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Immunotherapy has emerged as a promising approach to combat immunosuppressive
tumor microenvironment (TME) for improved cancer treatment. FDA approval for the
clinical use of programmed death receptor 1/programmed death-ligand 1 (PD-1/PD-L1)
inhibitors revolutionized T cell-based immunotherapy. Although only a few cancer patients
respond to this treatment due to several factors including the accumulation of
immunosuppressive cells in the TME. Several immunosuppressive cells within the TME
such as regulatory T cells, myeloid cells, and cancer-associated fibroblast inhibit the
activation and function of T cells to promote tumor progression. The roles of epigenetic
modifiers such as histone deacetylase (HDAC) in cancer have long been investigated but
little is known about their impact on immune cells. Recent studies showed inhibiting HDAC
expression on myeloid-derived suppressor cells (MDSCs) promoted their differentiation to
less suppressive cells and reduced their immunosuppressive effect in the TME. HDAC
inhibitors upregulated PD-1 or PD-L1 expression level on tumor or immune cells
sensitizing tumor-bearing mice to anti-PD-1/PD-L1 antibodies. Herein we discuss how
inhibiting HDAC expression on MDSCs could circumvent drawbacks to immune
checkpoint inhibitors and improve cancer immunotherapy. Furthermore, we highlighted
current challenges and future perspectives of HDAC inhibitors in regulating MDSCs
function for effective cancer immunotherapy.
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INTRODUCTION

The tumor microenvironment is extremely immunosuppressive in the advanced cancer stage and
targeting immunosuppressive phenotypes is a promising approach in cancer immunotherapy (1–4). The
FDA approved two classes of immunotherapy for clinical use which include inhibitors of cytotoxic T-cell
lymphocyte-associated protein 4 (CTLA-4) and programmed death receptor 1/programmed death-
ligand 1 (PD-1/PD-L1) (5–7). Studies have shown that immunotherapy is effective in the treatment of
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certain cancers such as melanoma, lung, and renal carcinoma (6, 8–
10). Nevertheless, only a few cancer patients respond to these
treatments due to numerous factors such as tumor
immunogenicity, inhibition of signal transduction, antigen
presentation, upregulation of certain inhibitory molecules on T
cells, poor persistence, and low effector function of T cells to
demonstrate a cytotoxic effect on some tumor (11–15). Besides,
tumor-infiltrating immunosuppressive cells such as myeloid-
derived suppressor cells (MDSCs), tumor-associated macrophages
(TAMs), regulatory T cells (Tregs), cancer-associated fibroblast
(CAF) to mention a few contribute tremendously to the failure of
immune checkpoint blockades (16–19). These immunosuppressive
cells inhibit T cells effector functionality and their anti-tumor
responses (16, 20).

In the tumor milieu, conventional-type 1 dendritic cells
(DCs) possess the ability to cross-present tumor antigens and
produce IL-12 to activate cytotoxic T cells for immune responses
against cancer (21, 22). DCs are required to promote the anti-
tumor effect of immune checkpoint blockades (22). More
recently, NK and DCs subset (stimulatory DCs) axis were
reported to define tumor response to checkpoint therapy,
cytotoxic T cells response, and overall survival in melanoma
tumor immune microenvironment (23, 24). Barry et al.
demonstrated that a formative cytokine, Fms-related tyrosine
kinase 3 ligand (FLT3LG) for conventional DCs was mainly
produced by NK cells and played a critical role in regulating the
level of stimulatory DCs for anti-tumor responses (23).
Specifically, the authors showed that non-T cells have a
significant impact on protective immunity since the
frequencies of T cells exhaustion did not determine response to
PD-1 therapy contrary to previous understanding (25). Thus,
this observation requires further studies to delineate which
immune cells predict responses to therapy.

Beyond the protective role of immune cells against tumor
regression or elimination of pathogens, immune cells have been
identified to play a critical role in normal tissue function such as
tissue development and maintenance. Several immune cell types are
heterogeneous which are distinct from the dual conception of
tolerance versus destructive immunity. For instance, innate
myeloid cells (DCs and macrophages) and T cells undergo
multiple metabolic and epigenetic reprogramming impacting their
roles in healthy or pathological conditions. This reprogramming can
induce pro-inflammatory or anti-inflammatory cytokines
production that drives contrasting activities of these immune cells.
During chronic viral infection, epigenetic reprogramming leads to
cytotoxic T cells exhaustion limiting T cells’ ability to recognize and
kill non-self and infected cells (26). This exhaustion undermines the
destructive potential of T cells responses and restricts the
immunopathological effects for extensive eradication of infected
host cells. Presently, other cell types that function with exhausted T
cells to limit viral-specific T cell immunity are not fully
characterized but are likely to be specific myeloid cells subsets
(27). Tissue repair and wound healing is a good example of an
immune response that is neither involved in tolerance nor
destruction, but instead focuses on attaining tissue homeostasis.
To achieve this, myeloid cell populations such as monocytes and
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macrophages have been identified (28). These emerging attributes of
the immune system by engaging in non-destructive responses that
promote cellular homeostasis besides pathogen protection were
considered as a continuum between stringent approaches of
tolerance and destruction regarded as immune accommodation
archetypes (29). It is therefore evident that mobilizing the required
immune response archetype is crucial for physiological and
pathological conditions.

