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Genetic evidence in living organisms from yeast to plants and animals, including

humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or

mTOR for mammalian/mechanistic) signal transduction pathway as a master

regulator of growth through the control of cell size and cell number. Among the

mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to

nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant

flies and mice reveals that S6K1 predominantly regulates cell size versus cell

proliferation. Here we review the putative mechanisms of S6K1 action on cell

size by considering the main functional categories of S6K1 targets: substrates

involved in nucleic acid and protein synthesis, fat mass accumulation,

retrograde control of insulin action, senescence program and cytoskeleton

organization. We discuss how S6K1 may be involved in the observed

interconnection between cell size, regenerative and ageing responses.
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Genetic evidence of growth regulators and signal
transduction mechanisms

At the turn of the second and third millennium, genetic screens for tissue overgrowth

inDrosophila flies identify loss-of-function (LOF) mutants falling in two broad categories:

hyperplastic with increased cell size, such as Gigas-Tuberous Sclerosis Complex 2 (TSC2),

Tuberous Sclerosis Complex 1 (TSC1) and Phosphatase And Tensin Homolog (PTEN)

(Huang et al., 1999; Ito and Rubin, 1999; Stocker and Hafen, 2000); and hyperplastic with

constant cell size, such as Hippo, Salvador, Merlin, Warts (Pantalacci et al., 2003; Udan

et al., 2003; Wu et al., 2003). At the same time, biochemical studies demonstrated that the

gene products belong to two signal transduction pathways integrating environmental cues

and regulating tissue growth: the mTOR and the Hippo kinase pathways (Ma et al., 2018;

Liu and Sabatini, 2020). mTOR mainly senses nutrient availability, whereas the Hippo

pathway mainly senses the physical environment. While TSC1, TSC2 and PTEN are

negative regulators of the mTOR pathway, LOF mutants in positive regulators, such as

Insulin Receptor Substrate (IRS), Phosphoinositide-3-Kinase (PI3K), Akt and mTOR

itself, reduce both cell size and number (Leevers et al., 1996; Bohni et al., 1999; Verdu et al.,

1999; Zhang et al., 2000; Gao et al., 2002; Zhang et al., 2003). Of note, adult flies lacking the

S6K gene have the same cell number as wild type flies but their cell size is reduced, as

measured in the eye and wing tissues (Montagne et al., 1999). The differential impact of
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FIGURE 1
Schematic representation of S6K1 signaling and the five programs accounting for the control of cell size and ageing.
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growth mutants on cell size and cell number points to a loose

relationship between these parameters. While the Drosophila fly

genome contains a single S6K gene, two orthologous RPS6KB1

and RPS6KB2 genes exist in mammals, encoding the S6K1 and

S6K2 proteins, respectively (Banerjee et al., 1990; Kozma et al.,

1990; Gout et al., 1998; Shima et al., 1998; Lee-Fruman et al.,

1999). Here, we will review the studies detailing the effectors of

S6 kinases and the physiological alterations concomitant with the

cell size control by this molecular program.

S6K and Akt belong to the AGC family of serine and

threonine protein kinases (Pearce et al., 2010). They are

activated by phosphorylation on their hydrophobic motifs

and T-loop motifs by mTOR and 3-Phosphoinositide

Dependent Protein Kinase (PDK1), respectively (Alessi

et al., 1997; Alessi et al., 1998; Pullen et al., 1998; Hara

et al., 2002; Kim et al., 2002; Sarbassov et al., 2005).

However, mTOR resides in different protein complexes

when it catalyzes S6K or Akt phosphorylation. While S6K

is phosphorylated by mTOR complex 1 (mTORC1), Akt is

phosphorylated by mTOR complex 2 (mTORC2).

mTORC1 and mTORC2 differ in their sensitivity to the

two main anabolic signals from nutrition: small nutrients

molecules, such as glucose, amino acids and lipids which

enter in circulation after food digestion, and growth factor

peptides, such as insulin, that are secreted after food intake

and coordinate nutrient usage in peripheral organs.

mTORC1 activity requires signals from both nutrients and

growth factors, while mTORC2 activity is relatively insensitive

to nutrient levels (Liu and Sabatini, 2020). In addition,

mTORC2 promotes mTORC1 activity, while being

negatively regulated by mTORC1 in a retrocontrol

mechanism. This cross-talk and differential sensitivity of

mTORC1 and mTORC2 to the anabolic signals explain

many physiological adaptations to nutrition. For instance,

protein synthesis and cell growth are mainly upregulated

by mTORC1 when both insulin and nutrients are present

(Pham et al., 2000). Conversely, the metabolic action of

insulin on nutrient uptake and gluconeogenesis is mainly

regulated by mTORC2, with an excess of nutrients causing

insulin resistance through the negative feedback loop of

mTORC1 on mTORC2 (Fingar et al., 1993; Tremblay and

Marette, 2001).

