sci. Tot. Environ. 2020, 704, 135263. [CrossRef]
12. Luckey, T.D. Hormesis with Ionizing Radiation; CRC Press, Inc.: Boca Raton, FL, USA, 1980; p. 225.
13. Jargin, S.V. Hormesis and radiation safety norms: Comments for an update. Hum. Exp. Toxicol. 2018, 37,

1233–1243. [CrossRef]
14. Shibamoto, Y.; Nakamura, H. Overview of biological, epidemiological, and clinical evidence of radiation

hormesis. Int. J. Mol. Sci. 2018, 19, 2387. [CrossRef]
15. Iavicoli, I.; Leso, V.; Fontana, L.; Calabrese, E.J. Nanoparticle exposure and hormetic dose–responses:

An update. Int. J. Mol. Sci. 2018, 19, 805. [CrossRef] [PubMed]
16. Kudryasheva, N.S.; Kovel, E.S. Monitoring of low-intensity exposures via luminescent bioassays of different

complexity: Cells, enzyme reactions, and fluorescent proteins. Int. J. Mol. Sci. 2019, 20, 4451. [CrossRef]
[PubMed]

17. Ge, H.; Zhou, M.; Lv, D.; Wang, M.; Xie, D.; Yang, X.; Dong, C.; Li, S.; Lin, P. Novel segmented concentration
addition method to predict mixture hormesis of chlortetracycline hydrochloride and oxytetracycline
hydrochloride to Aliivibrio fischeri. Int. J. Mol. Sci. 2020, 21, 481. [CrossRef] [PubMed]

18. Bulich, A.A.; Isenberg, D.L. Use of the luminescent bacterial system for rapid assessment of aquatic toxicity.
ISA Trans. 1981, 20, 29–33. [PubMed]

19. Girotti, S.; Ferri, E.N.; Fumo, M.G.; Maiolini, E. Monitoring of environmental pollutants by bioluminescent
bacteria. Anal. Chim. Acta. 2008, 608, 2–29. [CrossRef]

20. Roda, A.; Pasini, P.; Mirasoni, M.; Michchelini, E.; Guardigli, M. Biotechnological application of
bioluminescence and chemiluminescence. Trends Biotech. 2004, 22, 295–303. [CrossRef]

21. Abbas, M.; Adil, M.; Ehtisham-Ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G.A.; Tahir, M.A.; Iqbal, M.
Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review. Sci. Total Environ. 2018, 626,
1295–1309. [CrossRef]

22. Kratasyuk, V.A.; Esimbekova, E.N. Applications of luminous bacteria enzymes in toxicology. Comb. Chem.
High Throughput Screen 2015, 18, 952–959. [CrossRef] [PubMed]

23. Rozhko, T.V.; Kudryasheva, N.S.; Kuznetsov, A.M.; Vydryakova, G.A.; Bondareva, L.G.; Bolsunovsky, A.Y. Effect
of low-level α-radiation on bioluminescent assay systems of various complexity. Photochem. Photobiol. Sci. 2007, 6,
67–70. [CrossRef] [PubMed]

24. Selivanova, M.A.; Mogilnaya, O.A.; Badun, G.A.; Vydryakova, G.A.; Kuznetsov, A.M.; Kudryasheva, N.S.
Effect of tritium on luminous marine bacteria and enzyme reactions. J. Environ. Radioact. 2013, 120, 19–25.
[CrossRef] [PubMed]

25. Kudryasheva, N.S.; Rozhko, T.V. Effect of low-dose ionizing radiation on luminous marine bacteria: Radiation
hormesis and toxicity. J. Environ. Radioact. 2015, 142, 68–77. [CrossRef]

26. Selivanova, M.A.; Rozhko, T.V.; Devyatlovskaya, A.N.; Kudryasheva, N.S. Comparison of chronic low-dose
effects of alpha-and beta-emitting radionuclides on marine bacteria. Cent. Eur. J. Biol. 2014, 9, 951–959.
[CrossRef]

