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1  | INTRODUC TION

It has been 40 years since the beginning of the HIV pandemic and 
an estimated 37.6 million people continue to live with the virus 
worldwide.1 The tremendous success of combination antiretroviral 
therapy (cART) has increased the life expectancies of people living 
with HIV (PLWH) and has greatly improved morbidity. However, the 

transformation of HIV to a chronic care illness has also revealed the 
long- term consequences of living with infection. Even in the post- 
cART era, many individuals continue to suffer from neurological 
symptoms including an increased prevalence of cognitive impair-
ment, major depression, generalized anxiety disorder, neuropathic 
pain and motor dysfunction, collectively referred to as “neuroHIV”.2 
Identifying and treating the mechanisms of these neurological deficits 
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Abstract
Forty	years	 into	the	HIV	pandemic,	approximately	50%	of	 infected	 individuals	still	
suffer from a constellation of neurological disorders collectively known as ‘neuroHIV.’ 
Although combination antiretroviral therapy (cART) has been a tremendous success, 
in its present form, it cannot eradicate HIV. Reservoirs of virus reside within the 
central nervous system, serving as sources of HIV virotoxins that damage mitochon-
dria and promote neurotoxicity. Although understudied, there is evidence that HIV 
or the HIV regulatory protein, trans- activator of transcription (Tat), can dysregulate 
neurosteroid formation potentially contributing to endocrine dysfunction. People liv-
ing with HIV commonly suffer from endocrine disorders, including hypercortisolemia 
accompanied by paradoxical adrenal insufficiency upon stress. Age- related comor-
bidities often onset sooner and with greater magnitude among people living with 
HIV and are commonly accompanied by hypogonadism. In the post- cART era, these 
derangements of the hypothalamic- pituitary- adrenal and - gonadal axes are second-
ary (i.e., relegated to the brain) and indicative of neuroendocrine dysfunction. We 
review the clinical and preclinical evidence for neuroendocrine dysfunction in HIV, 
the capacity for hormone therapeutics to play an ameliorative role and the future 
steroid- based therapeutics that may have efficacy as novel adjunctives to cART.
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is the subject of intense investigation. To this end, the influence of 
neuroHIV on the neuroendocrine system has become increasingly 
apparent. In this review, we summarize the recent advances made 
in our understanding of HIV effects on neuroendocrine function 
and the potential benefits of steroid- based therapeutics, including 
the	 progesterone	 metabolite,	 5α- pregnan- 3α- ol- 20- one (3α,5α- 
THP or allopregnanolone), on neuroHIV and HIV viremia. Taken 
together, the data support a reciprocal relationship between HIV 
and neuroendocrine status, in which HIV dysregulates the neuroen-
docrine axes, facilitating stress-  and age- related comorbidities that 
neuroendocrine- based therapeutics may help ameliorate.

2  | HIV-  MEDIATED NEUROLOGIC AL 
DYSFUNC TION

In	 the	 post-	cART	 era,	 approximately	 50%	 of	 PLWH	 suffer	 from	
neuroHIV.3 Although cART has reduced the incidence of the most 
severe form of neurocognitive impairment, HIV- associated demen-
tia (present in ~20%	of	HIV	patients	 in	 the	 pre-	cART	 era	 vs.	~2%	
in the post- cART era),3 the proportion of individuals that continue 
to express any cognitive impairment has remained stable, albeit the 
symptoms are markedly milder.

2.1 | The HIV central nervous system reservoir

HIV	 enters	 the	 central	 nervous	 system	 (CNS)	 early	 in	 infection,	
likely by the crossing of infected monocytes and monocyte- derived 
macrophages through the blood– brain barrier.4	 Within	 the	 CNS,	

microglia (the macrophages of the brain) are thought to be the first 
cells to contact the virus. Microglia and astrocytes largely comprise 
the central HIV reservoir (albeit, astrocytes do not infect produc-
tively), capable of harboring proviral HIV in a latent state.5,6 There 
is	a	paucity	of	therapeutic	treatments	for	HIV	within	the	CNS.	cART	
does not accumulate well within this compartment, which may partly 
be a result of active efflux7 and its accumulation in endothelial cells,8 
nor can cART target the latent reservoirs that harbor virus.9,10 As 
such, a functional cure for HIV is priority.

2.2 | Mechanisms of neuroHIV

There	 are	 multiple	 mechanisms	 by	 which	 HIV	 can	 promote	 CNS	
damage and dysfunction (Figure 1).4,11- 13 In brief, neuronal dam-
age is largely promoted by both indirect inflammatory mediators 
and by direct excitotoxic challenges from HIV proteins. The most 
well- characterized of these virotoxic proteins are the trans- activator 
of transcription (Tat) and glycoprotein (gp120). Tat is an important 
regulatory protein that drives HIV transcription. It is present in 
post- mortem HIV+ brain tissues14,15 and in the cerebrospinal fluid 
of HIV+ patients, even when virally- suppressed,16- 19 supporting its 
presence	within	the	CNS	despite	cART	treatment.	Tat	can	produce	
neurotoxicity through a variety of mechanisms including the direct 
activation of L- type calcium channels,20,21 direct or low density li-
poprotein receptor- related protein 1- mediated activation of NMDA 
receptors,22- 24 and imbalance of intracellular sodium and potas-
sium.25,26 Tat- mediated cellular pathogenesis is also demonstrated 
to	involve	many	additional	divalent	cations	beyond	Ca2+,27 as well as 
via the activation of pro- apoptotic activator protein 1 and nuclear 