The convergence of nutrients and insulin signals for

mTORC1 activation takes place at the lysosomal

membrane, through the regulation of two small GTPase

family members Ras Related GTP Binding A/B/C/D (RagA/

B/C/D) and Ras Homolog Enriched In Brain (Rheb) that are

important for mTORC1 localization and activity, respectively

(Liu and Sabatini, 2020). It is becoming increasingly clear that

the phosphorylation of protein substrates by mTORC1 is

differentially sensitive to upstream regulators. Since the

relative activity of mTORC1 towards S6K1 is low, this

phosphorylation event is very sensitive to rapamycin

treatment and nutritional perturbations that change

mTORC1 activity through Rheb and Rag GTP loading

(Chung et al., 1992; Kang et al., 2013). Conversely, the

phosphorylation of other mTORC1 substrates, such as

4EBPs, is more constitutive and less sensitive to nutritional

fluctuations as well as pharmacological inhibition by

rapamycin (Choo et al., 2008). Moreover, phosphorylation

of certain substrates, such as TFEB, is insensitive to the Rheb-

dependent regulation of mTORC1 and exquisitely depends on

the regulation at the level of RagC/D (Napolitano et al., 2020).

It appears therefore that mTORC1 is capable to integrate a

large variety of information from the environment and adapt

the output towards distinct classes of substrates depending on

the conditions.

S6 kinases are also extensively phosphorylated in the

proline rich C-terminus region, a pseudosubstrate domain

possibly exerting autoinhibitory effects on kinase activity

(Mukhopadhyay et al., 1992; Dennis et al., 1998). The

phosphorylation of the C-terminus region has been

proposed to relieve the autoinhibitory regulation and

expose the kinase for phosphorylation on the hydrophobic

motifs and T-loop motifs required for activation and substrate

docking. Several proline directed kinases can phosphorylate

the C-terminus region of S6K1 in vitro, including Cyclin

dependent kinases (Cdk) Cdk5 and Cdk1, Mitogen

Activated protein kinases (MAPK) and mTOR itself

(Mukhopadhyay et al., 1992; Arif et al., 2019). It is still

unclear whether these kinases can compensate each other

or whether they directly phosphorylate specific sites in vivo.

This model of S6K1 regulation is consistent with the genetic

epistasis experiments and pharmacological treatments by

rapamycin derivatives, indicating that mTOR-mediated

phosphorylation on the hydrophobic motif is absolutely

required for S6K1 action on downstream substrates.

However, a recent study proposes that Cdk5-mediated

S6K1 phosphorylation on the C-terminus region may

trigger a conformational switch that directs S6K1 kinase

activity towards a different class of substrates (Arif et al.,

2019). This appealing and original control still requires

further work, namely the in vivo analysis of Cdk5 knockout

mice and the generation of phospho-specific antibodies

against the Cdk5-directed substrates. Of note, additional

Cdk, such as Cdk4 and Cdk6, impinge on mTOR/S6K

activity by affecting upstream regulators, such as the

lysosomal complexes and TSC, rather than directly on

kinase phosphorylation (Martinez-Carreres et al., 2019;

Romero-Pozuelo et al., 2020).

Given the peculiar sensitivity of S6K1 to

mTORC1 activity, it is not surprising that S6K1 deficient

mice mimic a caloric restriction phenotype. They have low

insulin levels in their blood, are hypersensitive to action of

insulin on glucose tolerance, do not become obese after high

fat diet and live longer (Pende et al., 2000; Um et al., 2004;
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Selman et al., 2009). Of note, all these physiological

adaptations are accompanied by a reduction of cell size.

The cell volume shrinkage is approximately 15%–35%

depending on the cell type. This is less dramatic than the

profound cell atrophy due to mTOR deletion, consistent with

the idea that S6K1 deletion does not induce autophagy.

Similarly, S6K deletion in Drosophila flies rescues the

overgrowth phenotype of the Gigas-TSC2 mutation to the

level of wild type tissues (Gao et al., 2002). The effect of S6K on

cell size can be recapitulated in vitro after genome editing in

cultured cells, pointing to a cell autonomous regulation of cell

size by S6K1 (Bonucci et al., 2020). The decreased cell size is

observed throughout different phases of cell cycle as well as in

post-mitotic cells (Ohanna et al., 2005; Bonucci et al., 2020).

