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Abstract

Diabetes mellitus is associated with increased cardiovascular disease (CVD) related mor-

bidity, mortality and death. Exercise capacity in persons with type 2 diabetes has been

shown to be predictive of cardiovascular events. In this study, we used the data from the

prospective randomized LOOK AHEAD study and used machine learning algorithms to help

predict exercise capacity (measured in Mets) from the baseline data that included cardio-

vascular history, medications, blood pressure, demographic information, anthropometric

and Dual-energy X-Ray Absorptiometry (DXA) measured body composition metrics. We

excluded variables with high collinearity and included DXA obtained Subtotal (total minus

head) fat percentage and Subtotal lean mass (gms). Thereafter, we used different machine

learning methods to predict maximum exercise capacity. The different machine learning

models showed a strong predictive performance for both females and males. Our study

shows that using baseline data from a large prospective cohort, we can predict maximum

exercise capacity in persons with diabetes mellitus. We show that subtotal fat percentage is

the most important feature for predicting the exercise capacity for males and females after

accounting for other important variables. Until now, BMI and waist circumference were com-

monly used surrogates for adiposity and there was a relative under-appreciation of body

composition metrics for understanding the pathophysiology of CVD. The recognition of body

fat percentage as an important marker in determining CVD risk has prognostic implications

with respect to cardiovascular morbidity and mortality.

Introduction

The prevalence of diabetes is estimated to increase to 7.7% worldwide by 2030, affecting more

than 430 million adults aged between 20–79 causing substantial increase in the chronic disease

related morbidity and mortality [1]. Diabetes is a known risk factor for cardiovascular disease

(CVD), congestive heart failure as well as mortality from cardiovascular events [2]. Even before
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CVD is diagnosed, Type 2 Diabetes is associated with reduced cardiovascular fitness [3–5]. It

has also been shown that, there exists an inverse relationship between fitness and mortality

that is independent of BMI (Body Mass Index) in persons with Type 2 Diabetes Mellitus [6].

Additionally, Age, gender, BMI, basal segmental diastolic velocity, Heart Recovery Rate (dif-

ference between peak and 1 min after exercise) and hemoglobin A1C have all been shown to

be independent predictors of fitness measured as exercise capacity, in persons with diabetes

[7]. However, prior studies had used BMI and Waist circumference to account for the effects

of body composition on exercise capacity of persons with diabetes [8]. Nevertheless, BMI has

significant limitations and might vary based on ethnicity, gender, and body habitus and may

not be a very useful marker of adiposity [9]. Different markers like Waist to Hip Ratio, waist-

to-height ratio and body adiposity index (derived using hip circumference and height) have all

been proposed to address this drawback [9]. Fortunately, Dual-energy X-Ray Absorptiometry

(DXA) offers an inexpensive way to measure and quantify different markers of adiposity like

truncal fat, subtotal fat and total body fat [10]. Still, the utility of DXA measured body compo-

sition in prediction of CVD is largely unexplored in large prospective datasets. Artificial intelli-

gence has become an important tool in biomedical research and has been employed for

prediction of cardiovascular disease (using big data, as a precision medicine initiative) [11, 12].

Machine learning has been used to study cardiovascular outcomes from the LOOK AHEAD

cohort in post-hoc analysis [13]. Additionally, using machine learning methods, we have

shown in the past that DXA measured body composition is an important predictor of systolic

and diastolic blood pressure in cross-sectional data (age being the most important determinant

of blood pressure) [14].

Materials and methods

The methodology for the entire study is shown in Fig 1. In this study, we used different

machine learning methods to predict the maximum exercise capacity in persons with diabetes

mellitus older than 40 years of age, by analyzing the LOOK AHEA study cohort (a large scale

prospective NIH funded study- ClinicalTrials.gov Identifier:NCT00000620) [15, 16].

The original study was performed at 18 different locations. Please refer to the link (https://

www.clinicaltrials.gov/ct2/show/NCT00017953?term=look+ahead&draw=2&rank=4) The

respective Institutional Review Board had approved the research protocol at each participating

center, and each participant had informed consent. We obtained the protocol as well as the de-

identified data from the NIH-NIDDK repository after obtaining IRB approval from the Johns

Hopkins IRB.