F I G U R E  1   Mechanisms of direct neuronal damage for the HIV proteins, trans- activator of transcription (Tat) and glycoprotein 120 
(gp120).	HIV	proteins	can	directly	drive	intracellular	Ca2+	(partly	by	activation	of	NMDA	receptors,	L-	type	Ca2+ channels or activation of 
chemokine receptor- mediated signaling) or can indirectly activate NMDA receptors via activation of low density lipoprotein receptor- 
related protein (LRP). The downstream effects of HIV proteins dysregulate mitochondrial membrane potential, drive the formation of 
reactive	oxygen	species	(ROS),	and	promote	cell	injury	and	death	(left).	Allopregnanolone	is	a	potent	positive	allosteric	modulator	of	GABAA 
receptors	that	can	antagonize	L-	type	Ca2+ channels and restore mitochondrial homeostasis, potentially off- setting the excitotoxic actions of 
HIV proteins. Allopregnanolone- sulfate is an antagonist of NMDA receptors (right)
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factor- kappa B (NF- κB) signaling, thereby promoting downstream 
inflammatory cytokine production.13 These effects may occur alone 
or in synergy with other HIV proteins including gp120. As a non- 
covalently bound glycoprotein comprising the outer HIV envelope, 
gp120	can	be	shed	to	act	at	chemokine	receptors	(largely	CXCR4	or	
CCR5,	among	other	HIV	co-	receptors),	thereby	promoting	intracellu-
lar	Ca2+ accumulation and neuroinflammatory cytokine release.28,29 
Of great importance when considering HIV virotoxicity in light of en-
docrine function, Tat, gp120 and additional HIV proteins (Nef, viral 
protein R) can alter mitochondrial dynamics, biogenesis and mem-
brane potential, as well as glycolytic pathways and ATP production, 
to promote oxidative stress, mitophagy and apoptosis.30- 32 Thus, 
there are multiple pathways by which HIV virotoxic proteins can 
exert neuronal damage or death.

In addition to the use of infectious animal models, the functional 
effects of single or multiple HIV proteins to promote a neuroHIV- 
like phenotype have been elucidated via the use of transgenic ro-
dent	models.	 Understanding	 the	 singular	 or	 synergistic	 effects	 of	
HIV proteins to promote neuroHIV pathology is an important step in 
identifying therapeutic targets and testing novel therapeutic strate-
gies. To this end, a Tet- on transgenic mouse model has been widely 
used	to	conditionally-	express	Tat	from	astrocytic	sources.	Using	Tat-	
transgenic mice, the functional effects of Tat have been identified 
to be sufficient to produce cognitive impairment on spatial learning 
tasks,33-	35 executive learning tasks34,36,37 and fear conditioning,38 
as well as to impair sensorimotor gating.39 Tat is also sufficient to 
promote affective- like disturbances in mice, increasing anxiety-  and 
depression- like behavior.40-	48 Both of these affective phenotypes 
were	associated	with	increased	reactive	oxygen	species	in	the	CNS	
of mice42,45 which correlated with anxiety- like behavior.45 Peripheral 
neuropathy is also indicated in this model with allodynia observed 
in response to mechanical stimuli49,50	 and	 CNS	 increases	 in	 cyto-
kine production.51,52 Notably, sex differences are seen with females 
demonstrating antinociceptive thresholds that are intractable to 
morphine.53	 Conversely,	 greater	 durations	 of	 Tat	 exposure	 impair	
learned motor performance and grip strength among males, but not 
females, in this model.54 These findings implicate Tat as an important 
therapeutic target within the HIV genome.

Although there are limitations to the use of transgenic models, 
they are an improvement over direct pharmacological manipulations. 
In particular, accurate i.c.v. infusion of Tat is challenging given that it 
is a highly basic peptide (pI = ~9 at physiological pH) that readily ad-
sorbs to surfaces, including glass. Nonetheless, i.c.v. infusion of Tat 
is	found	to	increase	depression-	like	behavior	of	Balb/c	or	C57BL/6J	
mice.55 Despite positive findings, this approach suffers from addi-
tional drawbacks including the acute nature of the i.c.v. bolus which 
is unlikely to mimic the virotoxin exposure associated with HIV and 
the disruption of the blood– brain barrier which produces additional 
neuroinflammatory confounds.