S6K1 deletion mimics the effect of rapamycin on cell size but

not on cell proliferation (Ohanna et al., 2005; Dowling et al.,

2010). Conversely, 4EBPs deletion causes resistance to the

anti-proliferative action of mTOR inhibitors without affecting

cell size (Dowling et al., 2010).

Cell size fluctuations have been recently proposed to directly

affect senescence or stem cell potential (Neurohr et al., 2019;

Lengefeld et al., 2021). We will now discuss how the S6K

dependent molecular program may contribute to these

coordinated responses: protein and lipid mass accumulation,

insulin resistance, cytoskeletal dynamics and senescence. The

elucidation of the S6K substrates is rapidly progressing thanks to

the deep coverage of the phosphoproteomics analysis after

rapamycin treatment, mTORC1 or S6K1 genetic deletion

(Moritz et al., 2010; Hsu et al., 2011; Yu et al., 2011; Robitaille

et al., 2013; Bonucci et al., 2020). A comprehensive and updated

list of S6K substrates can be found at the PhosphoSitePlus online

tool: https://www.phosphosite.org/substrateSearchViewAction.

action?id=1012&type=Protein: the phosphorylation sites and

consensus sequences are also adequately indicated there and

are therefore omitted in this review. Figure 1 is a graphic

representation of the S6K1 signaling network.

Protein mass accumulation

Protein synthesis

Substrates belonging to the protein synthesis machinery

represent the most important class of S6K targets for both

historic reasons and their high number. S6 kinases were

initially isolated due to their enzymatic activity

phosphorylating the ribosomes. Phosphorylation of the 40S

ribosomal protein S6 (eS6 according to the novel

nomenclature (Ban et al., 2014)) occurs in mammals and

Xenopus at the C-terminus of the protein (Krieg et al., 1988;

Wettenhall et al., 1992). In vivo, S6K1 and S6K2 are the main

kinases responsible for eS6 phosphorylation, although residual

eS6 phosphorylation by compensating p90 Ribosomal Protein

S6 Kinase RPS6KA1-3 (RSK 1-3) downstream of Mitogen

Activated protein kinases (MAPK, ERK1 and ERK2) can

occur in an S6K null background (Pende et al., 2004). The

evidence of eS6 phosphorylation playing a stimulatory role on

protein synthesis is correlative and its function in mRNA

translation remains elusive. Some insights on a physiological

function of eS6 phosphorylation have arisen from the analysis of

the S6−/−P knock-in mice where all the five phosphorylatable

serines of eS6 are mutated to alanines (Ruvinsky et al., 2005).

Although the phenotype of S6−/−P knock-in mice is milder than

S6K1−/−mice, they also display small cell size of pancreatic beta

cells and muscle cells, suggesting that eS6 phosphorylation

participates in cell size control (Pende et al., 2000; Ohanna

et al., 2005; Ruvinsky et al., 2005; Ruvinsky et al., 2009). If the

phenotype of S6−/−P mice would be consistent with a stimulatory

role of eS6 phosphorylation on protein synthesis, it is puzzling

that S6−/−P cells from different tissues display higher protein

synthesis rates than their wild type (WT) controls, arguing that

eS6 phosphorylation has an inhibitory function on mRNA

translation (Ruvinsky et al., 2005; Hsieh et al., 2010).

Consistently, S6K1 deficient mice do not display a reduction

in global protein synthesis (Mieulet et al., 2007). The mechanistic

aspects of these effects have not been thoroughly investigated and

it cannot be excluded that they arise from the activation of

compensatory mechanisms. Some clues come from a recent

study that by comparing the translation efficiency of WT and

S6−/−P cells provides evidence that eS6 phosphorylation has a mild

stimulatory effect on the translation of short mRNAs (Bohlen

et al., 2021). Among those, however, an exception is that of 5TOP

mRNAs that mainly encode ribosomal proteins and are

translated more efficiently in S6−/−P than WT cells. In

agreement with this observation, ribosomal protein levels, a

proxy of ribosome content, are higher in S6−/−P as compared

to WT cell (Bohlen et al., 2021), which is consistent with the

difference in the rates of protein synthesis (Ruvinsky et al., 2005).

An in vivo study employing S6P−/- mice indicates that in liver of

animals fed after fasting eS6 phosphorylationmediates in part the

stimulatory effects of S6K on the transcription of genes encoding

RiBi (ribosome biogenesis) factors, implicated in the assembly

and maturation of ribosomal subunits, contributing therefore to

the increase in ribosome synthesis that ensues in response to

feeding (Chauvin et al., 2014). It is likely that these effects are due

to an extra-ribosomal function of eS6, although it cannot be

excluded that phosphorylated ribosomes regulate the synthesis of

factors that impact on Ribi mRNA levels.