The main objectives of this research are: 1) understand the importance of body fat distribu-

tion in determining exercise capacity in persons with Type 2 diabetes 2) use different variables

and machine learning algorithms, to do a comparative analysis on the factors affecting exercis-

ing ability in people with diabetes.

Study cohort used for the analysis

The LOOK AHEAD (a randomized, open-label, controlled trial- ClinicalTrials.gov Identifier:

NCT00000620) involved the comparison between a group that underwent intensive life style

intervention focusing on weight loss achieved through dietary changes and increased physical

activity and a control group that received only diabetes support and education [17]. The inter-

vention group received individual and group weekly sessions multiple times over the course of

the trial while the control group received traditional diet and education sessions. The inclusion

criteria for the LOOK AHEAD performed at 16 clinical centers from 2001 to 2004 was; 1)Age

between 45–75 with history of T2 Diabetes Mellitus 2) Presence of Overweight or Obese status
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(BMI 25 kg/m2 or more, or 27 kg/m2 or more while on insulin), blood pressure (BP) 160/100

mm Hg or less, and plasma triglyceride less than 600 mg/dl [17]. Large scale data with respect

to metabolic markers (lipids, A1C etc.), medical and drug history, body composition measure-

ments (obtained through DXA scan) as well as exercise capacity had been obtained during the

course of the trial.

Definitions and inclusion/exclusion criteria

As per the Look Ahead Protocol, Type 2 Diabetes Mellitus was self-reported with verification

(medical records, ongoing medical treatment, cross-verification through the treating physi-

cian). The 1997 American Diabetes Association (ADA) criteria of one of the following: fasting

glucose > 126 mg/dl, symptoms of hyperglycemia with a random plasma glucose > 200 mg/dl

or two-hour plasma glucose > 200 mg/dl after a 75 grams oral glucose load- was used for case

definition. Individuals with a strong suspicion for Type 1 Diabetes Mellitus were excluded

from the study. The details of the look-ahead paper concerning the inclusion and exclusion

criteria, the technique of randomization can be obtained from the study details reported previ-

ously [18].

In summary, the inclusion and exclusion criteria of the original Look Ahead Cohort is out-

lined below.

Fig 1. Methodology for the entire study. Abbreviations used are: n, the number of subjects; RF, Random forest; GBR, Gradient boosting

regressor; SVR, Support vector regressor; MLP, Multilayer perceptron; R2, coefficient of determination; MAE, Mean absolute error.

https://doi.org/10.1371/journal.pone.0248039.g001
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Inclusion criteria. Aged between 45–74 years, BMI 25 kg/m2 ( 27 kg/m2 if on insulin),

Type 2 diabetes mellitus as determined above.

Exclusion criteria. Hb AlC > 11%, Blood pressure 160/100 mm Hg, Fasting triglycer-

ides 600 mg/dL, Self-report of alcohol or substance abuse within the past 12 months, weight

loss exceeding 10 lbs (in the last 3 months), History of bariatric surgery, small bowel resection,

or extensive bowel resection, Chronic treatment with corticosteroids, Body Weight greater

than 350 pounds, ongoing use of medications for weight loss, inability to walk at least 2 blocks,

pregnancy or Nursing, recent cardiovascular event(within the past 3 months), Ssgns and

symptoms of CVD or major cardiac disease, Kidney disease, Chronic obstructive pulmonary

disease.

Assessment of lipid values, A1C and waist circumference

Lipid, as well as lipoprotein concentrations (total cholesterol, HDL-cholesterol, LDL-choles-

terol, and triglycerides), were measured at the Look AHEAD Central Laboratory at Baseline,

Year 1, Year 2, Year 3, and Year 4 and every two years during extended follow-up. Data on

medication use had been collected at every visit. Total cholesterol and triglyceride were mea-

sured using standardized methods [16]. HDL cholesterol was obtained using the Dextran sul-

fate-Mg 2+ precipitation method [18, 19]. Using the Gulick Tape II, the waist circumference

was measured at the level of the iliac crest twice, and the average value had been tabulated [15].