Constitutive	 expression	 of	 an	 astrocytic	 gp120	 transgene	 has	
also been observed to impair spatial cognitive performance56,57 and 
increase anxiety- like behavior.58	Similarly,	transgenic	gp120	expres-
sion or intrathecal infusion recapitulates peripheral neuropathy in 

rodents59,60 with mechanical allodynia and cold sensitivity found 
to be greater in female mice.61 These data support findings in HIV 
transgenic rats (which express all HIV proteins with the exception of 
Gag and Pol) wherein cognitive deficits and increased anxiety-  and 
depression- like behavior have been reported.62- 64 Thus, secreted 
HIV proteins are likely contributors to the etiology of neuroHIV and 
may exert separate or interacting effects.

3  | STEROIDOGENIC DYSREGUL ATION BY 
HIV

The endocrine system has long been known to be perturbed by HIV 
infection with patients presenting with dysfunction of the adrenals, 
gonads, pituitary and thyroid.65 However, it is becoming apparent 
that the interactions between HIV and the endocrine system are 
dynamic. Endogenous steroids influence HIV replication and neuro-
pathology and, conversely, HIV virotoxins can influence steroid for-
mation. As such, the relationship between neuroendocrine function 
and neuroHIV symptomatology is reciprocal.

3.1 | Steroid hormones modulate HIV replication

Gonadal steroids have long been proposed to be ameliorative to 
HIV viremia. 17β- estradiol attenuates HIV replication in cultured 
peripheral	blood	mononuclear	cells	 (PBMCs)	or	human	fetal	astro-
cytes in an estrogen receptor α- dependent manner66,67 and inhibits 
HIV	 infection	 of	 CD4+ T- cells or monocyte- derived macrophages 
(MDMs).68 Moreover, estradiol was observed to decrease Tat- driven 
activation of the HIV long terminal repeat (LTR; essential for effi-
cient HIV replication), but exerted no effects on basal HIV LTR ac-
tivity,69 supporting the notion that these effects were relegated to 
a direct inhibition of Tat peptide or of the Tat- trans- activation re-
sponse element (TAR) complex within the LTR. However, large vari-
ability in the capacity for estrogens to alter HIV replication has been 
observed across donors, HIV clades70 and the menstrual cycle.71 
Similarly,	progesterone	has	been	reported	to	improve	antiretroviral	
potency in cell culture,72 as well as to attenuate HIV replication at 
high	 concentrations	 in	 PBMCs,73 monocytes and MDMs.74 These 
effects may be concentration- dependent with low concentrations 
of estradiol or progesterone being permissive of HIV replication 
in cultured MDMs, and greater concentrations attenuating HIV 
replication.75

3.2 | Steroid hormones ameliorate HIV- related 
neuropathology

Given the critical role that Tat plays in HIV replication and its potent 
neurotoxic effects, it has been recognized as an important thera-
peutic target, particularly given that current cART does not target 
Tat.	 Several	 studies	 report	 that	 estradiol	 ameliorates	 Tat	 and/or	
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gp120- induced oxidative stress in human neuroblastoma cells or rat 
striatal synaptosomes,76 as well as Tat- induced expression of pro- 
apoptotic Bax, caspases related to mitochondrial- driven apoptosis 
and cell death in human fetal neurons77,78 or neuroblastoma cells.46 
Estradiol was also observed to attenuate Tat- induced activation of 
a microglial cell line and the subsequent release of proinflammatory 
cytokines in these79 and human endothelial cells.80 Progesterone 
also exerts protection against Tat- mediated cell death in human fetal 
neurons78 or neuroblastoma cells,46 albeit to a lesser extent than es-
tradiol. Rather, we have observed greater neuroprotective capacity 
exerted by the 3α-	hydroxy/5α- reduced metabolite of progesterone, 
allopregnanolone (AlloP). We have observed AlloP (up to 100 nm) 
to partially attenuate microgliosis and neuronal or microglial influx 
of	intracellular	Ca2+, to fully- attenuate Tat- mediated depolarization 
of mitochondrial membranes and to protect human neuroblastoma 
cells or primary murine neuron/glial co- cultures against Tat- 
mediated cell death (Figure 2).45,81 It is likely that steroid hormones 
also exert beneficial effects over Tat- mediated insults given their 
pleiotropic capacity to attenuate cytokine production. In particular, 
AlloP is recently observed to attenuate toll- like receptor signal acti-
vation.82 Thus, estradiol and AlloP exert marked protection against 
several mechanisms of Tat- mediated cellular dysfunction and death.

3.3 | Pregnane steroids ameliorate HIV Tat- induced 
behavioral pathology

The functional effects of pregnane steroids to ameliorate 
neuroHIV- like behavior have been demonstrated using Tat- 
transgenic mice. High dose progesterone (4 mg kg– 1 per day for 
7 days)44 or a physiological progesterone schedule (4 mg kg– 1 
once	every	5	days	for	15	days)45 rescued the anxiety- like profile 
induced by Tat expression in ovariectomized mice. However, the 
protective	effects	of	progesterone	were	attenuated	when	the	5α- 
reductase	inhibitor,	finasteride	(50	mg	kg– 1), was co- administered, 
implicating metabolism to AlloP as underlying these beneficial ef-
fects.45 We later observed Tat expression to potentiate the psy-
chomotor effects of opioids and found AlloP to dose- dependently 
attenuate this.81 Notably, estradiol did not significantly improve 
anxiety- like performance following Tat exposure in our hands and 
rather antagonized the beneficial effects of progesterone when 
co- administered.44 However, these studies utilized high, pharma-
cological estradiol dosing and should be reassessed with physi-
ological concentrations. Thus, AlloP ameliorates neuroHIV- like 
behavior in a mouse model, consistent with its anti- Tat activities 
observed in vitro.