The major hub of protein synthesis control by the

mTORC1 pathway is the eIF4F (eukaryotic initiation factor

4F) complex that mediates during the initiation phase the

recruitment to the mRNA of the 43S pre-initiation complex,

i.e., the 40S ribosomal subunit bound to the ternary complex

(eIF2-GTP-Met-tRNA), and the initiation factors eIF1, eIF1A,

eIF3, and eIF5 (Merrick and Pavitt, 2018). eIF4F is composed by

a scaffold, eIF4G, that interacts with the two other components of
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the complex, the cap binding protein eIF4E and the RNA helicase

eIF4A. During initiation of protein synthesis, eIF4G interacts

with the 43S preinitiation complex whereas the eIF4E moiety

makes contact with the cap structure found at the 5′ end of

mRNAs. This interaction is favoured by eIF4A that unwinds

secondary structures proximal to the cap and facilitates therefore

binding of the 43S complex to the mRNA. In this process the

activity of eIF4A is greatly enhanced by the factor eIF4B (Merrick

and Pavitt, 2018). Formation of the eIF4F complex is regulated in

an mTORC1 dependent manner by growth factors and nutrients.

Thus, under conditions of nutrient scarcity, members of the

4EBP (eIF4E binding protein) family efficiently compete with

eIF4G for binding to eIF4E preventing therefore eIF4F complex

formation and suppressing protein synthesis. Upon nutrient

addition, phosphorylation of 4EBPs at several sites mainly by

mTORC1, promotes their dissociation from eIF4E which

becomes available for the formation of the eIF4F complex

allowing an increase in the rates of protein synthesis (Merrick

and Pavitt, 2018). A further layer of regulation on eIF4F

formation is provided by S6K. This involves the

phosphorylation and subsequent ubiquitin-dependent

degradation of programmed cell death 4 (PDCD4), a protein

that interferes with eIF4A activity and its binding to eIF4G

(Dorrello et al., 2006). Furthermore, phosphorylation of eIF4B

by S6K stimulates protein synthesis through a mechanism that

may involve recruitment of eIF4B in proximity of eIF4F (Holz

et al., 2005; Shahbazian et al., 2006).

Besides translation initiation, elongation is also subjected to

regulation by the pathway. An inhibitory effect on protein

synthesis occurs through phosphorylation and consequent

inactivation of eukaryotic elongation factor 2 (eEF2) that,

during elongation, catalyses the translocation of peptidyl-

tRNA from the A to the P site of the translating ribosome

(Dever and Green, 2012). The kinase responsible for

eEF2 phosphorylation is the Ca2+/Calmodulin dependent

kinase eEF2 kinase (eEF2K) (Kenney et al., 2014). This

response is thought to promote cell survival under conditions

of nutrient scarcity by limiting the highly energy-consuming

process of protein synthesis (Leprivier et al., 2013; Faller et al.,

2015). It has been shown that in response to mitogenic signals

S6K phosphorylates and inactivates eEF2K, ensuring therefore

high rates of protein synthesis (Wang et al., 2001; Kenney et al.,

2014).

RNA metabolism

S6K might regulate specific mRNA translation through the

regulation of their metabolism, including mRNA methylation

and splicing. It has been recently shown that in TSC2−/− cells,

S6K through the eIF4A-eIF4B axis promotes the translation of

the mRNA encoding Wilms tumor 1-associated protein

(WTAP), the scaffold component of the m6A

methyltransferase complex (MTC). This in turn results in

formation of m6A by the MTC components m6A

methyltransferase like proteins 3 and 14 (METTL3 and

METTL14) on, among others, the mRNA encoding the c-myc

suppressor MAX dimerization protein 2 (MXD2), triggering its

degradation and leading to activation of c-myc transcriptional

activity (Cho et al., 2021). MXD2 can also be directly

phosphorylated by S6K1, an event promoting protein

ubiquitination and degradation (Huang et al., 2018). A role of

eIF4B phosphorylation by S6K in directly promoting translation

of c-myc mRNA has also been documented in TSC2−/− cells

(Csibi et al., 2014). Taken together, these findings converge on

the Myc transcriptional program in mediating some of the

growth-promoting actions of S6K.