A1C was measured by dedicated ion exchange, high-performance liquid chromatography

instrument (Bio rad Variant,11) [16, 18].

Assessment of body composition

DXA measurements of whole-body composition and bone mineral density (BMD) of the

spine and hip on over 1200 participants using the Hologic Scanner. As per the protocol, the

scans were submitted to the Look Ahead DXA Quality Assurance Center at the University of

California—San Francisco for review and quality assurance procedures according to the DXA

Quality Assurance Operations Manual. The measurements were made at baseline, Year 1,

Year 4 and Year 8. Persons over 300 lbs. had been excluded. Prior published reports show that

coefficient of variation (CV, in percent) for fat mass is 1.5 in lean and obese subjects; CV for

lean mass is 0.45 for lean and 0.80 for obese [20].

Assessment of maximal exercise capacity

The baseline data had been assessed before the randomization process (assignment to the con-

trol and the intervention group). The fitness was assessed at baseline with a maximal treadmill

test and year one as well as year 4, with a sub-maximal treadmill test. The baseline maximum

stress test was used to estimate the maximal MET capacity as a primary measure. Before the

actual test, the participants first did a brief trial run by walking at 1.5 miles/hour with no incli-

nation, and the speed was gradually by 0.5 mph units until the subject increased until they had

reached a comfortable walking speed (or a maximum of 4 miles/hour). After the comfortable

speed had been determined, the actual test was performed by changing the inclination gradu-

ally 1 percentage every minute, until exhaustion was achieved. Heart rate (by an ECG) and

blood pressure (BP) were frequently monitored during the test and was terminated at volun-

tary exhaustion, or there were signs or symptoms of ischemia, significant ST-segment depres-

sion on the ECG, or development of arrhythmia). Heart- rate, blood pressure as well as

perceived exertion, were also determined during the test. Perceived exertion was obtained

using the BORG scale that ranged from 6 [21]. Previously validated standardized equations

were used to report the peak exercise capacity in metabolic equivalents (mets) [22]. The details
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of the exercise treadmill test have also been previously reported in a study published by the

LOOK AHEAD study group [8].

Methods

We selected 1373 patients and excluded 25 subjects due to missing information and were left

with 1348 patients (n = 846 female and n = 502 male subjects) and converted the raw data into

a structured data-frame which was fed into the various machine learning models. All the fea-

tures in the entire dataset were normalized using Eq (1).

X0 ¼
X � s
m

ð1Þ

where X0 is the normalized and X is the original feature vector, μ is the mean of the original fea-

ture vector and σ is its standard deviation. We segregated the dataset into females and males as

their exercise capabilities are different and conducted the same analysis for both the genders

independently.

Categorical variables recoding was performed as described here: 1) Race: African American /

Black (not Hispanic) = 0, Hispanic = 1, Other/Mixed = 2, White = 3, 2) Diabetes Severity: Insulin

alone = 0, Insulin plus TZD (with or without other oral drugs) = 1, Insulin with any oral glucose-

lowering drugs (not TZD) = 2, No glucose-lowering medications = 3, Oral glucose-lowering drug

(not TZD), no insulin = 4, TZD (with or without other oral drugs), no insulin = 5.

In this study, we used 6 typically used supervised machine learning algorithms: Random

Forests, Gradient Boosting, Support vector regression (SVR), Linear regression, Multi-layer

perceptron (MLP) and Stacking regression for predicting the exercise capability of male and

female subjects.

Population characteristics

The baseline features are shown in Table 1.

Due to the gender differences body composition and body fat distribution, we analyzed

males and females separately. Table 2 shows the body composition metrics for both the gen-

ders and Table 3 shows the frequency distribution of the different nominal variables.

Feature selection

Some of the DXA measured body composition parameters are collinear and including such

features in the machine learning model would yield in poor performance of the model. Fig 2

Table 1. Shows the baseline characteristics of the population used in this study.