F I G U R E  2  HIV	Tat	(50–	100	nm) 
increases intracellular calcium, depolarizes 
mitochondria, and promotes microgliosis 
and/or neurotoxicity in murine striatal 
medium spiny neurons (A), murine 
microglia (B) or differentiated human 
SH-	SY5Y	neuroblastoma	cells	(C).	
Pretreatment with allopregnanolone 
(AlloP; 100 nm) attenuates Tat- mediated 
effects.	*Significant	increase	from	control	
following	Tat	exposure.	†Significant	AlloP-	
mediated rescue from Tat exposure

(A)

(B) (C)
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3.4 | HIV disrupts central and circulating 
steroidogenesis

Given the mitotoxic capacity of HIV virotoxins (Tat, gp120, Nef, 
viral protein R), it is perhaps not surprising that HIV infection 
can	 be	 associated	 with	 perturbations	 in	 CNS	 steroid	 formation.	
Tat is also found to alter homeostasis and bioavailability of the 
steroid precursor, cholesterol (Figure 3),83,84 and to upregulate 
ceramides	 that	 can	 inhibit	 steroid-	synthesizing	 CYP	 enzymes.85 
However, this has been the subject of surprisingly little investiga-
tion. Immunohistochemical observations of post- mortem brains 
from	 PLWH	 indicated	 a	 reduction	 in	 P450scc,	 5α- reductase and 
3α- hydroxysteroid dehydrogenase compared to seronegative con-
trols.86 These findings are intriguing and were supported by parallel 
studies in human fetal astrocytes that revealed downregulated pro-
tein	expression	of	5α- reductase and 3α- hydroxysteroid dehydroge-
nase following exposure to HIV- infected supernatants.86	Changes	
in neuroactive steroid formation may be particularly important for 
neuroHIV status. A recent investigation profiled circulating neu-
roactive steroids in 99 PLWH and found that eight steroids were 
downregulated in those individuals with high depressive symp-
toms, including pregnenolone sulfate, dehydroepiandrosterone- 
sulfate	 (DHEA-	S)	 and	 5α- androstane- 3β,17β- diol monosulfate.87 
However,	 a	 comprehensive	profile	 of	CNS	 steroids	 in	 human	pa-
tients is lacking.

We have begun to address these questions using a mouse 
model of neuroHIV. We assessed a panel of 23 pregnane steroids 
in male HIV Tat- transgenic mice and unexpectedly found Tat to up-
regulate	 CNS	 pregnenolone,	 AlloP	 and	 its	 3β isomer (3β,5α- THP), 
as well as their 20α- hydroxylated metabolites.81 The only steroid 
found to be downregulated was deoxycorticosterone and no dif-
ferences were observed in plasma, supporting the notion that Tat 

may influence neurosteroidogenesis.81 Although we had anticipated 
neurosteroidogenesis to be reduced given the clinical observations 
in	 post-	mortem	 brains,	 the	 upregulation	 of	 5α-	reduced	 CNS	 ste-
roids observed is consistent with findings in models of traumatic 
brain injury and ischemic stroke, which may indicate a neuroadap-
tive response to challenge.88-	90 It is also important to note that the 
HIV+ post- mortem brains assessed had HIV encephalitis and were 
compared with seronegative brains of individuals who suffered 
from stroke, sepsis and leukemia, which may have promoted a high 
neurosteroid baseline in the control group. Irrespective of changes 
within	the	CNS,	the	capacity	for	HIV	to	disrupt	circulating	steroids	
is well- documented in the post- cART era and may contribute to HIV 
comorbidities.

4  | HIV EFFEC TS ON HYPOTHAL AMIC- 
PITUITARY- ADRENAL AND -  GONADAL 
A XES

HIV can exert profound influence on circulating steroid hormone 
production. These effects can reduce circulating steroid content via 
actions at endocrine glands, such as the adrenals or gonads (i.e. pri-
mary insufficiency), or via actions targeted to the source of steroid- 
promoting corticotropins and gonadotropins in the hypothalamus 
and anterior pituitary (i.e. secondary insufficiency). The latter is far 
more common in the post- cART era, emphasizing the need for HIV 
therapeutics	with	efficacy	in	the	CNS.	As	a	result,	PLWH	are	com-
monly affected by disruptions to the hypothalamic- pituitary- adrenal 
(HPA) and – gonadal (HPG) axes.91,92	Such	dysfunction	likely	contrib-
utes to the neuropsychiatric components of neuroHIV and the age- 
related comorbidities that are observed earlier in life and to a greater 
magnitude among PLWH.