This necessitates the need to consider the immune system as a
continuum of accommodation archetypes as these may influence
our understanding of diseases especially cancer. As previously
mentioned above, the tumor immune microenvironment
accommodates several immune cell phenotypes that imitate these
archetypes and contributes to tumor progression. Although, in
some cancer types, data from patients’ cohorts exhibit wound
healing gene signatures highlighting archetype remodeling (30).
Another study showed variable components of late tissue-repair
archetypes in cancers such as TAMs and Tregs (31). Krummel et al.
highlighted that robust patient responsiveness to immunotherapies
may require improved therapeutic or inhibition of subsets of certain
immune archetypes in each tumor microenvironment (29). Thus,
there is a need to explore how identifying archetype patterns will
impact prognosis and immunotherapy for improved clinical
responses in cancer patients.

MDSCs are pathologically activated immature myeloid cells
that inhibit or induce several immune cells such as T, NK, Tregs,
macrophages, neutrophils, and CAF during cancer, infection,
graft versus host disease, and other conditions (32–35). MDSCs
have been reported to demonstrate different roles in various
pathological conditions (36). Most studies have studied MDSCs
in the context of promoting immunosuppression in cancer, but
recent studies have identified their therapeutic potential in
reducing the severity of infection and autoimmune diseases
which is yet to be fully understood (32, 37). Sarkar et al.
showed that early recruitment of MDSCs subset in ocular
herpes simplex virus type 1 (HSV1) infection suppressed
effector CD4+ T cells proliferation and cytokine production in
a contact-dependent manner (32). HSV1 infection initiates the
manifestation of a severe inflammation called herpetic stromal
keratitis (HSK) – a foremost cause of infectious blindness
globally (38, 39). However, injection of in vitro-generated
MDSCs from bone marrow precursor cells into HSV1-infected
mice decreased the severity of HSK lesion at the onset of clinical
HSK (32). Likewise, the transferred MDSCs in mice did not only
induce anti-inflammatory responses but promoted endogenous
Treg which could be clinically relevant (32).

In tumor-bearing mice, MDSCs can be characterized
as CD11b+Gr1+ cells; these cells can be further subdivided into
monocytic MDSCs (CD11b+Ly6G-Ly6Chi) and polymorphonuclear
(PMN)MDSCs (CD11b+Ly6G+Ly6Clow). MDSCs differentiate to
other suppressive immune cells such as TAMs which accumulate
in the TME and support tumor proliferation. Since MDSCs are
phenotypically similar to monocytes and neutrophils, this led to
the complexity in their identification and clearly defined
functional assay. PMN-MDSCs account for about 70-80% of
MDSCs in tumor models; secrete arginase 1 (ARG1) and
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upregulate NADPH which contributes to ROS production that
inhibits immune cells function and activate of STAT3 signaling
pathway (36, 40). On the other hand, M-MDSCs secrete ARG1,
inducible nitric oxide (iNOS), and activate the STAT1 signaling
pathway (36). Like murine MDSCs, there are two major subsets of
human MDSCs which are M-MDSCs and PMN-MDSCs. In
human peripheral blood mononuclear cell (PBMC), M-MDSCs
consists of CD11b+CD14+HLA-DR-/loCD15- while PMN-MDSCs
subset includes CD11b+CD14-CD15+ or CD11b+CD14-CD66b+.
Recently, another subset of MDSCs in humans referred to as early-
stage MDSCs (eMDSCs) was proposed to demonstrate colony-
forming activity based on the immature nature of the cell
population. eMDSCs is a mixed group of MDSCs with several
immature progenitors that include – Lin- (CD3, CD14, CD15,
CD19, CD56) HLA-DR-CD33+ (41–43). However, these eMDSCs
are yet to be identified or defined in mice.

MDSCs accumulate in patients’ tissues from several types of
cancer (42–55). Reports have it that a higher frequency of tumor-
infiltrating MDSCs is associated with advanced stage and high-
grade tumors (52, 53). Importantly, several studies showed that
the proportion of MDSCs in different cancer patients determines
their responses to chemo- or immuno- therapy, and overall
survival (51–54, 56–58). Presently, most immunotherapeutic
strategies target lymphoid cells by adoptive transfer of tumor-
specific T cells or reactivation of pre-existing anti-tumoral T-
cells. Despite these approaches, certain drawbacks encountered
with current therapies are associated with MDSCs accumulation.
Therefore, researchers are investigating potential therapeutic
strategies both at the pre-clinical and clinical levels aimed at
targeting MDSCs for enhanced cancer immunotherapy.