Moreover, S6K intervenes in the final maturation steps of

mRNAs. As introns are removed from pre-RNAs during splicing,

a complex forms twenty four nucleotides upstream of exon-exon

junctions known as EJC (Exon-Junction complex). mRNAs

associate then to the nuclear CAP binding complex (CBP)

and are exported from the nucleus into the cytosol. Here

mRNAs, still bound to CBP, are inspected by the so-called

pioneer round of translation, a quality control step during

which EJC are removed unless an upstream premature

translation stop codon is present. Successful removal of the

EJC commits the mRNA toward productive protein synthesis

(Woodward et al., 2017). It has been shown that S6K1 Aly/REF-

like target (SKAR), an RNA binding protein phosphorylated by

S6K1 (Richardson et al., 2004), is a component of the EJC (Ma

et al., 2008). In response to Insulin, S6K1, by interacting with

SKAR, is recruited to CBP-bound mRNPs and presumably

stimulates the inspection of the associated mRNAs by the

pioneer round of translation providing transcripts to support

protein synthesis (Ma et al., 2008). It is interesting that knock

down of SKAR results in a small cell size phenotype (Richardson

et al., 2004). It will be important to analyse the role that SKAR

phosphorylation by S6K plays on regulation of cell size as well as

on SKAR function as a component of the EJC. Additional

splicing factors controlled by S6K will be discussed in the next

chapter.

Protein folding

Growth control by mTOR and S6K also relies on protein

folding. In Drosophila, the overgrowth phenotype of TOR

activation is suppressed by depletion of subunits of

chaperonin containing tailless complex polypeptide 1 (CCT), a

complex that assists the folding of about 10% of newly

synthesized cytosolic proteins (Kim and Choi, 2019). TOR

promotes transcription of CCT genes. Of note, CCT subunits

are important to maintain the levels of METTL3 and

METTL14 in MTC, which contribute to the inhibition of

autophagy by catalysing formation of destabilising m6A on
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mRNAs encoding autophagy effectors (Tang et al., 2021). Some

aspects of this regulatory circuit are conserved in mammalian

cells. A possible role of S6K in regulating both CCT and MTC

functions is supported by the finding that the CCT2 subunit is

phosphorylated by S6K (Abe et al., 2009). Interestingly a

CCT2 phosphomutant fails to rescue the proliferation defect

caused by depletion of CCT2 in humanmammary epithelial cells.

S6K also phosphorylates ZRF1, the HSP40 component of the

ribosome-associated complex (RAC), a universally conserved

broad specificity chaperone system that interacts with the 60S

ribosomal subunit assist co-translational folding of nascent

polypeptides as they emerge from the tunnel of the ribosome

(Barilari et al., 2017). Furthermore, studies in yeast suggest that

ZRF1 has a role in maintaining protein synthesis fidelity by

interacting with the 40S subunit at a region that is involved in

decoding (Lee et al., 2016). It will be important to determine the

functional relevance of this phosphorylation event on protein

synthesis fidelity.

Nucleotide biosynthesis

A major cellular function involved in cell growth is the

synthesis of precursors employed in macromolecular

synthesis. These include the pyrimidine and purine bases that

are then employed for the synthesis of nucleosides, the

components of DNA and RNA (Zhu and Thompson, 2019).

Recent work from the Manning laboratory has shown that de

novo synthesis of both pyrimidines and purines is driven by the

mTOR pathway (Ben-Sahra et al., 2013; Ben-Sahra et al., 2016).

Downstream of mTOR, S6K plays a crucial role on pyrimidines

synthesis through the stimulatory phosphorylation of

carbamoyl-phosphate synthetase 2, aspartate

transcarbamoylase, dihydroorotase (CAD), the enzyme that

catalyses the first three steps of de novo pyrimidine synthesis

(Ben-Sahra et al., 2013; Robitaille et al., 2013).

Lipid mass accumulation

Interestingly, phosphorylation of splicing and translational

machineries has been implicated in one of the most striking

cellular responses to S6K1 activity, the fat accumulation. In

Drosophila, a lipogenic program is sufficient to alter cell size

(Porstmann et al., 2008). Although S6K1 has been proposed to

directly phosphorylate and regulate the expression of the master

regulator of lipid gene expression, the Sterol Regulatory Element-

Binding Protein 1 (SREBP1), the experimental evidence is not

conclusive (Lewis et al., 2011; Yecies et al., 2011). Two recent

studies suggest alternative SREBP1- and transcription-

independent mechanisms for the regulation of fat metabolism,

involving the Serine-arginine rich protein kinase 2 (SRPK2) and

the glutamyl prolyl tRNA synthetase EPRS. SRPK2 regulates

serine arginine rich proteins (SR), whose function is to catalyze

mRNA splicing by binding exons and recruiting small nuclear

ribonucleoproteins (snRNPs) (Lee et al., 2017). S6K1 dependent

phosphorylation of SRPK2 in cooperation with an additional

Casein Kinase 1 (CK1)-dependent site upregulates nuclear

localization of the protein. Nuclear SRPK2 promotes efficient

intron splicing of acly, acss2, hmgcs1, mvd, fdft1, scd1, fasn

mRNA, thus increasing the stability and the levels of these

mRNA coding for proteins involved in lipid synthesis.