F I G U R E  3   Expression of HIV 
Tat protein in mice increases basal 
corticotropin	releasing	hormone	(CRH)	
and	corticosterone.	Upon	stress,	male	
(but not female) mice demonstrate 
adrenal insufficiency. The effects of Tat 
to dysregulate cholesterol homeostasis 
and alter steroidogenesis may contribute 
to the dysregulation of the hypothalamic– 
pituitary– adrenal (HPA) axis. In normative 
systems, neuroactive steroids such 
as allopregnanolone restore HPA axis 
homeostasis,	downregulating	CRH,	
adrenocorticotropic	hormone	(ACTH)	and	
glucocorticoid production
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4.1 | HPA stress axis dysregulation in people living 
with HIV

In the pre- cART era, HIV- related pathogenesis of the HPA axis was 
largely primary and associated with direct invasion of opportunistic 
infections, neoplasms or infiltrative diseases that promoted adrenal 
atrophy.65 In the post- cART era, HPA axis dysfunction is considered 
to be secondary (mediated at the level of the hypothalamus or pitui-
tary).93	Estimates	vary,	but	approximately	14–	46%	of	HIV	patients	
demonstrate HPA axis dysfunction.94- 99 This is characterized by ele-
vated basal serum cortisol levels (hypercortisolemia), yet a paradoxi-
cal adrenal insufficiency when exposed to a stressor (Figure 3).95 
PLWH already experience a variety of stigma- related psychoso-
cial stressors that reduce medication adherence, increase the dif-
ficulty of receiving a diagnosis and treatment, reduce accessibility 
to financial aid programs and exacerbate HIV- related psychological 
symptomatology.100- 104 Although the focus of the current review 
is on the molecular mechanisms of neuroHIV, it should be appre-
ciated that a number of socioeconomic and environmental stress-
ors may also contribute. Given the importance of glucocorticoids in 
re- establishing organismal homeostasis following a stressor, the in-
capacity to mount a sufficient response further predisposes an indi-
vidual to a plethora of psychological and physiological disorders.105

4.2 | Potential mechanisms involved in HIV 
dysregulation of the HPA axis

Hypercortisolemia is observed in many PLWH during both early and 
late stages of HIV infection.106,107 Potential mechanisms may include 
a chronic enzymatic shift in the production of adrenal androgens to 
cortisol,108 a compensatory increase in response to the decline of 
other steroids, such as DHEA,87,109 a compensatory response to ele-
vated corticosteroid- binding globulin as has been noted in the transi-
tion	to	AIDS110 and/or a reduction in the sensitivity of glucocorticoid 
receptors in response to their cognate ligands.111 In support of the 
latter point, elevated basal glucocorticoid receptor (GR) density has 
been observed,111 which may be the product of a glucocorticoid re-
sistant state. Increases in proinflammatory cytokines are found to 

promote a shift in the GRα to GRβ ratio (GRβ is a dominant negative 
inhibitor of the bioactive GRα), thus reducing GR mediated inhibition 
of the negative feedback loop.112	Moreover,	PBMCs	collected	from	
women living with HIV demonstrated increased gene expression of 
FKBP5, a negative regulator of the gene encoding GR, compared to 
seronegative	PBMCs.113 The phenotypical adrenal insufficiency that 
is concurrently observed may be indicative of a depletion in the “ad-
renal reserve” and/or a consequence of the mitotoxic effects pro-
moted by HIV proteins.

There are several virotoxic proteins secreted by HIV- infected 
cells that may be involved in HPA dysregulation. Viral protein R is 
an HIV accessory protein that serves important regulatory functions 
including viral incorporation, transcription and nuclear translocation 
of the HIV complex.114,115 However, viral protein R can also act as a 
co- activator of the GR and potentiate glucocorticoid actions, per-
haps promoting a glucocorticoid resistant state.116,117 In addition, 
the HIV envelope protein, gp120, is seen to increase plasma adre-
nocorticotropic	hormone	(ACTH)	and	corticosterone	levels,	with	an	
analogous	 increase	 in	 pituitary	ACTH	content,	when	expressed	 in	
a transgenic mouse model.118	 Furthermore,	 gp120	 increases	 CRH	
mRNA	expression	and	CRH	release	in	ex vivo mouse or rat hypotha-
lamic explants.119,120 Tat may also act in concert with these virotoxins 
to influence HPA function and has apparent effects to recapitulate 
the clinical phenotype when expressed in mice.

