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ABSTRACT

Objectives: The UK Biobank (UKB) is making primary care electronic health records (EHRs) for 500 000 partici-

pants available for COVID-19-related research. Data are extracted from four sources, recorded using five clinical

terminologies and stored in different schemas. The aims of our research were to: (a) develop a semi-supervised

approach for bootstrapping EHR phenotyping algorithms in UKB EHR, and (b) to evaluate our approach by

implementing and evaluating phenotypes for 31 common biomarkers.

Materials and Methods: We describe an algorithmic approach to phenotyping biomarkers in primary care EHR

involving (a) bootstrapping definitions using existing phenotypes, (b) excluding generic, rare, or semantically

distant terms, (c) forward-mapping terminology terms, (d) expert review, and (e) data extraction. We evaluated

the phenotypes by assessing the ability to reproduce known epidemiological associations with all-cause mortal-

ity using Cox proportional hazards models.

Results: We created and evaluated phenotyping algorithms for 31 biomarkers many of which are directly re-

lated to COVID-19 complications, for example diabetes, cardiovascular disease, respiratory disease. Our algo-

rithm identified 1651 Read v2 and Clinical Terms Version 3 terms and automatically excluded 1228 terms. Clini-

cal review excluded 103 terms and included 44 terms, resulting in 364 terms for data extraction (sensitivity 0.89,

specificity 0.92). We extracted 38 190 682 events and identified 220 978 participants with at least one biomarker

measured.

Discussion and conclusion: Bootstrapping phenotyping algorithms from similar EHR can potentially address

pre-existing methodological concerns that undermine the outputs of biomarker discovery pipelines and provide

research-quality phenotyping algorithms.
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LAY SUMMARY

The UK Biobank study has collected extensive health-

related information on participants such as what diseases

they have been diagnosed with, what medications they

have been taking, lifestyle risk factors (such as smoking

or alcohol consumption) and other important measure-

ments (such as blood pressure, body mass index, and

glycated hemoglobin). Additionally, electronic health

records (EHRs), data collected during visits to primary

care physicians, will be shortly be made available for re-

search purposes as they are a valuable resource of health

information over longer periods of time. Researchers

working with EHR data however face significant chal-

lenges as the data are extracted from four different sour-

ces, are recorded using different methods and are messy

since they are not primarily collected for research but for

care. Our research focused on creating a series of com-

puter algorithms, which are used to extract important

measurements related to participant’s health from EHR

data in an efficient and accurate manner. We provide

algorithms for 31 measurements (such as blood pressure,

heart rate, weight, and cholesterol) which are commonly

measured and used in primary care and evaluate them by

examining their statistical distributions and their associ-

ated risk with death. These algorithms can be used by

researchers to improve health and healthcare.

INTRODUCTION

UK Biobank (UKB) is the largest longitudinal research study in the

UK (�500 000 participants), and one of the largest globally.1 To

further enrich this cohort’s data, UKB has begun to link the wealth

of information already collected from each individual to their pri-

mary care electronic health record (EHR).1 In the UK, the first point

of contact with the health service for individuals with a new (non-

emergency) medical problem or a chronic condition is their local

general practitioner (GP). These GPs also receive information from

the specialist health services that they refer their patients to, result-

ing in a closed loop communication system which should result in a

complete (time-stamped) summary of their patients’ medical condi-

tions, investigations, regular (prescribed) medications, etc. Introduc-

ing primary care EHR information will enable UKB researchers and

policymakers to assess the course and outcomes of a plethora of dif-

ferent diseases and risk-factors at scale, whilst allowing them to si-

multaneously explore the genetic factors associated with each.

Prior to being able to interrogate the data for the �220 000 UKB

participants that have already had their data linked, there is the non-

trivial task of processing it such that it can be meaningfully inter-

preted. The primary care data that has been linked to the UKB are

derived from the three different countries that compose the UK (En-

gland, Scotland and Wales). A total of four data sources (two in En-

gland, one in Scotland and one in Wales) using four different

controlled clinical terminologies (containing more than 500 000

terms to record information) and different data schemas are used.