Epigenetic modification in cancer cells had been identified over
the years but its impact on immune cells regulation has only begun
to emerge. A recent study proposed the combination of different
epigenetic drugs as a promising anti-tumor therapy by blocking
the expression of several members of the histone deacetylase
(HDAC) family to alter the function of both PMN-MDSCs and
M-MDSCs (59). In this way, targeting epigenetic pathways in cancer
inhibited MDSCs’ role which may prime host immune responses
for immunotherapy. More so, immune cell responses using
epigenetic modifiers were reported in combination with other
immunotherapies such as immune checkpoint inhibitors (60–62),
adoptive cellular immunotherapy (63, 64), cytokine-based therapy
(65), and vaccines (66). Therefore, future studies need to investigate
the underlying mechanism(s) of how epigenetic agents can block
MDSCs function for a potential anti-tumor effect that may guide
translational research. Herein we summarize how manipulating
HDAC expression in MDSCs could augment immune checkpoints
blockade and highlight current challenges with HDAC inhibitors
for effective cancer immunotherapy.
OVERVIEW OF EPIGENETIC REGULATION
OF MDSCs

Epigenetic remodeling is a hallmark of cancer development and
proliferation (67, 68). Epigenetic regulation is an inherent change
Frontiers in Immunology | www.frontiersin.org 3
to DNA that affects chromatin structure and gene expression
without distorting the nucleotide sequence (69). Certain
epigenetic therapies for cancer include HDAC, histone
methyltransferase (HMT), and DNA methyltransferase
(DNMT) inhibitors capable of stimulating tumor cells and
enhancing host immune cells anti-tumor response. Treatment
with epigenetic modifiers sensitizes response to immune
checkpoint inhibitors in cancer patients (70). HMT inhibitors
had been reported to be effective in the treatment of multiple
myeloma (71) while DNMT inhibitors revealed promising
outcomes in both pre-clinical and clinical studies available (72).
Nevertheless, only a few HMT and DNMT inhibitors
demonstrated anti-tumor potential in the clinic. On the
contrary, HDAC inhibitors are a unique class of small molecule
drugs with a wide range of effects on tumor cells and multiple
cellular processes such as cellular differentiation, cellular
compartmentalization, autophagy, and anti-angiogenesis (73,
74). Considering HDACs’ impact on chromatin structure,
modulation of transcriptional factors, and their participation in
multiple cellular processes, they are regarded as a promising
molecular target to regulate gene expression and functions of
specific proteins (75). The roles of HDAC inhibitors are not
limited to tumor cells but have been identified to regulate
immune cells’ function. Interestingly, recent studies reported
that HDAC inhibitors reduced MDSCs function – a major
immunosuppressive cell in the tumor microenvironment and
promoted anti-tumor immune responses (59, 60, 76). However,
it is yet to be fully deciphered the underlying mechanism of action
on how HDAC inhibitors control MDSCs accumulation for
improved cancer immunotherapy.
HDACs REGULATE MDSCs FUNCTION

Histone deacetylases (HDACs) are category of enzymes
removing acetyl groups from N-acetyl lysine, an amino acid on
histone tails to regulate chromatin structure and functions (77–
79). They also modulate myriads of non-histone proteins (80).
HDACs family has about 18 members which are classified into
four (4) main classes: Class I, II, III, and IV (81). Class I, II, and
IV are named classical HDACs and comprise 11 members while
class III are homologs of yeast silent information regulator 2
proteins and referred to as sirtuins (81). Class I HDACs include
HDAC - 1, 2, 3, and 8; class II HDACs include HDAC - 4, 5, 7,
and 9 (class IIa) and HDAC - 6 and 10 (class IIb) whereas class
IV only member is HDAC 11. Class I HDAC members are more
abundantly distributed and well expressed in most cells without
restriction to the nucleus alone (81). However, class II HDACs
demonstrate certain restrictions with tissue-specific expression
and alternates between the cytoplasm and nucleus (82).

Emerging evidence had shown that HDAC inhibitors possess
an anti-tumor effect and demonstrated a synergistic effect with
cancer immunotherapy (83). Nevertheless, the cytotoxic impact
of HDAC inhibitors on tumor cells requires more understanding
while little is known on how HDAC inhibition modulates
immune cells function especially MDSCs. Several HDAC
January 2022 | Volume 13 | Article 781660
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inhibitors affect MDSCs accumulation and function in
contrasting ways as summarized in Table 1.
TRICHOSTATIN A