As described, Tat- transgenic mice demonstrate several behavioral 
aspects of neuroHIV (e.g., impairments in cognition and sensorimotor 
gating, increased anxiety-  and depression- like behavior). Our group 
has assessed HPA function in these mice and found Tat expression to 
be	sufficient	in	recapitulating	the	clinical	endophenotype.	Compared	
to controls, Tat- expressing male or female mice demonstrate basal 
hypercortisolemia (Figure 4).46-	48 We have also observed increased 
hypothalamic	CRF	protein	expression	in	females	(males	have	not	been	
assessed).46 Of interest, males also demonstrate adrenal insufficiency 
in	response	to	a	stressor	(15-	min	forced	swim)	or	when	adrenal	cor-
ticosterone production is stimulated by pharmacologically- blocking 
GRs (Figure 4A); however, females appear to be protected from these 
effects (Figure 4B).48 Although the mechanisms by which Tat may 
induce hypercortisolemia or a sex- specific adrenal insufficiency are 
not yet understood, several avenues have potential. Expressing Tat 

F I G U R E  4  Compared	to	Tat(−)	controls,	male	Tat(+) mice demonstrate greater corticosterone at baseline with paradoxical adrenal 
insufficiency	in	response	to	a	stressor	(15-	min	forced	swim)	or	pharmacological	inhibition	of	the	glucocorticoid	receptor	(GR)	via	RU-	486	
(A).	Compared	to	controls,	female	Tat(+) mice also demonstrate increased corticosterone at baseline; however, no differences are observed 
following	a	15-	min	forced	swim	stress	or	administration	of	RU-	486	(B).	*Significant	difference	from	Tat(−)	control46-	48

(A) (B)
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protein in this model promotes the production of cytokines within 
the	CNS.51,52	 Several	 second	messengers	 and	 transcription	 factors	
associated with cytokine production, such as signal transducer and 
activator	of	transcription	(STAT)	5,	p38	mitogen-	activated	protein	ki-
nase (MAPK) and NF- κB, inhibit GR signaling.121 Interleukin (IL)- 1α, 
IL-	2,	 IL-	4,	or	STAT5	phosphorylation	are	reported	to	 inhibit	nuclear	
translocation of the GR.122- 124 In particular, IL- 2 and IL- 4 can phos-
phorylate	the	GR	via	p38	MAPK	signaling,	thereby	reducing	affinity	
for its cognate ligands.125,126 Together, these actions may contribute 
to a GR- insensitive state. In support, we have found Tat to induce glu-
cocorticoid resistance in primary mouse splenocytes in vitro.81 Thus, 
Tat, gp120 and/or viral protein R may act alone or in concert to pro-
mote glucocorticoid resistance. Given the importance of the stress 
response in overcoming psychological and physiological challenges, 
disruption of the HPA axis may be an important contributor to the 
neuroHIV- like phenotype observed.

4.3 | HPG stress axis dysregulation in people living 
with HIV

Consistent	with	central	neuroendocrine	dysfunction	in	the	post-	cART	
era,	 approximately	 10–	50%	 of	 PLWH	 present	 with	 hypogonadism	
(defined by low testosterone levels in men and dysregulated estra-
diol/progestogen levels in women).127- 131 The consequences of this 
phenotype	are	particularly	evident	among	PLWH	that	are	≥	50	years	
of	age,	which	now	comprise	the	majority	of	all	HIV	cases	in	the	US.132 
People living with HIV experience an early occurrence of age- related 
complications, including frailty, cardiovascular diseases, renal diseases 
that are co- morbid with diabetes and hypertension, cognitive deficits, 
endocrine disorders, and bone diseases including osteoporosis.133- 143 
Animal models of some of these disorders, such as diabetes, are as-
sociated with a downregulation of steroid- synthesizing enzymes and 

dysregulated formation of androstane/pregnane steroids, including 
AlloP.144- 147 Both men and women living with HIV experience an ear-
lier onset of the climacteric, concurrent with hormonal deficiencies. 
As such, early hormone therapeutic intervention may provide a par-
ticularly salient benefit to this population.

In men living with HIV, modern- day hypogonadism is mainly 
secondary and occurs in both young or middle- aged cART- treated 
men	 (approximately	 12–	28%).127,130,148-	150 The incidence of hypo-
gonadism	 increases	with	 age,	HIV	duration	 and	 lower	CD4+ T- cell 
counts.150-	153 Men living with HIV experience a premature transition 
to andropause associated with a lower level of circulating testoster-
one,127,131,154-	158 normal or low levels of luteinizing hormone,127,131,159 
a greater level of sex hormone binding globulin150,155,160 and a 
greater estradiol- to- testosterone ratio.159 Androgen deficiency in-
creases the risk for central fat accumulation, cardiovascular diseases 
and frailty among HIV- infected men.155,161

Similarly,	 women	 living	 with	 HIV	 display	 accelerated	 ovarian	
aging (transition to peri-  and post- menopause) sooner than se-
ronegative women,162- 164 lower circulating androgens165,166 and 
17β- estradiol,165 and a greater frequency of vasomotor/climacteric 
symptoms, including hot flashes, depression/anxiety and bone de-
generation.164,167- 173 Hormonal replacement therapy may be partic-
ularly effective in attenuating these HIV- associated co- morbidities. 
Taken together, the aging HIV+ population faces a myriad of prema-
ture and/or accentuated co- morbidities that are likely to influence the 
pathogenesis of neuroHIV and age- related complications.139,142,174