Variables Female (mean ± sd) Male (mean ± sd)

Age (years) 57.4 ±6.5 60.1 ± 6.5

BMI 36.0 ± 5.6 34.0 ± 4.5

Systolic Blood Pressure (mm/Hg) 130.4 ± 17.4 129.4± 16.8

Diastolic Blood Pressure (mm/Hg) 68.0 ± 9.2 73.1 ± 8.7

Serum Creatinine (mg/dl) 0.7 ± 0.2 0.9 ± 0.2

Hemoglobin A1C 7.4 ±1.2 7.2 ± 1.2

HDL cholesterol (mg/dl) 46.8 ±11.7 37.5 ± 8.8

Triglyceride (mg/dl) 188.6 ± 121.6 205.1 ± 151.5

LDL Cholesterol (mg/dl) 117.6 ± 32.2 107.1 ± 30.1

Maximum Exercise Capacity (mets) 7.0 ± 1.6 8.3 ± 2.1

https://doi.org/10.1371/journal.pone.0248039.t001
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shows the correlation matrix of all the variables included in the initial analysis. The correlation

among the DXA body composition variables and between some of the other variables like

BMI, waist circumference is high. Therefore, we manually excluded the variables and included

the ones which have correlation less than 0.55.

Ensemble based regression model

An ensemble-based learning method is a technique that combines the learning from multiple

machine learning algorithms to make a better learning model than any individual model.

Thus, the final prediction of an ensemble-based model is the combination of the output of

each individual model. We have used 2 types of ensemble methods: Random forest and Gradi-

ent boosting algorithm. Random forest is a bagging technique where random samples are

drawn with replacement to build decision trees, hence the name “Random” [23]. Since a large

number of trees are constructed in parallel, it is called as “forest”. In case of regression, the out-

put of a Random forest algorithm is the mean prediction (regression) of the individual trees.

Gradient boosting is a boosting technique that uses additive modelling to combine multiple

simple models into a single composite model [24, 25]. Each simple model is a weak model but

when multiple weak models are combined, the overall model becomes a stronger predictor.

Table 2. Body composition metrics for females and males from the LOOK AHEAD study cohort.

Variables Female (mean ± sd) Male (mean ± sd)

Subtotal Lean Mass 44841.5 ± 6306.5 60620.9 ± 6914.6

Subtotal Fat Mass 41213.2 ± 10406.3 35043.1 ± 9210.9

Subtotal Fat Percent 46.5 ± 4.5 35.3 ± 5.1

Total Lean Mass 47918.4 ± 6412.7 64243.8 ± 7044.0

Total Fat Mass 42361.9 ± 10405.0 36392.8 ± 9245.0

Total Fat Percent 45.3 ± 4.4 34.8 ± 4.8

Truncal Lean Mass 24889.6 ± 3311.0 32507.8 ± 3614.1

Truncal Fat Mass 22651.7 ± 5883.2 21275.7 ± 5790.6

Truncal Fat Percent 46.5 ± 4.6 38.5 ± 5.4

Waist Circumference 108.7 ± 12.3 115.0 ± 11.5

All measurement in grams except percentages.

https://doi.org/10.1371/journal.pone.0248039.t002

Table 3. Frequency distribution of the different nominal variables for females and males.

Variables Female Male

Family Hx of DM 602(70.1) 303(58.9)

Hx of Smoking 313(36.4) 310(60.3)

Prior Cardiovascular Disease 85(9.9) 98 (19.1)

Anti-Diabetic Medications 731(85.1) 463(90.1)

HMG-COA inhibitors 309(36.0) 254(49.4)

Beta- blocker 155(18.0) 121(23.5)

Ace Inhibitor 335(39.0) 240(46.7)

Angiotensin Receptor Blocker 152(17.7) 53(10.3)

Insulin 154(17.9) 90(17.5)

Hypertension 711(82.8) 423(82.8)

Reported in Number(percentage).

https://doi.org/10.1371/journal.pone.0248039.t003
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We built the model by using 250 boosting stages, a learning rate of 0.5 and optimized the least

square loss function.