Trichostatin A (TSA), panHDAC inhibitor enhanced anti-
tumor effect for Epstein-Barr virus (EBV)-associated tumor
by inducing cell cycle arrest, apoptosis, and triggering EBV
lytic cycle in lymphoblastoid cell lines (98). EBV-associated
tumors are known to bypass immune surveillance while
treatment with TSA-induced lytic genes that caused strong
cytotoxic T lymphocyte responses (98, 99). Similarly, TSA
suppressed proliferation and promoted apoptosis of esophageal
squamous cell carcinoma via epigenetic regulation of apoptosis-
related proteins (100). Besides, GM-CSF-induced bone-
marrow-derived MDSCs in the presence or absence of TSA
showed remarkable differences in myeloid cell differentiation
in vitro (84). TSA promoted the accumulation of various
undifferentiated myeloid cells exhibiting immunosuppressive
functions like MDSCs in an iNOS1 and heme oxygenase-1
(HO-1) dependent manner. Likewise, an ex vivo experiment
showed an increased proportion of CD11b+Gr1+ cells with
Frontiers in Immunology | www.frontiersin.org 4
suppressive activity in the spleen of naive mice treated with
GM-CSF and TSA (84).
VALPROIC ACID

On the contrary, a class I HDAC inhibitor, valproic acid (VPA)
promoted the differentiation of in vitro GM-CSF induced bone
marrow-derived-MDSCs into dendritic cells (DCs) and
macrophages with less suppressive effect (85). Zhiqi et al.,
demonstrated that VPA reduced PMN-MDSCs accumulation from
GM-CSF stimulated bone marrow cultured cells (86). They showed
that VPA treatment in a dose-dependent manner attenuated the
suppressive function ofMDSCs on T-cells. It was reported that VPA
attenuated the immunosuppressive function of MDSCs via
downregulating the expression of retinoblastoma 1 (Rb1), toll-like
receptor 4 (TLR4), programmed cell death 1 ligand (PD-L1),
interleukin-4 receptor-alpha (IL-4Ra)/arginase axis signaling
pathways. Similarly, VPA-conditioned in vitro derived MDSCs
injected into EL4 tumor-bearing mice significantly inhibited tumor
progression compared to the control mice (86). Furthermore, our
group reported VPA treatment promoted the accumulation of less
suppressive MDSCs mainly M-MDSCs in the spleen and bone
TABLE 1 | Summary of the effects of HDAC inhibitors on MDSCs in several cancers.

HDAC
Inhibitors

Class Cancer type Mechanism of action on MDSCs References

Trichostatin A
(TSA)

I, II In vitro Accumulation of CD11b+Gr1+ myeloid cell via iNOS1 and HO-1upregulation (84)

Valproic acid I In vitro Induced macrophage and DC generation (85)
Lymphoma Reduced PMN-MDSCs accumulation in-vitro and decrease tumor growth in-vivo

Repressed PD-L1, TLR4, Rb1, IL-4Ra/ARG1 signaling axis in MDSCs
(86)

Decreased tumor-infiltrating MDSCs via repression of CCR2 (76)
Melanoma Induced M-MDSCs accumulation

Downregulated MDSCs ARG1, IL-6 and IL-10 via IRF1/IRF8 activation
(60)

Entinostat I Lung
Renal

Blocked MDSCs immunosuppressive function through reduced expression of ARG1, iNOS, and COX2 (87)

Breast
Pancreatic

Induced less suppressive PMN-MDSCs that promoted T cell proliferation (88)

Breast Downregulation of CD40 expression in PMN-MDSCs and M-MDSCs (89)
Lung
Breast
Oesophageal

Reduced trafficking of PMN-MDSCs and MDSCs from bone marrow to pre-metastatic microenvironment via
downregulating CXCR2 and CCR2.

(90)

Lymphoma
Lung

Reduced PMN-MDSCs immunosuppressive function (59)
Ricolinostat II Reduced M-MDSCs accumulation
Mocetinostat I, IV Colorectal Reduced intratumoral MDSCs accumulation

Induced expression of genes involved in immune evasion and antigen presentation
(91)

Sodium
butyrate
Vorinostat

I, II In-vitro Promoted MDSCs apoptosis via increased production of ROS in vitro (92)
Breast Decreased MDSCs accumulation in blood, spleen, and tumor while activating CD8+T

Vorinostat Melanoma Reduced MDSCs recruitment into the tumor site via downregulation of CCL2 (93)
Neuroblastoma Decreased M-MDSCs accumulation

Reduced transcript for ARG1, S100A8, S100A9 and PD-L1
(94)

ACY241 IIb Myeloma Reduced MDSCs proportion (95)
CG-745 I, IIb Renal cell

carcinoma
Hepatocellular
Carcinoma
Colorectal

reduced Treg production via increased expression of IL-2 and IFN-g
Induced immune microenvironmental changes via Inhibiting tumor-infiltrating MDSCs

(96)
(97)
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marrowofB16F10-bearingmicewith reduced IL-6, IL-10, andARG1
expression via activation of IRF1/IRF8 transcriptional axis (60).
Importantly, VPA treatment in bone marrow-derived MDSC co-
culture with T cells reactivated T cells ability for TNFa production
thus conferred anti-tumor effect (60). More recently, Zhiqi et al.,
revealed that VPA treatment of EL4-bearing mice reduced tumor-
infiltrating M-MDSCs through downregulating CCR2 expression
while therewasnoeffect onPMN-MDSCsproportion (76).Although
VPAdidnot affect bothM-MDSCsandPMN-MDSCsaccumulation
in the spleen of EL4-bearing mice; T-cells proliferation was more
when splenic PMN-MDSCs from mice administered VPA were co-
cultured with T cells but no changes were observed on T cells
proliferation in M-MDSCs isolated from VPA-treated mice
compared to the control (76). Altogether these suggest the potential
of VPA in reducing the immunosuppressive attribute of PMN-
MDSCs with a slight effect on M-MDSCs to promote CD8+ T and
NK cell proliferation and activation.
ENTINOSTAT, RICOLINOSTAT AND
5-AZACYTIDINE