As a result, researchers with no previous experience working with

primary care EHR would need to dedicate a significant amount of

time and effort to create phenotyping algorithms for important bio-

markers, for example blood pressure or hematological laboratory

markers. In this manuscript, we use the term “biomarker” to refer

to well-established, and measurable, clinical or laboratory parameters

that are used in routine clinical care as indicators of a particular disease

or other physiological state. The challenge of poor methodological re-

producibility in the biomarker discovery pipeline which lead to signifi-

cant amounts of research waste are directly comparable to the

challenges researchers face due to poor reproducibility of research find-

ings due to the lack of consistent and replicable phenotyping

approaches.2–4 Preventing waste in EHR-based biomarker research

requires robust clinical validation of phenotypes. However, relying on

individual clinical-academics to manually review and refine all of the

phenotyping algorithms under development is not easily scalable. As

such, an automated but more robust approach for creating and evaluat-

ing EHR phenotyping algorithms for biomarkers in primary care data is

necessary to address the aforementioned methodological concerns.

One of the primary audiences of this research are US investigators

since two-thirds of registered UKB investigators are from US-based

institutions. Additionally, the controlled clinical terminologies used in

UK EHR data are applicable to US data sources given that CTV3 is a

subset of SNOMED-CT. Finally, these challenges are likely not unique

to the UK Biobank nor to UK data but exist in other large-scale data

resources, for example US initiatives such as Electronic Medical

Records and Genomics (eMERGE),5 BioVU,6 Million Veteran Pro-

gram,7 and All Of Us,8 where primary care EHR data is or will be

ingested from multiple disparate data sources and requires significant

amount of effort and pre-processing prior to statistical analysis.

The issues of scalability and methodological robustness have be-

come even more relevant in light of UKB announcing that they will

be making available the results of COVID-19 tests for participants

through Public Health England (PHE), as well as a host of other rel-

evant information, including intensive care data for those who test

positive.9,10 It is likely that many non-EHR-specialists will be work-

ing UKB data for the foreseeable future, and given that the pandemic

has already had significant and widespread societal, economic, med-

ical, and health service impacts globally,8 there is an impetus to en-

sure rapid access of these critical data to researchers during this

public health emergency, whilst ensuring that this does not come at

the cost of research quality.11 The biomarkers we selected to exam-

ine and phenotype in this manuscript are all directly related to modi-

fiable and non-modifiable risk factors for COVID-19 such as

diabetes, blood pressure/hypertension, body mass index and obesity,

cancer, and chronic obstructive pulmonary disease.12–19

AIMS

The aims of the research presented in this article are two-fold:

a. To describe a semi-supervised algorithm for rapidly bootstrap-

ping EHR phenotyping algorithms for primary care data by

UKB participants; and

b. To provide phenotyping algorithms, metadata, implementation

details, and validation evidence for 31 common biomarkers.

METHODS

Data sources
UK Biobank

Biomarker data for phenotyping were extracted from the UKB, a re-

search study of �500 000 adults with extensive phenotypic and ge-

notypic information. Currently, �44% of the cohort (n¼221 446)

have data from primary care EHR linked and made available for
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researchers (Table 1). Data are collected from English, Scottish, and

Welsh GP practices that make use of the EMIS (https://www.emish-

ealth.com/), Vision (https://www.visionhealth.co.uk/), or TPP

(https://www.tpp-uk.com/) primary care information systems. Data

are recorded using four different controlled clinical terminologies:

(1) Read version 2 (Read v2); (2) Clinical Terms Version 3 (CTV3);

(3) British National Formulary (BNF); and (4) the Dictionary of

Medicines and Devices (DMþD). Both Read v2 and CTV3 are part

of the Systematized Nomenclature of Medicine Clinical Terms

(SNOMED-CT)20 and since 2018 primary care practices in the UK

are migrating to using SNOMED-CT terms exclusively.