27. Kudryasheva, N.S.; Petrova, A.S.; Dementyev, D.V.; Bondar, A.A. Exposure of luminous marine bacteria to
low-dose gamma-radiation. J. Environ. Radioact. 2017, 169, 64–69. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/27356721
http://dx.doi.org/10.1177/1559325819871757
http://www.ncbi.nlm.nih.gov/pubmed/31496924
http://dx.doi.org/10.1097/HP.0000000000000450
http://www.ncbi.nlm.nih.gov/pubmed/26808874
http://dx.doi.org/10.1126/science.302.5644.376
http://dx.doi.org/10.1038/sj.embor.7400222
http://dx.doi.org/10.3390/ijms19102871
http://dx.doi.org/10.3109/10408444.2013.808172
http://dx.doi.org/10.15698/mic2014.05.145
http://dx.doi.org/10.1016/j.scitotenv.2019.135263
http://dx.doi.org/10.1177/0960327118765332
http://dx.doi.org/10.3390/ijms19082387
http://dx.doi.org/10.3390/ijms19030805
http://www.ncbi.nlm.nih.gov/pubmed/29534471
http://dx.doi.org/10.3390/ijms20184451
http://www.ncbi.nlm.nih.gov/pubmed/31509958
http://dx.doi.org/10.3390/ijms21020481
http://www.ncbi.nlm.nih.gov/pubmed/31940888
http://www.ncbi.nlm.nih.gov/pubmed/7251338
http://dx.doi.org/10.1016/j.aca.2007.12.008
http://dx.doi.org/10.1016/j.tibtech.2004.03.011
http://dx.doi.org/10.1016/j.scitotenv.2018.01.066
http://dx.doi.org/10.2174/1386207318666150917100257
http://www.ncbi.nlm.nih.gov/pubmed/26377542
http://dx.doi.org/10.1039/B614162P
http://www.ncbi.nlm.nih.gov/pubmed/17200739
http://dx.doi.org/10.1016/j.jenvrad.2013.01.003
http://www.ncbi.nlm.nih.gov/pubmed/23410594
http://dx.doi.org/10.1016/j.jenvrad.2015.01.012
http://dx.doi.org/10.2478/s11535-014-0331-0
http://dx.doi.org/10.1016/j.jenvrad.2017.01.002


Int. J. Mol. Sci. 2020, 21, 8464 14 of 15

28. Min, V.J.; Lee, C.W.; Gu, M.B. Gamma-radiation dose-rate effects on DNA damage and toxicity in bacterial
cells. Radiat. Environ. Bioph. 2003, 42, 189–192. [CrossRef]

29. Vasilenko, I.Y.; Vasilenko, O.I. Radiation risk when exposed to small doses is negligible. Atomic Energy Bull.
2001, 12, 34–37. (In Russian)

30. Rozhko, T.V.; Guseynov, O.A.; Guseynova, V.E.; Bondar, A.A.; Devyatlovskaya, A.N.; Kudryasheva, N.S.
Is bacterial luminescence response to low-dose radiation associated with mutagenicity? J. Environ. Radioact.
2017, 177, 261–265. [CrossRef]

31. Alexandrova, M.; Rozhko, T.; Vydryakova, G.; Kudryasheva, N. Effect of americium-241 on luminous bacteria.
Role of peroxides. J. Environ. Radioact. 2011, 102, 407–411. [CrossRef]

32. Rozhko, T.V.; Nogovitsyna, E.I.; Badun, G.A.; Lukyanchuk, A.N.; Kudryasheva, N.S. Reactive Oxygen
Species and low-dose effects of tritium on bacterial cells. J. Environ. Radioact. 2019, 208, 106035. [CrossRef]
[PubMed]

33. Rozhko, T.V.; Badun, G.A.; Razzhivina, I.A.; Guseynov, O.A.; Guseynova, V.E.; Kudryasheva, N.S.
On mechanism of biological activation by tritium. J. Environ. Radioact. 2016, 157, 131–135. [CrossRef]
[PubMed]

34. Burlakova, E.B.; Konradov, A.A.; Maltseva, E.X. Effect of extremely weak chemical and physical stimuli on
biological systems. Biophysics 2004, 49, 522–534.

35. Kurvet, I.; Ivask, A.; Bondarenko, O.; Sihtmäe, M.; Kahru, A. LuxCDABE—transformed constitutively
bioluminescent Escherichia coli for toxicity screening: Comparison with naturally luminous Vibrio fischeri.
Sensors 2011, 11, 7865–7878. [CrossRef]

36. Frank, L.A. Ca2+-regulated photoproteins: Effective immunoassay reporters. Sensors 2010, 10, 11287–11300.
[CrossRef]

37. Krasitskaya, V.V.; Burakova, L.P.; Pyshnaya, I.A.; Frank, L.A. Bioluminescent reporters for identification of
gene allelic variants. Russ. J. Bioorg. Chem. 2012, 38, 298–305. [CrossRef]

38. Krasitskaya, V.V.; Goncharova, N.S.; Biriukov, V.V.; Bashmakova, E.E.; Kabilov, M.R.; Sokolov, A.E.; Frank, L.A.
The Ca2+-regulated photoprotein obelin as a tool for SELEX monitoring and DNA aptamer affinity evaluation.
Photochem. Photobiol. 2020, 96, 1041–1046. [CrossRef]