Likewise, entinostat, another class 1 HDAC inhibitor promoted
the accumulation of PMN-MDSCs and M-MDSCs in lung and
renal murine tumor models (87). However, entinostat inhibited
the immunosuppressive function of MDSCs via the reduced level
of ARG1, iNOS, and COX2 as well as enhanced T cells
proliferation in a co-culture system of MDSCs and T cells (87).
In HER2/neu breast cancer and Panc02 metastatic pancreatic
cancer murine model, entinostat reduced tumor burden and
improved survival of the mice (88). It was reported that the anti-
tumor effect of entinostat was through the accumulation of
less immunosuppressive PMN-MDSCs in the TME that
demonstrated impaired ability to inhibit T cells proliferation
(88). Yusuke et al. reported that entinostat reduced PMN-MDSC
and M-MDSCs proportion with downregulation of MDSC CD40
expression in metastatic estrogen receptor-positive breast cancer
patients (89). Recently, Gabrilovich and colleagues demonstrated
that treatment with entinostat in EL4 and LLC tumor models did
not affect tumor growth (59). Although entinostat reduced
PMN-MDSCs immunosuppressive function while M-MDSCs
function was unaltered. It was observed that M-MDSCs had
high expression of class II HDAC, specifically HDAC6 while
further treatment with entinostat increased HDAC6 expression.
Ricolinostat, a specific inhibitor of HDAC 6 reduced M-MDSCs
accumulation without affecting tumor growth in mice while the
combination of entinostat and ricolinostat significantly slowed
tumor progression and reduce both MDSCs subsets in mice (59).
These studies suggest that the anti-tumor effect of entinostat is
cancer type-dependent and may need to be evaluated in other
cancer types for an informed treatment option. Therefore, the
combination of specific inhibitors of class I and II HDACs are
required to block both MDSCs subsets accumulation and
function for reduced tumor growth.

Recent reports demonstrated that MDSCs contributed to the
development of pre-metastatic tumor microenvironment and
Frontiers in Immunology | www.frontiersin.org 5
residual tumor cells after surgical removal of the primary tumor
(90, 101). While a low dose of entinostat (50nM) and 5-
azacytidine (100nM) disrupted the pre-metastatic niche and
inhibited metastasis. Mechanistically, it was deduced that this
therapy restricted M-MDSCs and PMN-MDSCs trafficking from
the bone marrow to the pre-metastatic microenvironment via
downregulating CCR2 and CXCR2 expression respectively (90).
Importantly, combined therapy of epigenetic modifiers and
CCR2 antagonist increased disease-free survival as well as
overall survival of mice. Entinostat and 5-azacytidine
promoted the differentiation of splenic M-MDSCs into more –
interstitial macrophage-like phenotypes, thus blocking MDSCs
accumulation in the lung pre-metastatic niche (90).
MOCETINOSTAT

Mocetinostat is a selective inhibitor of class I and IV HDAC that
regulates the epigenetic signaling of tumor and immune cells
(102). In the CT26 colorectal mice model, it decreased
intratumoral MDSCs and Treg accumulation while it increased
CD8+T cells infiltration (91). Mocetinostat regulated histone
modification and induced the expression of genes involved in
immune evasion and antigen presentation in tumor cells (91).
However, how mocetinostat controls MDSCs function remains
unreported thus mechanistic studies on how mocetinostat
impairs tumor-infi ltrating MDSCs accumulation will
be necessary.
VORINOSTAT AND SODIUM BUTYRATE

Suberoylanilide hydroxamic acid, SAHA (also known as
vorinostat), and Sodium butyrate (NaB) which are Class I and
II non-specific HDAC inhibitors depleted accumulation of GM-
CSF induced bone marrow-derived MDSCs and those isolated
from the bone-marrow of 4T1 mammary-bearing mice (92).
Treatment with SAHA and NaB promoted MDSCs apoptosis via
increased production of ROS while in vitro generated bone
marrow-derived MDSCs treated with SAHA and NaB failed to
suppress T cells proliferation compared to control. Also, SAHA
demonstrated its anti-tumor potential on the 4T1 mammary
mice model by decreasing MDSCs accumulation in the spleen,
blood, and tumor while promoting the activation and function of
CD8+ T cells (92). Laura et al. showed SAHA reduced gene
expression of pro-inflammatory cytokines (IL-1a, TNFa) and
immunosuppressive growth factor (TGFb) in tumor lysate from
spontaneous ret transgenic mouse melanoma model. Also,
chemokine (C-C motif) ligand 2 (CCL2) was downregulated
which led to reduced MDSCs recruitment into the tumor site and
contributed to reduced melanoma growth (93). In the
neuroblastoma mice model, SAHA decreased M-MDSCs
accumulation but increased the number of macrophage effector
cells in TME (94). Importantly, the transcripts levels of
arginase1, S100A8, S100A9, and PD-L1 which are critical for
promoting immunosuppressive activities were significantly
January 2022 | Volume 13 | Article 781660
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reduced in myeloid cells isolated from SAHA-treated tumors
(94). Collectively, these studies suggest that SAHA creates an
immune permissive tumor microenvironment and promises as a
potential targeted therapy for various tumors.
ACY241