CALIBER

To enable the initial rapid prototyping of phenotype definitions for

the biomarkers of interest, we used information from the CALIBER

EHR resource and existing phenotyping algorithms derived using data

from the Clinical Practice Research Datalink (CPRD). The resource

has been described in detail elsewhere.3 In brief, the CALIBER re-

source provides reproducible phenotyping algorithms for linked EHR

data based on three national sources: (a) longitudinal primary care

data from the CPRD, (b) admitted patient care information on diag-

noses and procedures from the Hospital Episode Statistics dataset,

and (c) cause-specific mortality and socioeconomic deprivation infor-

mation made available from the Office for National Statistics (ONS).

Primary care data were sourced from the general practices that

submit data to the CPRD use the aforementioned Vision software

(known as CPRD GOLD), and data are recorded using the Read ver-

sion 2 clinical terminology system (containing 101 953 terms). In Vi-

sion EHR systems, the definition of the data columns is specified by

the category of data in the record or the information archetype, which

is called an ‘entity type’. For example, the blood pressure entity type

specifies that the first structured data column (value1) is the diastolic

and the second (value2) contains the systolic blood pressure. The asso-

ciated Read v2 term may contain more details about the subtype of

the measurement, for example ‘Standing blood pressure reading’.

Biomarker data and unit recording
In the UKB, measurements from clinical observations (eg, blood pres-

sure) or laboratory tests (eg, HbA1c) are recorded with a Read v2 or

CTV3 term and up to three structured data columns (value1, value2,

and value3). Each data provider uses a varying number of fields to

capture information. For example, TPP in England uses a single value,

with no explicit or implicit recording of units. Whereas, Scottish data

sources are based on three fields, where the second data column (value

2) contains the units as free text. Vision-based systems are again dif-

ferent, as the units for recorded values are provided by a separate

lookup file and are identified by a unique numeric code. To collate

this information, the semi-supervised approach described below cap-

tures the relevant unit information across these different structures

and processes them into consistent expressions utilizing mapping files

to translate inconsistencies to the preferred unit type, for example

‘�10^9/L’, ‘10^9/L’, ‘�10^9/L’ map to ‘10^9/L’. Finally, these

results were mapped to the Units of Measurement ontology21 (https://

www.ebi.ac.uk/ols/ontologies/uo) using a Python script and manually

reviewed such that any mismatches could be corrected.

Semi-supervised phenotyping algorithm bootstrapping
We identified 31 biomarkers spanning blood counts, clinical biochem-

istry results, and physical measurements based on their presumed im-

portance with regards to modeling outcomes for COVID-19,22 as well

as other more generic pathologies such as cardiovascular disease,23

and their availability (recorded at least once during the baseline assess-

ment) (Table 2). In Vision EHR data, groups of similar clinical mea-

surement types or laboratory tests have the same entity type. We used

the entity type to identify candidate Read v2 terms which might iden-

tify equivalent data items in other data sources. For each biomarker,

we performed the following process (Figure 1):

1. We manually mapped UKB fields to Vision entity type identi-

fiers, for example for lymphocyte counts, the UKB field id is

30210 and the Vision entity type is 208. We extracted from the

UKB showcase information on the units, minimum and maxi-

mum value range and mean and identified any relevant unit con-

versions required.

2. For each Vision entity type, we generated a list of Read v2 terms

used to record that biomarker and their frequency. We extracted

the Read v2 term with the highest frequency (defined as the

“accepted term”), for example for lymphocytes the term

“42M.00 Lymphocyte count” was the term most used to record

the lab values.

3. We applied a series of automated consistency checks to reduce

the number of terms requiring manual review by domain

experts. Specifically:

a. We excluded terms that were rarely used, that is occurring

less than 1000 times and generic Read codes which did not

specify the type of biomarker measured, for example

“4. . ..00 Laboratory procedures”.

b. For lipid measurements, we excluded plasma-based measure-

ments and retained serum-derived values. We allowed

pre-treatment terms (eg, pre bronchodilation) but not

post-treatment.