Support vector regression

The Support vector algorithm is a nonlinear generalization of the Generalized Portrait algo-

rithm [26]. In Support vector regression, the goal is to find a function f (x) such that it has a

maximum deviation of ε from the actual obtained target value for all the training data [27].

We constructed the SVR using a radial basis function kernel with margin of tolerance set to

0.001.

Multilayer perceptron

Multi-layer Perceptron (MLP)is a supervised learning algorithm which is capable to learn lin-

ear or non-linear function by training on a dataset in order to make a prediction. We built the

MLP using an input layer, a hidden layer and an output layer. The input layer is connected to a

multi-dimensional input data with dimensions (M x N) where M is the number of features and

N is the number of training samples. The hidden layer had 50 neurons and each neuron gets

the input from input layer and it sends the output to the final output layer. We added a non-

linear Rectilinear unit activation function to the hidden layer which helps in modeling the

response variable. Additionally, we initialized the network using He initialization [28]. Finally,

Fig 2. Correlation matrix of all the variables initially chosen for predicting the exercise capacity. Any of these

variables with correlation greater than 0.55 are eliminated before feeding them to the machine learning algorithms.

https://doi.org/10.1371/journal.pone.0248039.g002
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we used back-propagation with no activation function in the output layer to optimize the

squared-loss using Adaptive Moment (Adam) optimization [29].

Stacking regression

Stacking regressions is an ensemble-based learning technique which combines the outputs of

multiple regression models via meta-regressor [30]. Each regression model is trained on the

entire training dataset and the meta-regressor is fitted on the output to determine the coeffi-

cients in the combination of the regression models. Its effectiveness is shown in stacking

regression trees of different sizes and ridge regression [30].We designed the stacking regres-

sion model by combining the output of Random Forests, Gradient Boosting, Linear regression

and Support vector regression and used Ridge regression to compute the final prediction.

Hyperparameters tuning

A machine learning model needs a set of parameters whose values have to be defined before

the training starts. These parameters are known as hyper-parameters. The hyper-parameters

of Random forests, Gradient boosting and Support vector regression are tuned using 5-fold

cross-validation grid search strategy which allows a researcher to exhaustively search over the

specified grid of parameters values.

Model training and validation

In order to train a machine learning model, we randomly split the entire dataset into 70%

training and 30% testing dataset. The machine learning models learn on the training dataset

such that it can generalize on another dataset. To avoid a situation where the algorithm fails to

predict anything informative on unseen dataset (often referred to as over-fitting), we per-

formed a 5-fold cross validation on the training dataset for each model and evaluated their

cross-validation performance. A k-fold cross-validation strategy (in our case, k = 5) is an

approach where the training dataset is split into k smaller sets and for each fold, the algorithm

is trained on the k—1 of the k-folds and the remaining set is used as a validation dataset.

Model evaluation

Finally, we tested our model on the testing dataset and used mean absolute error (MAE) and

the coefficient of determination (R2) to compare the performance across all the models. We

also report the 5-fold cross-validation performance of each algorithm in the training set. We

used Gradient Boosting to determine the important features that are helpful in predicting the

maximum exercise capacity of male and females. Additionally, we have compared the impor-

tance of variables and the occurrence of weights of top 10 important variables of each algo-

rithm using Shapley additive explanation approach [31]. Our analysis was conducted in

python version 3.6 (https://www.python.org) using the library Scikit Learn [32]. The codes for

the analysis has been deposited at the following location: (https://github.com/prasu2172/

maxmets).

Results

Model comparison

Tables 4 and 5 shows the 5-fold cross-validation performance of different machine learning

models on training dataset for predicting exercising capacity of females and males respectively.

Fig 3A–3E and Fig 4A–4E shows the comparison of 5 machine learning algorithms in pre-

dicting the maximum exercise capability of females and males respectively. All machine
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learning models showed a strong predictive performance for both females and males. We

chose the coefficient of determination (R2) and Mean absolute error (MAE) as the metric to

compare the performance of the machine learning models. In case of females, Stacking Regres-

sion achieves the highest performance with R2 = 0.27 and MAE = 0.66 while for the case of

males, Support vector regression performs the best with R2 = 0.43 and MAE = 0.61.