Conversely, the S6K1-dependent phosphorylation of EPRS

acts as a switch for the function of the protein, that becomes

a partner of Long-Chain Fatty Acid Transport Protein (FATP1),

promoting long chain FA uptake and TG synthesis (Arif et al.,

2017). Similar to S6K1 deficient mice, EPRS phosphomutant

mice also have reduced fat mass and increased longevity,

indicating a participation of the post-translational

modification in these phenotypes (Arif et al., 2017). Moreover,

when S6K1 receives activating input by Cdk5, additional proteins

involved in lipid synthesis can be phosphorylated, including

cortactin, lipocalin 2 and coA synthase (Arif et al., 2019).

Another original mechanism for the control of lipid synthesis

is through epigenetic modifications triggered by S6K1-dependent

Histone 2B (H2B) phosphorylation (Yi et al., 2016). In

adipocytes, S6K1 can translocate to the nucleus upon

treatment with the adipogenic factor Bone Morphogenetic

Protein 4 (BMP4). The H2B phosphorylation recruits the

Histone-Lysine N-Methyltransferase EZH2 and favours

H3K27 trimethylation (H3K27m3), thus suppressing Wnt

ligand expression which acts as a brake for adipogenic

commitment. The expression of fat-regulating hormones in

adipocytes and pancreas, such as adiponectin, insulin and

glucagon, may also undergo a similar epigenetic regulation (Yi

et al., 2018; Yi et al., 2022).

Insulin sensitivity

S6K1 is involved at multiple levels in the above-mentioned

negative feedback mechanism by which an excess of nutrients

through the mTORC1/S6K1 axis dowregulates insulin signaling

and mTORC2 activity. First, S6K1 acts at the level of IRS

proteins which initiate insulin signaling. IRS phosphorylation

on Ser and Thr residues by S6K1 and additional kinases

contributes to shut down the signal by promoting protein

degradation or decreasing the interaction with the receptors

(Harrington et al., 2004; Tremblay et al., 2007). Consistently,

the increase in insulin sensitivity of S6K1-deficient mice

correlates with a decrease in IRS1 Ser/Thr phosphorylation

(Um et al., 2004). Second, S6K1 phosphorylates multiple

proteins in mTORC1 and mTORC2. S6Ks phosphorylate

mTOR itself, however the functional relevance of these

phosphorylation sites is unclear (Holz and Blenis, 2005).

S6Ks also phosphorylate two components of the mTOR
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complex 2 (mTORC2), namely rapamycin-insensitive

companion of mTOR (RICTOR) and stress-activated MAPK-

interacting protein 1 (SIN1) (Dibble et al., 2009; Julien et al.,

2010; Treins et al., 2010; Liu et al., 2013), and the Deptor protein

present in both mTORC1 and mTORC2 (Gao et al., 2011; Zhao

et al., 2011). Although there are some controversies on the

function of each phosphorylation event, there is a general

consensus that S6Ks act by inhibiting the mTORC2 substrate

Akt. Phosphomimetic SIN1 mutants are unable to interact with

RICTOR and mTOR, while phospho-ablative mutants increase

Akt phosphorylation (Liu et al., 2013). Similarly, two studies

have shown a mild inhibitory effect of RICTOR

phosphorylation on AKT activity (Dibble et al., 2009; Julien

et al., 2010). The reduced half life of Deptor upon its

phosphorylation may also concur to decreased Akt activation

(Gao et al., 2011; Zhao et al., 2011).

Another level by which S6K1 may suppress Akt activity is

through the phosphorylation of PDK1 on the pleckstrin

homology domain that impairs the interaction between

PDK1 and Akt (Jiang et al., 2022). Interestingly, if S6K1 has

clearly a negative role on the metabolic action of insulin and

Akt, it can compensate the Akt action on some substrates that

are important growth regulators, such as Glycogen Synthase

Kinase 3 (GSK3). S6K1 can phosphorylate GSK3 in conditions

of mTORC1 overactivation (Zhang et al., 2006), and thus

relieve the GSK3-dependent inhibition of two transcription

factors promoting growth, c-Myc and Forkhead Box Protein

K1 (FoxK1) (He et al., 2018).