Table 1. Primary care electronic health record data made available on UK Biobank participants

Country Data source

Controlled clini-

cal terminolo-

gies: clinical

observations

Controlled clini-

cal terminolo-

gies: prescrip-

tions Patients (n) Clinical events (n) Prescription events (n) Data fields

England Vision Read v2 Read v2

DMþD

17 860 11 973 249 6 350 259 2

Scotland EMIS, Vision Read v2 BNF 26 269 11 365 300 4 301 151 3

England TPP CTV3 BNF 158 894 87 493 722 39 515 266 1

Wales EMIS, Vision Read v2 Read v2 20 463 12 837 100 7 533 324 2

Note: The number of patients reported was extracted from the registrations table and includes patients with more or one unique registration periods.

BNF: British National Formulary; CTV3: Clinical Terms Version 3; DMþD: Dictionary of Medicines and Devices; EMIS: Egton Medical Information Systems;

TPP: The Phoenix Partners.
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c. We excluded terms that did not share the same parent term

as the accepted term in the Read v2 hierarchy (compared us-

ing the first three characters of the Read v2 term), for exam-

ple “662L.00 24 h blood pressure monitoring” was excluded

from the blood pressure phenotype where the accepted term

was “246.00 O/E blood pressure reading”.

4. Using terminology term mappings from the NHS Technology

Reference data Update Distribution (TRUD) resource, we

mapped non-excluded Read v2 terms to Clinical Terminology

Version 3 (CTV3) terms. We only used mappings where the

“IS_ASSURED” flag was set to true and included preferred and

synonym terms (resulting in some cases in one-to-many maps).

5. We translated the unified list of Read v2 and CTV3 terms into

SQL and extracted measurements for all biomarkers across the

four data providers iteratively (Supplementary Figure S1).

Expert review
The selection and review of codes was done by a group of clinicians

with expertise spanning UK primary care and/or secondary care.

Clinicians reviewed the final set of Read V2 and CTV3 terms

marked for inclusion and exclusion by the algorithm and revised the

set by manually including and excluding terms. Terms which were

irrelevant to the biomarker phenotype of interest were marked for

exclusion by experts. For example, the initial set of terms related to

the forced expiratory volume in 1 s (FEV1) phenotype included multi-

ple terms (eg, “339O100 Forced expired volume in one second/vital

capacity ratio”) for FEV1/forced vital capacity (FVC) ratio measure-

ments or predicted FEV1 measurements (eg, “339S.00 Percent pre-

dicted FEV1”) which were flagged for removal. Based on clinical

experience, experts included diagnosis terms which could be used to

record biomarker measurements. For example, clinical review in-

cluded eosinopenia diagnosis (eg, “42K2.00 Eosinopenia”) in the eo-

sinophil phenotype, basophilia diagnoses (eg, “42L2.00 Basophilia”)

in the basophil phenotype, and weight monitoring terms such as

“1622.00 Weight increasing” in the weight phenotype.

Statistical analyses
We generated and reported descriptive statistics (mean, median,

interquartile range) for extracted biomarker values stratified by pro-

vider and plotted the distribution of values using box plots. We com-

pared the distribution of values between data providers for

inconsistencies related to data recording. We calculated the sensitiv-

ity and specificity values of the algorithm though expert review by

clinicians. Terms which were included in the final phenotype defini-

tion after clinician review were considered True Positives (TP),

terms incorrectly excluded from the phenotype by our approach

Table 2. Details on the 31 biomarkers used in this study spanning blood biochemistry, blood count and physical measures