4.4 | Potential mechanisms involved in HIV 
dysregulation of the HPG axis

Although the mechanisms of HIV- mediated neuroendocrine dys-
function are not known, animal models have begun to provide some 

F I G U R E  5   Middle- aged (16– 19 months old) female Tat(+)	mice	had	greater	learning	deficits	on	a	radial	arm	water	maze	than	their	Tat(−)	
counterparts, irrespective of estropausal status (A). Anxiety- like behavior on an elevated plus maze was greater among peri-  and post- 
estropausal mice compared to those that were pre- estropausal, irrespective of Tat exposure (B). Male or female Tat(+) mice had reduced 
grip	strength	compared	to	Tat(−)	controls.	Middle-	aged	males	(11–	13	months	old)	had	reduced	grip	strength	compared	to	young	adult	males	
(6–	8	months	old)	(C).	*Significant	difference	from	Tat(−)	control.	†Significant	difference	from	young	adult	male	or	pre-	estropausal	female	
group177

(A) (B) (C)
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insights. Recent work has established a link between HIV Tat expres-
sion and some age- related comorbidities. Long- term Tat expression 
in middle- aged mice impaired both short-  and long- term memory 
of males, although only short- term memory of female mice; motor 
coordination and balance were impaired in both sexes.175 Nuanced 
sex differences in neuropathology were observed, with Tat inducing 
greater pre-  and post- synaptic marker density in the female cortex 
and lower pre- synaptic marker density in the cerebellum of males.175 
In addition, global DNA methylation was greater in Tat- exposed fe-
males.175 These plastic and epigenetic changes may occur in response 
to	 CNS	 challenge.	 Magnetic	 resonance	 imaging	 reveals	 increased	
ventricular volume and decreased motor cortex gray matter volume 
in Tat- exposed middle- aged male mice, concurrent with astrogliosis 
and elevated proinflammatory cytokines.85 When aged males and 
females were directly compared, magnetic resonance spectroscopy 
revealed Tat exposure to reduce the antioxidants, glutathione and 
taurine, in aged female mice, but not aged males.176 However, it is 
also important to parse the influence of aging and HIV Tat expo-
sure to better understand the source of such sex differences. When 
stratified by estropause status (pre- , peri-  or post- estropausal), Tat- 
exposure and aging were found to exert largely independent effects 
on behavioral pathology.

Irrespective of Tat exposure, peri-  and post- estropausal mice 
demonstrated greater anxiety- like behavior and cognitive impair-
ment	than	pre-	estropausal	mice	(Figure	5A,5B).177 Tat exposure in-
dependently	reduced	learning	in	a	radial	arm	water	maze	(Figure	5A),	
as	 well	 as	 grip	 strength	 (Figure	 5C)	 and	 mechanical	 nociceptive	
thresholds.177 Males appeared more resilient to Tat's age- related 
effects; however, Tat- impairment of grip strength was exacerbated 
with	 aging	 (Figure	 5C).	 When	 endocrine	 function	 was	 assessed,	
estropausal status and Tat exposure interacted, such that pre- 
estropausal Tat(+) mice had a greater estradiol- to- testosterone ratio 
(largely driven by reduced testosterone levels) and post- estropausal 
Tat(+) mice had an estradiol reduction not observed in any other 
group.177	Similar	endocrine	interactions	were	observed	when	com-
paring young and middle- aged male mice exposed to Tat. Tat greatly 
reduced circulating total testosterone and increased corticosterone 
in middle- aged males. Regressions revealed increased corticoste-
rone to be associated with greater anxiety- like behavior, greater 
swim speed in a radial arm water maze and poorer grip strength. 
Among young adult males, Tat increased circulating 17β- estradiol, 
the estradiol- to- testosterone ratio and progesterone, a profile con-
sistent with an early andropausal transition. AlloP was significantly 
elevated in the hippocampus of young adult and middle- aged males 
and the midbrain of middle- aged males (with no changes seen in the 
frontal cortex). Together, these data reveal the separate and interac-
tive constructs on which the aging endocrine system interacts with 
Tat exposure.

The capacity of Tat to promote circulating steroid deficits may 
partly involve its toxic actions at mitochondria, the rate- limiting 
organelle required for steroid synthesis,25,178,179 and may also 
involve its capacity to alter lipid substrate bioavailability.83,84 
Pharmacological maintenance of steroid concentrations may be 

beneficial. In support, testosterone replacement therapy among 
men living with HIV improved depression inventory scores,180,181 
increased muscle and lean body mass,181,182 and improved sexual 
function by restoring libido.182 Administration of testosterone to 
women living with HIV also improved body weight and quality- of- 
life.183	 Similar	 benefits	 for	 reduced	 depressive	 symptomatology	
have been observed in response to DHEA administration.184 Thus, 
steroid intervention may provide a benefit to aged PLWH and the 
timing for optimal implementation may differ from seronegative 
aged individuals.