Senescence

Rapamycin treatment has a striking efficacy in delaying the

senescence program in cultured cells and preserving their

proliferative potential (Leontieva and Blagosklonny, 2013,

2014; Leontieva et al., 2013, 2014; Neurohr et al., 2019;

Lengefeld et al., 2021). Primary cells undergoing senescent

insults of DNA damage, replication stress, oncogenic

mutations and constitutive mTOR activation are protected

by rapamycin. Pharmacological inhibition of S6K1 or genetic

knock-down/knock-out also rescues the senescent program

(Leontieva et al., 2013; Barilari et al., 2017). In

TSC1 deficient fibroblasts, S6K1 regulates the expression of

the cell cycle inhibitor p16 (Barilari et al., 2017). This is

accompanied by the S6K1-dependent phosphorylation of

Zrf1, a protein containing a SANT domain for DNA and

histone binding and interacting with inhibitor of

differentiation 1 (Id1) (Shoji et al., 1995; Richly et al., 2010).

Zrf1 has been shown to antagonize the action of polycomb

repressive complex 1 (PRC1) that ubiquitinates H2A and

silences the Ink4a/ARF locus encoding p16 (Richly et al.,

2010). In addition, the Zrf1 partners Id proteins can also

suppress the activity of ETS1 and ETS2 transcription factors,

which are potent activators of p16 transcription (Shoji et al.,

1995). As outlined above, Zrf1 has also cytosolic functions as a

co-chaperon forming the ribosome-associated complex (RAC).

Although the phosphomutant of Zrf1 delays the senescence

program (Barilari et al., 2017), how this post-translational

modification affects the molecular function of Zrf1 has not

been addressed yet.

S6K1 activity also modulates the DNA damage response,

relevant to the induction of senescence. In cells exposed to

DNA damaging agents and nutrient-rich conditions,

S6K1 contributes to the phosphorylation and cytosolic

retention of Mouse double minute homolog 2 (MDM2), the

E3 ubiquitin ligase controlling the degradation of p53 (Lai

et al., 2010). This potentiates the p53-dependent

transcriptional response to DNA damaging agents, and in

particular may explain how nutrients and growth factors can

favour the pro-apoptotic and pro-senescent function of p53.

Moreover, the S6K1-dependent phosphorylation of meiotic

recombination 11 protein (MRE11) and Ring Finger Protein

168 (RNF168) triggers the degradation of these proteins

crucial for DNA end resection and homologous

recombination in the repair of double strand breaks

(Piscitello et al., 2018; Xie et al., 2018). This impairs the

DNA damage checkpoint and favours the entry of primary

fibroblasts into senescence.

Cytoskeleton dynamics

The S6K1-dependent hypertrophy of TSC1 mutant kidney

epithelial cells correlates with misorientation of cell division

leading to cyst deformation of renal tubules (Bonucci et al.,

2020). However, micropattern experiments to measure the angle

of cell division in single cells demonstrate that aberrant cell size is not

sufficient to alter the mitotic angle. The defect of oriented cell

division can be observed when cells are adjacent to each other in an

epithelial layer. This suggests the importance of adhesion cues in the

correct determination of planar polarity. Of note, a comprehensive

phosphoproteomics analysis of the inner medullary collecting duct

cell line mIMCD3 edited in the TSC1 and S6K1 genes revealed a

broad list of putative S6K1 substrates involved in the regulation of

the actin cortex and cell adhesion. These include slingshot protein

phosphatase 1 (SSH1), phosphatase for the actin depolymerase

cofilin; microtubule actin crosslinking factor 1 (Macf1),

spectraplakin binding actin and microtubules;

phosphatidylinositol 4-Kinase α (PI4K), regulating endocytic

trafficking; myosin phosphatase-targeting subunit 1 and 2

(MyPT1 and MyPT2), myosin phosphatases regulating

actomyosin contractility; missing in metastasis protein (Mtss1),

cortactin-interacting protein. Among the phosphopeptides,

Afadin, an actin binding and adapter protein regulating the

nectin and cadherin adhesion systems, has been validated as a

novel S6K1 substrate. Afadin phosphorylation alters Adherens
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Junctions in kidney epithelial cells and favours cell migration of

breast cancer cells (Elloul et al., 2014; Gao et al., 2017). Of note, it has

been suggested that Afadin phosphorylationmay also be involved in

the negative feed-back regulation of insulin action in adipocytes

(Lundh et al., 2019), and Afadin phospho-mutant mice display a

mild amelioration of glucose homeostasis at the early stages of high

fat diet (Tozzi et al., 2022). Consistent with an important role of the

mTOR/S6K1 pathway on cell adhesion, S6K1 phosphorylation

down-regulates PI 4 phosphate 5 kinase type I g (PIPKIg90),

which mediates together with talin the assembly of focal

adhesion (Jafari et al., 2016). As a result of S6K1 action on

PIPKIg90, cells become more prone to matrix degradation and

invasion.