Phenotype UK Biobank field id Phenotype type Units UnitOntology

ALP 30610 Blood biochemistry U/L UO_0000179

ALT 30620 Blood biochemistry U/L UO_0000179

Albumin 30600 Blood biochemistry g/L UO_0000175

CRP 30710 Blood biochemistry mg/L UO_0000273

Calcium 30680 Blood biochemistry mmol/L UO_0010003

Cholesterol 30690 Blood biochemistry mmol/L UO_0010003

Creatinine 30700 Blood biochemistry umol/L UO_0010003

Glucose 30740 Blood biochemistry mmol/L UO_0010003

HDL 30760 Blood biochemistry mmol/L UO_0010003

HbA1c 30750 Blood biochemistry mmol/mol UO_0010048

Total bilirubin 30840 Blood biochemistry umol/L UO_0010003

Triglycerides 30870 Blood biochemistry mmol/L UO_0010003

Urea 30670 Blood biochemistry mmol/L UO_0010003

Basophills 30160 Blood count 10^9/L UO_0000317

Eosinophills 30150 Blood count 10^9/L UO_0000317

Hematocrit perc 30030 Blood count % UO_0000187

Hemoglobin conc 30020 Blood count g/dL UO_0000208

Lymphocytes 30120 Blood count 10^9/L UO_0000317

MCHb conc 30060 Blood count g/dL UO_0000208

MCV 30040 Blood count fL UO_0000104

Monocytes 30130 Blood count 10^9/L UO_0000317

Neutrophils 30140 Blood count 10^9/L UO_0000317

Platelets 30080 Blood count 10^9/L UO_0000317

RBC 30010 Blood count 10^12/L UO_0000317

WBC 30000 Blood count 10^9/L UO_0000317

DBP 4079 Physical measures mmHg UO_0000272

FEV1 3063 Physical measures L UO_0000099

FVC 3062 Physical measures L UO_0000099

Height 50 Physical measures cm UO_0000015

SBP 4080 Physical measures mmHg UO_0000272

Weight 21002 Physical measures Kg UO_0000009

Note: For units, we provide the UnitOntology entry identifier. The UK Biobank field id column provides the field identifier for the respective biomarker mea-

sure, if available, derived from the research data collected at baseline.

ALP: alanine aminotransferase level; ALP: alkaline phosphatase level; CRP: C-reactive protein; DBP: diastolic blood pressure; FEV1: forced expiratory volume

in 1 second; FVC: full vital capacity; HDL: high-density lipoprotein; MChb conc: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume;

RBC: red blood cell; SBP: systolic blood pressure; WBC: white blood cell.
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were considered False Negatives (FN) and conversely terms incor-

rectly included were considered as False Positives (FP). Based on the

FN and FP figures we calculated the sensitivity and specificity of the

algorithm for each set of terms associated with a biomarker.

For each biomarker, we fitted a Cox proportional hazards model

with all-cause mortality as the outcome of interest, adjusted for sex

and modeled using restricted cubic splines. We report hazard ratios

from the sex-adjusted model with 95% confidence intervals.

All analyses were performed using Python v3.7 and the pandas

data analysis library (v. 1.0.3, available at https://pandas.pydata.

org/). Units were processed using the quantulum3 Python library

(v. 0.7.3 available at https://pypi.org/project/quantulum3/).

Data availability
Unit conversions and mappings, entity type to UKB field mappings,

and lists of Read v2 and CTV3 are provided in the Appendix and

online https://github.com/spiros/ukb-biomarker-phenotypes.

The Read v2 to CTV3 mapping file is available from the NHS

TRUD service online https://isd.digital.nhs.uk/trud3/user/guest/

group/0/home. UKB data can be obtained following approval by ap-

plying to the UKB Access Management Committee https://bbams.

ndph.ox.ac.uk/ams/. Data in this project were analyzed under proto-

col ref. 9922 which has been approved by the UKB.

RESULTS

Semi-supervised identification of relevant terms from

clinical terminologies
Using the algorithm described previously, we initially identified

1651 Read v2 and CTV3 terms of which 1228 were automatically

excluded. The majority of terms which were automatically excluded

by the algorithm was due being marked as “semantically distant”,

that is they did not share a parent term with the most frequently

used term for that particular phenotype. Moreover, we processed

101 raw unit values recorded in the Scottish data and mapped them

to 53 harmonized values. We additionally mapped Vision-specific

lookup codes for units to standardized unit definitions (eg, MEA156

maps to mmol). Units were not systematically recorded across the

biomarkers with variable levels of missingness: systolic and diastolic

blood pressure had units missing in 78% records while FEV1 had

units missing in 49%. In contrast, basophils, lymphocytes, mono-

cytes, and eosinophils had units recorded for 95% of measurements.