39. Alieva, R.R.; Tomilin, F.N.; Kuzubov, A.A.; Ovchinnikov, S.G.; Kudryasheva, N.S. Ultraviolet fluorescence of
coelenteramide and coelenteramide-containing fluorescent proteins. Experimental and theoretical study.
J. Photochem. Photobiol. B 2016, 162, 318–323. [CrossRef]

40. Chen, S.F.; Ferre, N.; Liu, Y.J. QM/MM Study on the light emitters of aequorin chemiluminescence,
bioluminescence, and fluorescence: A general understanding of the bioluminescence of several marine
organisms. Chem. Eur. J. 2013, 19, 8466–8472. [CrossRef]

41. Min, C.G.; Li, Z.S.; Ren, A.M.; Zou, L.Y.; Guo, J.F.; Goddard, J.D. The fluorescent properties of coelenteramide,
a substrate of aequorin and obelin. J. Photochem. Photobiol. A 2013, 251, 182–188. [CrossRef]

42. Van Oort, B.; Eremeeva, E.V.; Koehorst, R.B.M.; Laptenok, S.P.; van Amerongen, H.; van Berkel, W.J.H.;
Malikova, N.P.; Markova, S.V.; Vysotski, E.S.; Visser, A.J.W.G.; et al. Picosecond fluorescence relaxation
spectroscopy of the calcium-discharged photoproteins aequorin and obelin. Biochemistry 2009, 48, 10486–10491.
[CrossRef] [PubMed]

43. Belogurova, N.V.; Kudryasheva, N.S.; Alieva, R.R.; Sizykh, A.G. Spectral components of bioluminescence of
aequorin and obelin. J. Photochem. Photobiol. B 2008, 92, 117–122. [CrossRef] [PubMed]

44. Belogurova, N.V.; Kudryasheva, N.S. Discharged photoprotein obelin: Fluorescence peculiarities. J. Photochem.
Photobiol. B 2010, 101, 103–108. [CrossRef] [PubMed]

45. Alieva, R.R.; Belogurova, N.V.; Petrova, A.S.; Kudryasheva, N.S. Fluorescence properties of Ca2+-independent
discharged obelin and its application prospects. Anal. Bioanal. Chem. 2013, 405, 3351–3358. [CrossRef]

46. Gao, M.; Liu, Y.J. Photoluminescence rainbow from coelenteramide—A theoretical study. Photochem. Photobiol.
2018, 95, 563–571. [CrossRef]

47. Alieva, R.R.; Belogurova, N.V.; Petrova, A.S.; Kudryasheva, N.S. Effects of alcohols on fluorescence intensity
and color of a discharged-obelin-based biomarker. Anal. Bioanal. Chem. 2014, 406, 2965–2974. [CrossRef]

48. Petrova, A.S.; Alieva, R.R.; Belogurova, N.V.; Tirranen, L.S.; Kudryasheva, N.S. Variation of spectral
characteristics of coelenteramide-containing fluorescent protein from Obelia longissima exposed to Dimethyl
sulfoxide. Russ. Phys. J. 2016, 59, 562–567. [CrossRef]

http://dx.doi.org/10.1007/s00411-003-0205-8
http://dx.doi.org/10.1016/j.jenvrad.2017.07.010
http://dx.doi.org/10.1016/j.jenvrad.2011.02.011
http://dx.doi.org/10.1016/j.jenvrad.2019.106035
http://www.ncbi.nlm.nih.gov/pubmed/31499317
http://dx.doi.org/10.1016/j.jenvrad.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/27035890
http://dx.doi.org/10.3390/s110807865
http://dx.doi.org/10.3390/s101211287
http://dx.doi.org/10.1134/S1068162012030090
http://dx.doi.org/10.1111/php.13274
http://dx.doi.org/10.1016/j.jphotobiol.2016.07.004
http://dx.doi.org/10.1002/chem.201300678
http://dx.doi.org/10.1016/j.jphotochem.2012.10.028
http://dx.doi.org/10.1021/bi901436m
http://www.ncbi.nlm.nih.gov/pubmed/19810751
http://dx.doi.org/10.1016/j.jphotobiol.2008.05.006
http://www.ncbi.nlm.nih.gov/pubmed/18602272
http://dx.doi.org/10.1016/j.jphotobiol.2010.07.001
http://www.ncbi.nlm.nih.gov/pubmed/20678944
http://dx.doi.org/10.1007/s00216-013-6757-9
http://dx.doi.org/10.1111/php.12987
http://dx.doi.org/10.1007/s00216-014-7685-z
http://dx.doi.org/10.1007/s11182-016-0806-8


