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Abstract. In recent years, global sensitivity analysis (GSA) has gained interest in
physiologically based pharmacokinetics (PBPK) modelling and simulation from pharmaceu-
tical industry, regulatory authorities, and academia. With the case study of an in-house PBPK
model for inhaled compounds in rats, the aim of this work is to show how GSA can
contribute in PBPK model development and daily use. We identified two types of GSA that
differ in the aims and, thus, in the parameter variability: inter-compound and intra-compound
GSA. The inter-compound GSA aims to understand which are the parameters that mostly
influence the variability of the metrics of interest in the whole space of the drugs’ properties,
and thus, it is useful during the model development. On the other hand, the intra-compound
GSA aims to highlight how much the uncertainty associated with the parameters of a given
drug impacts the uncertainty in the model prediction and so, it is useful during routine PBPK
use. In this work, inter-compound GSA highlighted that dissolution- and formulation-related
parameters were mostly important for the prediction of the fraction absorbed, while the
permeability is the most important parameter for lung AUC and MRT. Intra-compound GSA
highlighted that, for all the considered compounds, the permeability was one of the most
important parameters for lung AUC, MRT and plasma MRT, while the extraction ratio and
the dose for the plasma AUC. GSA is a crucial instrument for the quality assessment of
model-based inference; for this reason, we suggest its use during both PBPK model
development and use.

KEY WORDS: global sensitivity analysis; inter-compound; intra-compound; pulmonary absorption
model; PBPK; model building; model assessment.

INTRODUCTION

Due to the opportunity of directly targeting the biophase of
interest, the inhalation route has been considered a convenient way
of drug administration for local treatment of lung-specific diseases,
such as asthma and chronic obstructive pulmonary disease
(COPD). This route allows the administration of drugs at lower
dosages, minimizing potential side effects driven by high systemic
exposures. Topically active compounds for lung diseases have
normally an adequate, and generally sustained, lung residence time

(1–3). However, efforts have to be placed in the optimization of
drug lung disposition looking for an optimal lung retention. In fact,
an increased residence time in the airways could potentially
translate into the risk of drug removal from the lung due to
mucociliary clearance or into the risk of unsafe drug accumulation
in pulmonary tissues. For this reason, it is necessary to maintain an
appropriate balance between lung retention and absorption by the
modulation of the interplay of some key properties, such as
solubility, permeability and lung tissue binding (1,3).

Nowadays, administration by inhalation to rodents is still
an important step in preclinical development of new drugs
designed for the inhalation route (1). A mechanistic model
able to predict pharmacokinetic quantities of interest after
inhalation of new compounds in preclinical species could be
extremely beneficial during drug discovery (4), for example
for prioritizing compounds before animal experiments or for
preclinical to clinical translation.

For these reasons, in a previous work we developed a
physiologically based pharmacokinetic (PBPK) model for
inhaled drugs (5). This model was used to predict the
compounds lung disposition in preclinical species (e.g.
rodents), starting from physiological and in vitro parameters,
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such as mucociliary clearance rate, drug solubility and
permeability.

In recent years sensitivity analysis, including global sensitiv-
ity analysis (GSA), has gained interest in PBPK modelling and
simulation from both industry and academia (6–11). In a recent
work, sensitivity, uncertainty and variability analyses were
highlighted as tools able to improve the confidence in the context
of inhalation PBPK modelling (12). Moreover, regulatory
agencies highlighted that a sensitivity analysis should be per-
formed during the process of development and refinement of
PBPK models (13,14). Sensitivity analysis could be defined as
“The study of how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input” (15). GSA differs with respect
to other types of sensitivity analysis, such as the local one, as it
performs a multivariate variation of all the considered input
parameters taken in their whole range of variation (16).

Like all the mechanistic models, physiological models have
both uncertainty and variability in the model (input) parameters.
Uncertainty refers to an incomplete understanding of the system,
lack of data or error in the measurement/estimation of certain
parameters. Variability instead refers to the inherent heterogene-
ity of the system properties or parameters, for example among
subjects, experiments, or drugs. It is possible to reduce the
uncertainty by performing better experiments and collect more
data. Instead, it is impossible to reduce the variability (given a
certain context); however, it could be better characterized (https://
www.epa.gov/expobox/uncertainty-and-variability). Given the
uncertainty (or variability) in the model parameters, it follows
that also the predicted model outputs are uncertain (or variable)
too (16). In our case, for example, the rat weight could be seen as
a variable input parameter, while the values of the active and
passive permeability across lung tissues as uncertain parameters.
Pulmonary and plasma AUC are examples of pharmacokinetic
outputmetrics of interest, whose uncertainties are driven by those
of the model parameters.

Sensitivity analysis helps to get insights into the model
behaviour as a function of the parameter variation (16). By
performing this type of analysis, it is in fact possible to assess how
much each parameter, with its variation, impacts the variation of
the model outputs (16). Consequently, sensitivity analysis could be
a valuable instrument to help in understanding if the model
behaves as expected or what the parameters are that need to be
more precisely known to allow reliable model predictions.

In this context, the aim of our work was to understand
how GSA can be integrated in the process of PBPK model
development and use. This was done within the case study of
the in-house PBPK model for inhaled compounds in rats.
Among all GSA methods, we choose the variance-based
method because of its ability to detect interaction effects and
to handle nonlinear and nonmonotonic relationships between
the parameters and the model output (16–18).