Algorithm accuracy evaluation using clinical experts
Clinical experts reviewed the lists of terms for the phenotypes and

manually included terms which were incorrectly flagged for exclu-

sion (false negatives) and conversely removed terms which were

incorrectly marked for inclusion (false positives). Specifically, 44 ad-

ditional terms were manually included and 103 terms that had been

retained by algorithm were excluded across all phenotypes. This

resulted in a final set of 364 unique Read terms, which were used to

Figure 1. Description of main steps involved in the semi-supervised approach

for rapidly creating electronic health record phenotyping algorithms for bio-

markers in the UK Biobank. The main steps involved in the semi-supervised

phenotyping process are: (1) seeding the algorithm definitions using existing

phenotype algorithms from the CALIBER resource, (2) excluding generic, rare

or semantically distant terms, (3) map Read version 2 terms to Clinical Terms

Version 3 terms using the maps provided by the National Health Service

(NHS) terminology service (TRUD), (4) expert review and manual inclusion/

exclusion of terms, and (5) translation to SQL code and data extraction.

Figure 2. Flow diagram showing the number of Read v2 and CTV3 terms iden-

tified by the algorithm and subsequent inclusions and exclusions performed

through expert review. CTV3: Clinical Terms Version 3.
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extract data (Figure 2). The overall sensitivity of our approach was

0.89, while the overall specificity was 0.92. We calculated sensitivity

and specificity estimates for each phenotype and report these in Sup-

plementary Table S2. In summary, we observed the lowest sensitivity

(0.6), that is the highest number of Read terms incorrectly excluded

by the algorithm (false negatives) in the glucose phenotype. This was

due to the fact that Read v2 terms used to record values did not share

a common parent term and were distributed across different branches

of the ontology, for example “44g.00 Plasma glucose level” and

“44TA.00 Plasma glucose”. We observed the lowest specificity esti-

mate (false positives) (0.66) in the red blood cell phenotype where

terms related to nucleated red blood cell measurements were in-

cluded. A similar pattern in terms of specificity was also observed in

the FEV1 where the initial pool included terms for predicted/

expected measurements, post bronchodilation values or terms related

to other relevant but not exact measurements (eg, FVC).

Exploratory analysis of the 31 biomarker phenotypes
Using the final set of Read codes, we extracted 38 190 682 events

from the GP clinical events table. Of those, 34 578 209 events had a

valid measurement attached to them (ie, not missing and within the

Figure 3. Histogram plots showing the distribution of values extracted from primary care EHR for the clinical biomarkers defined in this study. The dashed red

line represents the mean value of the biomarker when measured at baseline (across any of the three waves) in study participants (value extracted from the UK

Biobank Showcase). Minimum and maximum graph values have been aligned to those reported on the baseline measurements. ALP: alanine aminotransferase

level; ALP: alkaline phosphatase level; CRP: C-reactive protein; DBP: diastolic blood pressure; FEV1: forced expiratory volume in 1 second; FVC: full vital capacity;

HDL: high-density lipoprotein; MChb conc: mean corpuscular hemoglobin concentration; MCV: mean corpuscular volume; RBC: red blood cell; SBP: systolic

blood pressure; WBC: white blood cell.
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valid range). Specifically, we extracted 3 616 003 measurements

from England Vision (data provider 1), 1 975 448 measurements

from Scotland (data provider 2), 25 233 653 measurements form

England TPP (data provider 3), and 3 753 105 measurements from

Wales (data provider 4). Approximately 99.5% of the participants

where primary care EHR data were available had at least one bio-

marker measurement (n¼220 981, 52% female). Systolic and dia-

stolic blood pressure were the most commonly recorded biomarkers

with 3 824 851 and 4 002 384 measurements, respectively. The least

often recorded marker was hematocrit percentage with 27 229 val-

ues recorded across all data sources.