5  | STEROID - BA SED THER APEUTIC S FOR 
THE TRE ATMENT OF HIV

5.1 | Novel adjunct therapeutics for HIV 
suppression

Antiretroviral therapeutics have dramatically increased the life ex-
pectancy of PLWH. However, these drugs are not able to eradicate 
the virus, nor neuroHIV, given that they cannot target reservoirs 
such	as	those	within	the	CNS	and	do	not	target	certain	virotoxins	
such as Tat. It is notable that several promising leads are based on 
a	steroid-	scaffold.	Most	notably,	didehydro-	cortistatin	A	(dCA),	an	
analogue of a steroid- like alkaloid obtained from marine sponge, 
is demonstrated in vitro to bind to the Tat- TAR complex, blocking 
HIV replication without producing cellular toxicity, to attenuate 
HIV- mediated cytokine expression and to inhibit behavioral ef-
fects promoted by Tat in vivo.185,186	dCA	was	found	to	selectively	
bind the unstructured basic region of Tat.187	A	combination	of	dCA	
and cART suppressed active HIV viral replication, reactivation and 
rebound of the latent viral reservoir.188 Additional chemical deriva-
tives	of	dCA	were	sought	to	rationalize	their	ability	to	dock	at	spe-
cific binding sites of the Tat protein.187	Given	the	ability	of	dCA	to	
inhibit Tat expression during early viral replication and penetrate 
latent	 viral	 reservoirs	 in	 the	 brain	with	 good	 bioavailability,	 dCA	
and its novel steroidal- based analogs hold potential as future cART 
adjuncts.187-	189

Additional estrogen- based therapeutics have also been identi-
fied, including selective estrogen receptor β agonists, such as (S)- 
equol and several phytoestrogens. (S)- equol improved sensorimotor 
gating and motivational deficits in HIV transgenic rats190- 192 and pre-
vented combined cocaine and HIV- mediated synaptopathy.193 The 
phytoestrogens, daidzein and liquiritigenin, restored Tat- mediated 
synaptodendritic recovery.194 Our own work has focused on the po-
tential therapeutic advantages of neurosteroids.

Neurosteroids are synthesized de novo in brain from choles-
terol195 and can also reach the brain from peripheral sources such 
as the adrenals and gonads.196 AlloP is perhaps the most well- 
characterized neurosteroid with a pharmacodynamic profile that is 
suitable for potentially offsetting the effects of HIV Tat (Figure 1). 
Given the excitotoxic profile exerted by Tat, the actions of AlloP 
as a potent positive allosteric modulator of GABAA receptors are 
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expected to reinstate excitatory– inhibitory balance via the influx 
of	 Cl−.	 Moreover,	 AlloP	 may	 act	 as	 an	 antagonist	 of	 L-	type	 Ca2+ 
channels,197,198 further attenuating the excitotoxic actions of Tat. 
We have seen promising evidence for AlloP to offset Tat- mediated 
neurotoxicity in vitro (Figure 2) and to attenuate Tat- mediated be-
havioral interactions with opioids in vivo.81 Although AlloP is a small 
molecule that readily crosses the blood– brain barrier and is well- 
tolerated,199 it is also rapidly re- distributed from the brain, accumu-
lates in adipose tissue and has a short elimination half- life.200,201 As 
such, we are currently working to synthesize AlloP analogues with 
anti- Tat and anti- viremic properties. A ligand structural alignment 
of	dCA,	(S)- Equol and AlloP reveals structural similarities that may 
help explain their anti- HIV activities (Figure 6). For example, both 

terminal ends of the molecules contain polar elements (an oxygen 
or	a	nitrogen	atom).	Induced-	fit	docking	of	dCA	in	the	NMR-	derived	
structure	of	Tat	 (Protein	Data	Bank:	 1K5K)	 reveals	 important	 hy-
drogen	 bonding	 interactions	 between	 dCA	 and	 the	 R49	 and	 R52	
residues, which are part of the identified motif (the ARM domain) 
(Figure 7). Induced- fit docking of AlloP in this binding site also re-
veals important hydrogen bonding interactions between AlloP and 
the R49 residue, in addition to strong hydrophobic interactions 
(Figure	7).	These	preliminary	data	suggest	that	dCA	and	AlloP	may	
target a shared Tat binding site that may partly underlie their poten-
tial anti- Tat efficacy. In light of this, the development of novel AlloP 
analogs may hold promise with respect to potential future cART ad-
junctive therapeutics.

F I G U R E  6   Didehydro- cortistatin A 
(orange), allopregnanolone (cyan) and 
(S)- equol (pink) demonstrate structural 
similarities (A) that are evidenced in a 
ligand- structure alignment (B)

(A)

(B)

F I G U R E  7   Molecular docking of 
didehydro-	cortistatin	A	(dCA)	(orange)	
and allopregnanolone (cyan) in HIV Tat 
(Protein	Data	Bank:	1K5K).	Tat	is	shown	in	
a surface representation in the zoom- out 
view (A) and in a ribbon representation in 
the	zoom-	in	view	(B,	C).	Key	residues	of	
Tat for ligand binding are shown in stick 
representation

(A) (B)

(C)
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