Feature importance

Figs 3F and 4F shows the top 10 features which are important for predicting the maximum

exercise capability for females and males respectively using Gradient boosting algorithm. Sub-

total fat percentage was the most important feature while other indicators of body composition

like age and subtotal-lean mass were also ranked in the top 3 features in predicting the maxi-

mum exercise capacity for females. Subtotal fat percentage was the most important feature in

predicting the maximum exercise capacity for males. Subtotal lean mass was also in the top 10

important features for predicting maximum exercise capacity for males.

In Figs 5 and 6, we determined the occurrence of weights of variables of each algorithm for

determining the exercising capacity of females and males respectively using Shapley additive

explanation approach [31]. We have also compared the importance of variables and shown

that subtotal fat percentage and age are consistently ranked the top 2 variables for predicting

exercise capacity for males and females. Collectively, it highlights that the body composition is

an important predictor of exercise capacity.

Discussion

Using statistical methods, a previous study has shown that increased age, BMI, Waist circum-

ference as well as higher A1C, presence of lipid derangement, use of beta-blocker and African-

American ethnicity was associated with lower exercise capacity [8].

Table 5. 5-fold cross-validation performance of different machine learning models on training dataset for males.

Model R2 (Coefficient of determination) MAE (Mean Absolute Error)

Random Forest 0.29 (0.06) 0.66 (0.03)

Gradient Boosting 0.28 (0.05) 0.67 (0.04)

SVR 0.32 (0.07) 0.64 (0.05)

MLP 0.16 (0.13) 0.71 (0.06)

Stacking Regressor 0.32 (0.08) 0.64 (0.05)

Results in mean ± SD.

https://doi.org/10.1371/journal.pone.0248039.t005

Table 4. 5-fold cross-validation performance of different machine learning models on training dataset for

females.

Model R2 (Coefficient of determination) MAE (Mean Absolute Error)

Random Forest 0.22 (0.03) 0.72 (0.07)

Gradient Boosting 0.23 (0.07) 0.70 (0.06)

SVR 0.26 (0.09) 0.69 (0.06)

MLP 0.15 (0.14) 0.74 (0.05)

Stacking Regressor 0.26 (0.07) 0.69 (0.06)

Results in mean ± SD.

https://doi.org/10.1371/journal.pone.0248039.t004
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As per our knowledge, our study is the first study that uses body composition variables to

predict the exercise capacity in males and females using machine learning. Artificial intelli-

gence offers enormous possibilities in medicine, helping us understand the relationship

between biological and metabolic processes and their determinants [33].

Body composition has an important bearing on cardiovascular mortality. In an NHANES

(National Health and Nutritional Examination Survey) study, it was shown that when stratified

according to muscle mass and fat mass distributions, the subgroup with high muscle mass and

low-fat mass had the lowest cardiovascular mortality [34]. Within similar BMI, increased mus-

cle mass is associated with increased insulin sensitivity and better metabolic profile. Increased

Fig 3. Comparison of 5 machine learning algorithms and top 10 important features for predicting the maximum exercise capability of females

(A-F).

https://doi.org/10.1371/journal.pone.0248039.g003
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waist circumference and waist to hip ratio (that have been shown to be good surrogate markers

for adiposity) are associated with increased mortality in specific ethnicities like Mexican

Americans [35]. Prior studies have also shown that fasting insulin levels, HDL cholesterol as

well as triglyceride levels are independently related to body fat percent and waist to hip ratio

[36]. In the elderly population, it was shown that low fat free mass and skeletal muscle index

are better predictors of 1 year mortality compared to BMI [37]. Nonetheless, when it comes to

cardiovascular disease and congestive heart failure, the association between healthy body com-

position and poor outcomes is confounded by ‘obesity paradox’—persons with a combination

of low body fat and low BMI, appear to have increased mortality [38].