The distributions of each biomarker across all data sources and

for each data source individually are presented in Figures 3 and 4,

respectively. The observed distribution of values for each phenotype

were noted to be broadly similar across all four primary care data

sources as shown in Table 3. Finally, a series of Cox proportional

hazards regression models, with the target of all-cause mortality, us-

ing restricted cubic splines and adjusted for sex and age were pro-

duced for each biomarker (Figure 5). The plots illustrate that most

biochemical and hematological markers are associated with a U-

shaped mortality-risk, with increasing risk at both extremes (ie, very

high and very low values). However, there are notable exceptions,

such as C-reactive protein (CRP), high-density lipoprotein, and ala-

nine aminotransferase level. The anthropometric biomarkers (eg,

height, weight, and lung function measurements), display a less con-

sistent pattern in their association with mortality.

Figure 4. Boxplot showing the distribution of values extracted from primary care EHR for the clinical biomarkers defined in this study. 1¼England Vision,

2¼Scotland EMIS and Vision, 3¼England TPP and 4¼Wales. Minimum and maximum graph values have been aligned to those reported on the baseline meas-

urements. ALP: alanine aminotransferase level; ALP: alkaline phosphatase level; CRP: C-reactive protein; DBP: diastolic blood pressure; FEV1: forced expiratory

volume in 1 second; FVC: full vital capacity; HDL: high-density lipoprotein; MChb conc: mean corpuscular hemoglobin concentration; MCV: mean corpuscular vol-

ume; RBC: red blood cell; SBP: systolic blood pressure; WBC: white blood cell.
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Figure 5. Adjusted Cox proportional hazards regression restricted cubic spline models for all biomarkers and all-cause mortality. Analyses were adjusted for pa-

tient sex and age. In each panel, the blue line indicates the estimated HR and the gray shading denotes the 95% confidence limits. The horizontal dashed line cor-

responds to the normal reference hazard ratio of 1.0, values above are associated with increased mortality risk, and values below are associated with decreased

mortality risk compared with the reference value. ALP: alanine aminotransferase level; ALP: alkaline phosphatase level; CRP: C-reactive protein; DBP: diastolic

blood pressure; FEV1: forced expiratory volume in 1 second; FVC: full vital capacity; HDL: high-density lipoprotein; MChb conc: mean corpuscular hemoglobin

concentration; MCV: mean corpuscular volume; RBC: red blood cell; SBP: systolic blood pressure; WBC: white blood cell.
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DISCUSSION

In this study, we described a semi-supervised phenotyping approach

and applied it on primary care EHR sourced from four different pro-

viders in three countries made available for UK Biobank participants.

We applied our approach to produce 31 rule-based phenotyping algo-

rithms for commonly used biomarkers with an overall sensitivity of

0.89 and specificity of 0.92. To our knowledge, this is the first study

describing how phenotyping algorithms for common biomarkers can

be implemented in primary care EHR for UK Biobank participants in

a robust and semi-automated manner at scale.

Association of phenotype values with all-cause

mortality
In line with our phenotyping methodology,24 we evaluated the phe-

notyping algorithms created by our approach by estimating hazard

ratios adjusted for age and sex with all-cause mortality and compar-

ing our findings with known epidemiological associations. We ob-

served similar mortality patterns with previous literature using data

extracted from EHR. For example, in line with previous research,

we observed an increased risk of mortality in patients with low eo-

sinophil and low lymphocyte counts25 Similarly, we observed a “U”

shape relationship for systolic and diastolic blood pressure measure-

ments which is concordant to previous findings.26 Finally, intui-

tively, we observed that a decrease in FEV1 and FVC was associated

with an increased risk of mortality and conversely an increase in

CRP was associated with an increased risk.