HDAC6 specific inhibitor, ACY241 in combination with
proteasome inhibitors and immunomodulatory drugs
demonstrated anti-myeloma potential (95). It was reported
that ACY241 reduces the proportion of MDSCs, Tregs, and the
expression of PD-1/PD-L1 on CD8+ T cells in the bone marrow
cells from myeloma patients. ACY241 induced antigen-specific
memory T cells via the upregulation of transcription regulators
such as Bcl-6, Eomes, HIF-1, and T-bet associated with the
activation of downstream AKT/mTOR/p65 pathway (95). More
recently, ACY241 induced accumulation of lung tumor-
infiltrating T and NK cells while it reduced Tregs in non-small
cell lung cancer (NSCLC)-bearing treated mice (103). Also,
tumor-associated macrophages showed increased expression in
MHC and co-stimulatory molecules such as CD80, CD86, and
CD40 while it reduced inhibitory ligands like PD-L1 and PD-L2.
ACY241 in combination with Oxaliplatin – a chemotherapy
drug-induced T cells effector function, significant anti-tumor
response, and increased survival of NSCLC bearing mice (103).
This highlights the mechanisms by which ACY241 confers anti-
tumor activity through regulating immune responses in patients
and suggests a rationale for its clinical use in combination with
other therapies in several cancers.
CG-745

CG-745 is a class I and IIb HDAC inhibitor that has shown anti-
cancer effects against prostate, colorectal, pancreatic,
cholangiocarcinoma, and non-small cell lung cancer while its
exact role in mediating immune responses remains unknown
(104–107). In a murine model of renal cell carcinoma, CG745
reduced Treg production via increased expression of IL-2 and
IFN-g (96). A recent study demonstrated that CG-745 inhibited
tumor-infiltrating M2macrophage polarization andMDSCs while
promoting NK and T cells proliferation in human PBMC (97). It
was observed that CG-745 induced immune microenvironment
changes and promoted PBMC cytotoxic activity.

HDAC 11, the newest and only class IV HDAC member was
reported to be involved in the differentiation of bone marrow
generated immature myeloid cells (iMC) to neutrophils,
macrophages, and DCs (108). Bone marrow and spleen
isolated from HDAC11 promoter-driven eGFP reporter
transgenic mice (TgHDAC11-eGFP) showed high expression
of eGFP denoting HDAC11 transcriptional activation in these
cells at steady-state. When these mice were challenged with
pancreatic cancer (PANCO2), MDSCs expansion was observed
in their lymphoid tissues similar to tumor-bearing wild-type
mice (108). Importantly, flow cytometry analysis revealed a
Frontiers in Immunology | www.frontiersin.org 6
reduction in eGFP expression of myeloid cells compartment
from TgHDAC11-eGFP mice, indicating that the transition of
iMC to MDSCs may require the downregulation of HDAC11.
These authors further demonstrated that functional analysis
using both TgHDAC11-eGFP and HDAC11KO mice strongly
suggests that HDAC11 might be a negative regulator of MDSC
expansion/function in vivo through control of suppressive IL-10
production. Despite the above observation myeloid-specific
HDAC11 KO in tumor-bearing mice will be critical for
understanding the role of HDAC11 in MDSCs accumulation
and function.
EFFECTS OF HDAC INHIBITORS ON
IMMUNE CHECKPOINT PROTEINS

Immune checkpoint proteins have continued to receive considerable
attention to evaluate the potential of several treatment options for
cancer immunotherapy. Anti-CTLA-4 therapy showed a better
response in metastatic melanoma patients with a lower proportion
ofM-MDSCs in their peripheral blood compared to non-responders
(109). This observation corroborates another study that reported
higher M-MDSCs percentage on treatment with anti-CTLA-4
resulted in poor clinical response due to impaired T-cells activation
and function (110). Other studies also reported the reduced
proportion of circulating MDSCs level at onset as a prognostic
marker for response to anti-CTLA-4 therapy in patients with
malignant melanoma (53, 58, 111). CT26 colorectal carcinoma and
4T1 spontaneous mammary tumors shown to be modestly
immunogenic and highly metastatic respectively are among the
most common syngeneic tumors models used for evaluating novel
therapeutic approaches. InCT26 and 4T1 resistant to ICB, treatment
with epigenetic modulator decreased MDSCs accumulation and
function, thereby improving tumor responses to anti-CTLA4 and
anti-PD-1 therapy (112). Thus, combination therapy targeting
MDSCs together with ICB improved tumor responses unlike
monotherapy thus benefit cancer immunotherapy.