Fig 4. Comparison of 5 machine learning algorithms (A-E) and top 10 important features for predicting the maximum exercise capability of

males (F).

https://doi.org/10.1371/journal.pone.0248039.g004
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The different pathways between adiposity and all-cause mortality (especially cardiovascular

mortality) include direct effects like increased structural modifications of the cardiovascular

system to account for excess body weight and adipose tissue cytokine mediated vascular

inflammation while the indirect effects include insulin resistance, dyslipidemia leading to ath-

erosclerosis and hypertension [39].

Even though adipose tissue has negative effects on cardiovascular health, increased capacity

to exercise mitigates many of the harmful effects of adiposity [40–42]. Exercise capacity is

stronger predictor of cardiovascular mortality than other traditional risk factors [41, 42].

McAuley et al. have shown that for every 1- MET increase in exercise capacity, mortality was

lowered by 10 percent (hazard ratio 0.90 (0.82–0.98 CI) after adjusting for age, ethnicity, BMI,

presence of cardiovascular disease and/or risk factors [43]. The Duke treadmill score (espe-

cially the METs) achieved has been shown to be a major predictor of cardiovascular disease

[40]. Collectively, these studies show the importance of measuring the exercise capacity [44].

Fig 5. The top-10 ranked variables for each algorithm (A-E) by the mean shapley additive value for predicting the exercising capacity of females.

A) Random Forest, B) Gradient boosting, C) Support vector regression, D) Multilayer perceptron, E) Stacking regressor.

https://doi.org/10.1371/journal.pone.0248039.g005
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There is a need for surrogate measures of exercise capacity. Not all persons with diabetes

(an established risk factor for CVD), are able to obtain an exercise stress test due to accessibil-

ity, cost as well as sheer volume and logistics of such a health care undertaking. Body composi-

tion and anthropomorphic measures are inexpensive and easily obtainable and help us assess

individual fitness. Machine learning methods offer us tools to predict exercise capacity in per-

sons with diabetes and risk stratify them for close monitoring and aggressive intervention. Pre-

vious studies have highlighted the importance of determining the exercise capacity by

establishing the relationship between exercise capacity and mortality [42].

Our study uses body composition and other traditional markers of cardiovascular risk for

predicting the exercise capacity of males and females. In both females as well as males, subtotal

body fat percent and age are the most important features in predicting maximum exercise

capacity, in persons with diabetes over the age of 40. Therefore, our study illustrates the impor-

tance of obtaining body composition metrics, as they may offer useful insights into the physical

fitness and exercise capacity in persons with diabetes.

Fig 6. The top-10 ranked variables for each algorithm (A-E) by the mean shapley additive value for predicting the exercising capacity of males. A)

Random Forest, B) Gradient boosting, C) Support vector regression, D) Multilayer perceptron, E) Stacking regressor.

https://doi.org/10.1371/journal.pone.0248039.g006
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There are some limitations to our study. We have used the Look-Ahead cohort as our study

population. Since the Look Ahead was published, substantial progress has been made in diabe-

tes care with advent of drugs such as GLP-1 agonists, SGLT-2 inhibitors that are either weight

loss enhancing or weight neutral while having cardiovascular benefits at the same time. We

have not used all the features in our analysis like beta-blocker use, diuretic use, insulin use,

prior cardiovascular fitness measurements as well as dietary factors, etc. all of these might

affect exercise capacity to variable extent. Also, subtotal fat percentage has significant collinear-

ity with other measures of adiposity (like total fat percentage) and machine learning might

prove them to be superior features in predicting exercise capacity.

Thus, the relationship between body composition, exercise fitness and long-term cardiovas-

cular outcomes needs to be further evaluated through prospective studies, using different

methods of analytics including machine learning, mediation/moderation analysis and other

novel statistical approaches, especially in person with type 2 diabetes mellitus.

Conclusion

Our study demonstrates that Subtotal fat percentage is an important feature in predicting the

maximum exercise capacity for adults. Other important features include age, serum triglycer-

ides, systolic and diastolic blood pressure. This sets the stage for cross-validation with other

large prospective datasets and future research in this regard.
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