Strengths and limitations
Our method has several strengths. Firstly, it enables the rapid boot-

strapping of phenotyping algorithms by reducing the number of

Read terms requiring manual review by several orders of magnitude,

thereby reducing the amount of resources required. Second, the ap-

proach is potentially applicable to non-UK data that face similar

challenges, for example large biobanked efforts in the US such as

MVP and others. Lastly, it provides research-ready phenotyping

algorithms for commonly recorded biomarkers in primary care for

UK Biobank users. The observed distribution values of the measure-

ments across all biomarkers are consistent with the standard refer-

ence ranges for normal results.27 As previously reported28 UKB

participants are healthier and of higher socioeconomic status than

the general population so we would expect to observe these patterns

in the measurements.

Our approach also has limitations. Firstly, given that the initial

set of codes is from Read 2 and CTV3 terms are identified through a

forward cross-map, it’s possible to omit terms that only exist in

CTV3 and are used to record information. The likelihood of this

happening however is low given that CTV3 encapsulates Read v2

and GPs tend to use the same set of terms over time. This has impli-

cations on the sensitivity and specificity measures reported as they

refer to the values in relation to our approach identifying the correct

terms to include in the algorithm (True Positives) rather than an in-

dependent “gold” standard. Due to the manner in which codes are

used, similar but distinct measurements were sometimes grouped

under the same entity code and were incorrectly included by the

approach—for example, most lipid measurements had both plasma

and serum related terms and manual review subsequently removed

the plasma measurements for consistency. Similar patterns were ob-

served, but at much lower frequency, in between fasting and random

measurements and values corrected/uncorrected values were

reported. Physiological measurements which are performed during

routine consultations and not explicitly ordered, such as height,

weight, and blood pressure required manual phenotyping given the

heterogeneity in how data sources captured them despite the small

number of Read terms composing the phenotypes (Supplementary

Figures S2 and S3). Finally, the phenotypes created and evaluated in

this manuscript are predominantly laboratory values for which a

smaller set of diagnosis terms exists in terminology systems compared

with disease or syndrome phenotypes which are often represented by

hundreds of terms. As such, while the method described in our manu-

script yields robust results for the phenotype use-cases presented here,

further research is required to explore and evaluate its performance in

creating phenotyping algorithms ascertaining disease status.

Implications for researchers and policymakers
Creating phenotyping algorithms for primary care EHR, especially

when they are from different data sources can be a time-consuming

effort requiring a significant amount of labor and resources as there

are �497 000 potential terms across Read version 2 and CTV3

which are inconsistently used to record information. Moreover, dif-

ferences in data schemas mean that information is recorded in differ-

ent ways: for example, data in Scotland can have the units specified

as free text in addition to another two values while data from En-

gland (TPP) do not specify units and only cover a single value field.

However, whilst measurements with different protocols (eg, BP

standing or lying) may be recorded with different Read codes, im-

portantly, they all have the same entity type. The underlying theme

of our work is that our approach is a robust starting point for aggre-

gating Read terms that may be used to record a particular clinical

measurement into a meaningful biomarker phenotype. Entity types

are easier to manipulate given that only a few hundred exist and the

group of related Read terms can then be used to identify equivalent

terms in CTV3 via the mapping and hence identify equivalent data

in the different data sources. This project illustrates that the effica-

ciousness of the described approach, and should ideally inform fu-

ture research, independent of whether the specific algorithms we

have made available are used.

CONCLUSION

In this article, we have demonstrated the challenges that UK Bio-

bank researchers will face when extracting biomarker values from

the primary care EHR records of participants. We presented a semi-

supervised approach that uses existing phenotyping algorithms and

semantic mappings to bootstrap algorithms for 31 common bio-

markers spanning hematological and physiological measurements

which are widely used in research. Our research findings are appli-

cable to international audiences given that the controlled clinical

terminologies used in the UK primary care EHR are part of

SNOMED-CT, two-thirds of UK Biobank users US-based investiga-

tors and similar large-scale initiatives (eg, eMERGE, MVP) are

likely to face similar challenges. As such, the phenotyping algo-

rithms that have resulted from this work should hopefully facilitate

rapid and robust access to the primary care EHR data for UKB par-

ticipants during the COVID-19 public health emergency, and long

after.
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