Surprisingly, it was observed that while entinostat
significantly reduced MDSCs cell viability, 5-azacytidine had
no effect (112). Another study showed that treatment of
immune-resistance breast and pancreatic cancer cells with
entinostat decreased PMN-MDSCs accumulation and their
function that led to a less immunosuppressive tumor
microenvironment (88). Interestingly, entinostat effect on
MDSCs function and immune-related gene expression
augmented response to anti-PD-1 and anti-CTLA4 therapy in
both mice models (88). More recently, VPA plus anti-PD-1
antibody compared to their single therapy repressed the
growth of B16F10 and EL4 tumor models via VPA impaired
tumor-infiltrating M-MDSCs accumulation in the tumor
microenvironment (76). These suggest that treatment with
epigenetic modifiers inhibits MDSCs accumulation and
function thereby augments immune checkpoint inhibitors for
successful cancer treatment. Hence, the underlying mechanism
of epigenetic regulators in immunobiology and how it affects the
response to ICB needs to be fully investigated.
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In the tumor microenvironment, tumor and myeloid cells such
as MDSCs, macrophages, and DCs can upregulate PD-L1
expression in response to inflammation (113, 114). This increased
PD-L1 expression inhibits the effectiveness of cancer
immunotherapy. Histone deacetylase (HDAC) inhibitors combat
ICB resistance by attenuating the immunosuppressive function of
MDSCs and sensitizing tumor cells to ICB. VPA and RGFP966
(HDAC 3 selective inhibitor) induced histone acetylation to
facilitate PD-L1 transcription through the recruitment of
bromodomain-containing protein 4 (BRD4) (115). Surprisingly,
BRD4 inhibitor, JQ1 reduced PD-L1 upregulation triggered by
HDAC inhibition. Inhibition of HDAC3 augmented the
therapeutic effect of PD-L1 blockade by increasing PD-L1
expression on tumor and DCs in B-cells lymphoma (115).
Furthermore, HDAC3 inhibition-induced PD-L1 expression could
partly be one of the underlying mechanisms responsible for VPA
resistance via evasion of immune surveillance checkpoints. This
deduction is based on our previous study in which VPA alone failed
to retard tumor growth in melanoma-bearing wild-type mice but
slightly did in LLC-bearing mice (60). On the contrary, the
combination of anti-PD-L1 antibody and VPA dramatically
impaired tumor progression compared to PD-L1 blockade
therapy alone. Mechanistically, MDSCs co-treated with VPA and
anti-PD-L1 demonstrated impaired suppressive function and
enhanced production of TNFa by T cells for anti-tumor effect.
These findings corroborate the work of other researchers that host
PD-L1 expression is crucial for PD-L1 blockade-mediated
inhibition of tumor growth (114, 116). Thus, VPA could augment
Frontiers in Immunology | www.frontiersin.org 7
the therapeutic potential of the PD-L1 pathway blockade by
increasing PD-L1 expression in tumor cells (Figure 1).

Recently, itwasobservedthatbonemarrow-infiltratingCD8+Tcells
from acute myeloid leukemia (AML) patients demonstrated
downregulated expression of immune checkpoint (IC) receptors
including PD-1 which could contribute to upregulation of immune
checkpoint ligands suchasPD-L1due topoorPD-1/PD-L1 interaction
(117). However, treatment with VPA increased the expression of IC
receptors. Likewise, genetic ablation of dual-specificity phosphatase 2
(DUSP2) (a newly identified T cell suppressor and key epigenetic
immune modulator acting via HDAC complex) in CD8+ T cells
upregulated genes involved in IC receptors. Interestingly, both VPA
andDUSP2knockdownimprovedtheeffector functionalityofCD8+T
cells; suggesting that downregulation in IC receptors is associated with
pathological HDAC expression and resistance to IC inhibitors (117).
Collectively, these studies depict HDAC inhibitors demonstrate the
potential to increase immune checkpoint proteins expression and
promote sensitivity to ICB as a combination therapy for ICB
resistance in cancer patients.
FUTURE PERSPECTIVES AND CURRENT
CHALLENGES WITH HDAC INHIBITORS IN
CANCER IMMUNOTHERAPY