Future perspectives on the spatial
control of cell growth and ageing
responses

It has been recently proposed that cell size alterations may

influence important cell fate decisions, such as senescence or

regenerative responses (Neurohr et al., 2019; Lengefeld et al.,

2021). It is likely that mTOR and S6K affects physical

properties of the cells and define spatially organized

microdomains, therefore affecting molecular machineries

involved in growth and ageing. Several evidences are

consistent with this possibility, though the causal

relationships will require further studies. It has been

shown that inhibition of mTOR by rapamycin treatment is

associated with a decrease of macromolecular crowding and

viscosity of the cytosol due to loss of ribosomes, a result of

suppression of ribosome biogenesis and increased ribophagy

(Delarue et al., 2018). Although it is not defined whether the

decrease in ribosome contents is responsible of the decrease

in cell size caused by rapamycin, it is clear that the ensuing

dilution of the cytosol increases the diffusion of

macromolecules. This may favour signaling processes but

also impair the assembly of biomolecular condensates. The

disproportionate growth of senescent cells, which is

associated with a gradual loss of biosynthetic capacity, may

also lead eventually to the dilution of the cytosol (Neurohr

et al., 2019). The implication of S6K in this phenomenon is

suggested by the observation that S6K inactivation prevents

senescence of TSC1−/− cells (Barilari et al., 2017). S6K might

contribute to a level of cytoplasmic crowding appropriate to

regulate the on-demand formation of biomolecular

condensates that perform crucial cellular functions. This

would require a correct balance between the synthesis of

crowding agents and other S6K dependent and independent

functions that contribute to cell growth. Loss of this coupling

would be expected to lead then to variations in the

concentration of crowder and consequent alterations in

cellular homeostasis.

In recent years, S6K activity has been implicated in the

formation of biomolecular condensates, defined as dynamic

membraneless subcellular compartments with liquid like

properties which perform specific functions and assemble

through phase separation. These include among others,

nucleoli, Cajal bodies, promyelocytic leukaemia bodies

(PML) in the nucleus, and P bodies, stress granules, or

synaptic densities in the cytosol (Banani et al., 2017). For

instance, stress granules (SGs) formation in response to

oxidative stress and heath shock is under the control of

the mTOR pathway and sensitive to S6K inhibition

(Sfakianos et al., 2018). Although the mechanism has not

been elucidated, it probably implicates phosphorylation of SG

components that modulate protein-protein interactions and

favour the formation of the condensates. Another example is

the phosphorylation of the Survival motor Neuron protein

(SMN) by S6K. This promotes efficient condensation by

liquid liquid phase separation of the SMN complex in

Cajal bodies (CBs) (Schilling et al., 2021), thus favouring

the final maturation of ribonucleoproteins containing small

nuclear U RNAs (UsnRNPs) and assisting the different steps

of pre-mRNA splicing (Raimer et al., 2017). Interestingly

SMN has SMN-complex independent functions. It has been

shown that in fibroblasts a population of SMN is found

associated with caveolin at the plasma membrane

(Gabanella et al., 2016). Under conditions of recovery

from energy stress, SMN at newly-formed membrane

protrusion mobilizes inactive membrane-bound ribosomes

that are then engaged in local protein synthesis in order to

provide proteins required for the stabilization and

maintenance of these structures. It will be interesting to

determine the dependency of this process on the mTOR/

S6K pathway, as well as the elucidation of additional

microdomains influenced by these kinases.

As outlined in the previous chapter, the control of

cytoskeleton dynamics may present an underappreciated

mechanism pervading the whole cell and coordinating

biological responses in relationship with cell volume

regulation by S6K. In addition, specific metabolite levels

and pathway activities may underlie cell volume

alterations. In skeletal muscle, it is well established that

muscle fiber types relying on different energy sources have

different sizes (van Wessel et al., 2010; Bourdeau Julien et al.,

2018). Mitochondrial functionality has been associated with

the establishment of an optimal cell size (Miettinen et al.,

2014; Miettinen and Bjorklund, 2017). Of note, the small size

of the S6K1 mutant muscles correlate with alterations in the

AMP/ATP ratios (Aguilar et al., 2007), and AMPK activity is

a direct target of S6K (Dagon et al., 2012). In addition, the

phosphorylation of Bcl-2-associated agonist of cell death

(BAD) by Akt and S6K might be involved in

reprogramming energy metabolism (Harada et al., 2001;

Gimenez-Cassina et al., 2014). Future studies will address
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the following outstanding questions: What physical

properties of the cell, metabolic status and cystoskeleton

modifications may contribute to the whole cell sensing of

its size in relation with S6K activity? What S6K1 specific

substrates, that cannot be compensated by S6K2 or Rsk

activities, dictate the cell size adaptations? Can these

mechanisms be targeted in age-related pathological

conditions?
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