Int. J. Mol. Sci. 2020, 21, 8464 15 of 15

49. Petrova, A.S.; Lukonina, A.A.; Badun, G.A.; Kudryasheva, N.S. Fluorescent coelenteramide-containing
protein as a color bioindicator for low-dose radiation effects. Anal. Bioanal. Chem. 2017, 409, 4377–4381.
[CrossRef]

50. Petrova, A.S.; Lukonina, A.A.; Dementyev, D.V.; Bolsunovsky, A.Y.; Popov, A.V.; Kudryasheva, N.S.
Protein-based fluorescent bioassay for low-dose gamma radiation exposures. Anal. Bioanal. Chem. 2018, 410,
6837–6844. [CrossRef]

51. Alieva, R.R.; Kudryasheva, N.S. Variability of fluorescence spectra of coelenteramide-containing proteins as
a basis for toxicity monitoring. Talanta 2017, 170, 425–431. [CrossRef]

52. Hastings, J.W.; Baldwin, T.O.; Nicoli, M.Z. Bacterial luciferase: Assay, purification, and properties. Methods Enzymol.
1978, 57, 135–152. [CrossRef]

53. Illarionov, B.A.; Frank, L.A.; Illarionova, V.A.; Bondar, V.S.; Vysotski, E.S.; Blinks, J.R. Recombinant obelin:
Cloning and expression of cDNA, purification, and characterization as a calcium indicator. Methods Enzymol.
2000, 305, 223–249. [CrossRef] [PubMed]

54. Wilson, T.; Hastings, J.W. Bioluminescence. Annu. Rev. Cell Dev. Biol. 1998, 14, 197–230. [CrossRef]
55. Wegrzyn, G.; Czyz, A. How do marine bacteria produce light, why are they luminescent, and can we employ

bacterial bioluminescence in biotechnology. Oceanologia 2002, 44, 291–305.
56. The International Commission on Radiological Protection. ICRP Publication 99. Low-dose Extrapolation of

Radiation-related Cancer Risk. In Annals of the ICPR; Valentin, J., Ed.; Elsevier: New York, NY, USA, 2005.
57. Alberts, B.; Johnson, A.; Lewis, J.; Morgan, D.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th ed.;

Garland Science: New York, NY, USA, 2002. [CrossRef]
58. Rozhko, T.V.; Kolesnik, O.V.; Badun, G.A.; Stom, D.I.; Kudryasheva, N.S. Humic substances mitigate the

impact of tritium on luminous marine bacteria. Involvement of reactive oxygen species. Int. J. Mol. Sci. 2020,
21, 6783. [CrossRef]

59. Kamnev, A.A.; Dykman, R.L.; Kovács, K.; Pankratov, A.N.; Tugarova, A.V.; Homonnay, Z.; Kuzmann, E. Redox
interactions between structurally different alkylresorcinols and iron(III) in aqueous media: Frozen-solution
57Fe Mössbauer spectroscopic studies, redox kinetics and quantum chemical evaluation of the alkylresorcinol
reactivities. Struct. Chem. 2014, 25, 649–657. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00216-017-0404-9
http://dx.doi.org/10.1007/s00216-018-1282-5
http://dx.doi.org/10.1016/j.talanta.2017.04.043
http://dx.doi.org/10.1016/0076-687957016-X
http://dx.doi.org/10.1016/s0076-687905491-4
http://www.ncbi.nlm.nih.gov/pubmed/10812604
http://dx.doi.org/10.1146/annurev.cellbio.14.1.197
http://dx.doi.org/10.1002/bmb.2003.494031049999
http://dx.doi.org/10.3390/ijms21186783
http://dx.doi.org/10.1007/s11224-013-0367-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Section 
	Reaction of Bacterial Luciferase. Reagents, Procedure, and Data Analysis 
	Effect of Tritium on the Reaction of NAD(P)H:FMN-Oxidoreductase. Reagents, Procedure, and Data Analysis 
	Coupled System of Two Enzymatic Reactions: Bacterial Luciferase–NAD(P)H:FMN-Oxidoreductase. Procedure and Data Analysis 
	Effect of Tritium on Photoluminescence of CLM-FP Reagents, Procedure, and Data Analysis 

	Results and Discussion 
	Effect of Tritium on the Bioluminescence System of Coupled Enzymatic Reactions: Bacterial Luciferase–NAD(P)H:FMN-Oxidoreductase 
	Effect of Tritium on the Enzymatic Activity of Bacterial Luciferase 
	Effect of Tritium on the Enzymatic Activity of NAD(P)H:FMN-Oxidoreductase 
	Effects of Tritium on Coelinteramide-Containing Fluorescent Protein 

	Conclusions 
	References