The majority of the FDA-approved HDAC inhibitors in the clinic
are for the treatment of hematological cancers. Despite its clinical
success for lymphoma and myeloma, it has failed to demonstrate
FIGURE 1 | HDAC inhibition suppresses MDSCs function in the TME and promotes anti-PD-1/PD-L1 tumor immunotherapy. HDAC inhibition blocks tumor-
infiltrating MDSCs accumulation in various cancer by downregulating the expression of genes involved in promoting the suppressive role of MDSCs which led to
reduced tumor growth. Anti-PD-1/PD-L1 antibody inhibits immune checkpoint proteins expression on tumor and T-cell to confer anti-tumor effect. The combination
of HDAC inhibitors and anti-PD-1/PD-L1 promotes T cells activation to inhibit tumor growth. Likewise, HDAC inhibitors augment anti-PD-1/PD-L1 tumor
immunotherapy via reduced MDSCs function. Hence, the interaction of several immune cells within the TME determines the success of cancer immunotherapy
strategies. HDAC, Histone deacetylase; MDSCs, Myeloid-derived suppressor cells; anti-PD-1/PD-L1, antibody against programmed death receptor 1/programmed
death-ligand 1; ARG1, arginase 1; iNOS, inducible nitric oxide; IL-6, interleukin 6; IL-10, interleukin 10; IL-4Ra, interleukin 4 receptor alpha; COX2, cyclooxygenase 2;
CCR, C-C Motif Chemokine Receptor 2; CXCR - CXC chemokine receptor 2; TLR4, toll-like receptor 4; Rb1, retinoblastoma 1.
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significant effects as monotherapy in solid tumors. Although certain
HDAC inhibitors such as entinostat (118), panobinostat (119),
belinostat (120), and romidepsin (121) used as a single agent
demonstrated significant anti-cancer effects in solid tumors from
a phase I study but had negligible effects in phase II study. Besides,
these inhibitors induced several side effects in the patients (122–
126). Similarly, extensive pretreatment of the combination of
HDAC inhibitors (azacytidine and entinostat) had an appreciable
response in phase I/II study with recurrence and metastasis in non-
small cell lung cancer (127).

To date, the reason HDAC inhibitors are efficacious in
hematological malignancies unlike solid tumors is yet to be
understood. However, several factors could be responsible such as
lack of persistence and penetration into the solid masses as well as
accumulation of immunosuppressive cells resident in solid tumors.
Another critical and complex factor to consider in the
administration of HDAC inhibitors is the metabolic state of the
host; since epigenetic and metabolic changes in cancer cells are
interrelated (128). Epigenetic modifiers such as HDACs regulate the
expression of genes involved in metabolism and have become
targets for cancer therapy (129). Although little is known on how
regulating epigenetic or metabolic alteration could affect cancer
immunotherapy and could be another future direction to explore.

Nevertheless, the future of HDAC inhibitors in solid tumors
will depend tremendously on three major signs of progress in the
field. One will be to improve the potency and specificity of next-
generation HDAC inhibitors. Second, because HDAC inhibitors
have reports of cellular toxicity profiles, it will be beneficial to
understand the enigmatic HDAC biochemistry in cancer. This
could reveal information on biomarkers that can be used to
identify cancer patients that will respond to HDAC inhibitors
therapy. Third, we believe that a comprehensive understanding
of HDAC mechanisms of action will help identify other
chemotherapies or ICIs that can be combined with HDAC
inhibitors to circumvent current drawbacks. This will be a
crucial landmark for HDAC therapies and will probably
improve the clinical efficacy of future HDAC inhibitors.

Recently, it was discovered that female mounts a greater
immune response compared to their male counterparts based on
variation in sex hormones and sex-chromosome-related genes
(130, 131). Conforti et al., reported that ICB was more effective in
male patients compared to female patients while anti-PD-1/PD-L1
antibody combined with chemotherapy demonstrated enhanced
therapeutic benefit for female patients compared to male patients
(132). These suggested that therapies targeted at boosting immune
responses will be less effective in female patients. On the other
hand, phase III randomized clinical trials reported that sex-related
factors may not affect the efficacy of ICB in melanoma patients
(133). These contrasting results may be based on sample size or an
inherent disparity in cancer etiology. Thus, gender-variation to
Frontiers in Immunology | www.frontiersin.org 8
immune response cannot be overemphasized in immunotherapy
design and analysis. Since HDAC is well known to regulate
mammalian gene expression, therefore, it is pertinent for other
studies to investigate if HDAC inhibitors will augment anti-PD-L1
tumor immunotherapy or other ICB in both genders uniformly for
effective translational research.
CONCLUSION

Despite evidence from the literature that HDAC inhibitors are
promising therapy to block MDSCs function in several cancers, it
remains unknown the key molecular mechanisms by which
HDACs specifically regulate MDSCs function – a major drawback
to current cancer immunotherapies. While the data from in vitro-
generated MDCSs are indispensable for in vivo studies, MDSCs
obtained from tumor-bearing animals could differ in their
suppressive properties and should be considered in future
experimental designs. Therefore, it is pertinent for future studies
to focus on elaborating how these emerging HDAC inhibitors in the
clinic could completely block MDSCs accumulation or other
immunosuppressive cells such as tumor-associated macrophages,
regulatory T cells, or stromal cells resident in the tumor milieu.
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