In this work, we performed two types of GSA that differ
in the aim and thus in the considered drug-specific parameter
variability range: inter-compound and intra-compound GSA.
Inter-compound GSA resembles the analysis done in Melillo
et al. (6) for intestinal absorption models. Each of the drug-
related model parameters was considered variable in a range
given by the minimum and the maximum value of the
considered set of compounds. Thus, inter-compound GSA
mainly focalize on the “between-drug” parameter variability

and it is useful to understand the model behaviour in the
subspace of all the considered compounds. The aim of this
analysis is to understand what the key parameters are that
mostly explain the differences in the model predictions
among drugs. On the other hand, intra-compound GSA is
focused on the parameter uncertainties related to a specific
compound. This analysis has the purpose of finding the most
important parameters that, with their uncertainty, mostly
cause the model output uncertainty. In this work, intra-
compound GSA was performed on three representative
compounds belonging to the Chiesi Farmaceutici portfolio
(namely A, B and C). For each compound, drug-related
parameters were considered to vary in a range representing
the parameter uncertainty.

MATERIALS AND METHODS

Variance-Based GSA

Let us consider the generic model

Y ¼ f Xð Þ ð1Þ

with Y a scalar model output (e.g. plasma drug AUC), f the
input-output relationship and X the vector of the k uncorre-
lated input parameters. GSA methods consider each Xi, i =
1…k, as a random variable, with associated a probability
distribution (16,17). Thus, Y is a random variable too and can
be obtained through model evaluation after sampling from
the joint probability distribution of X. For each Xi, variance-
based GSA derives two sensitivity indices from the decom-
position of the variance (V) of Y, the so-called main (or first
order) effect (Si) and total effect (ST,i), in Eqs. (2) and (3),
respectively (16,17).

Si ¼ VXi EX∼i YjXið Þð Þ
V Yð Þ ð2Þ

ST;i ¼ EX∼i VXi YjX∼ið Þð Þ
V Yð Þ ð3Þ

E is the expected value and X~i is the vector containing
all the parameters, except Xi. Both Si and ST, i are always
included in [0, 1]. Si is related with the part of V(Y) explained
by the variation of Xi taken alone, and ST, i is the sum of Si
with the interaction effects of Xi with all the other inputs.
Interaction effects can arise when more than one parameter
varies at the same time. The relationship Si≤ ST, i is always
valid. The higher Si and ST, i are, the more the variation of Xi

explains V(Y) and so, the more Xi is considered important.
Instead, ST, i = 0 means that Xi is not influent on V(Y). The
difference ST, i − Si gives information about the extent of
interaction effect involving the ith parameter (16,17).

116 Page 2 of 11 The AAPS Journal (2020) 22: 116

https://www.epa.gov/expobox/uncertainty-and-variability
https://www.epa.gov/expobox/uncertainty-and-variability


Pulmonary Absorption Model

The considered physiologically based model was originally
presented in Grandoni et al. (5) and was inspired by the work of
Boger et al. (19). The model is composed of three parts describing
the pulmonary absorption, the intestinal absorption and the
systemic disposition. The pulmonary absorption model was built
to take into account the principal PK processes occurring when a
drug is inhaled: deposition, mucociliary clearance, dissolution,
absorption in lung tissue and in blood circulation (20). In the
model, lungs were divided into two parts, the central and the
peripheral regions. The central region corresponds
approximatively to the tracheobronchial region, while the periph-
eral region to the alveolar region. Both the regions were further
divided in four compartments: the undissolved drug, the dissolved
drug, the extravascular and vascular lung tissue. The central region
was considered perfused by the systemic circulation, while the
peripheral region by the pulmonary circulation. The model
structure is shown in Fig. 1.

Drugs were considered intra-tracheally administered to
rats. Only a fraction of the drug amount administered to the
animal actually reaches lungs (Finh), whereas the rest it is
supposed to be deposited in the oropharyngeal region and
gets swallowed (Fswa). Of the fraction delivered to lungs, a
part is deposed in the central region (FC) and a part reaches
the peripheral region (FP). FC was calculated from the mass
median aerodynamic diameter (MMAD) and the geometric
standard deviation (GSD) of the drug particles with the
software MPPD2.11 (21,22), as explained in the supplemen-
tary materials, section 2. Once deposited, in both central and
peripheral regions, the drug dissolves in the physiological
fluids and then is supposed to be passively absorbed in the
lung tissues. Here, the drug can diffuse to the vascular
compartment or back to the dissolved drug compartment. A
monodirectional transport from the tissue to the dissolved
drug compartment was included to account for the possible
action of efflux transporters, such as the P-glycoproteins. The
mucociliary clearance mechanism has been considered acting
only on the undissolved drug compartment of the central
region, since this mechanism should be negligible in the
alveoli (20).

To describe the systemic drug disposition and the
intestinal absorption, the pulmonary absorption model was
coupled with the whole body PBPK model presented in
Grandoni et al. (23), as shown in Fig. 1. All the model
equations are reported in the supplementary materials,
section 1. Physiological lung-related parameters are reported
in Table SII. The ranges of variability of physiological
parameters are reported in Table I. All the remaining
physiological parameter values (e.g. organ volumes and blood
flows) of the whole body PBPK model are reported in the
supplementary materials, section 4.

Inter-compound and Intra-compound GSA

Inter-compound and intra-compound are two ways of
performing GSA that differ in the aim and, thus, in the
considered drug-specific parameter variability range. Figure 2
didactically shows the difference.

We performed the inter-compound GSA on the physio-
logical pulmonary absorption model decoupled from the

distribution PBPK and the intestinal absorption models. This
was done to characterize the absorption process and to
simplify the model and the results understanding. To decou-
ple the model, blood inflow and outflow values of both
peripheral and central lung vascular compartments were set
equal to zero. Moreover, the fluxes due to passive perme-
ability from the vascular to the extravascular compartments
were set equal to zero too, in both the lung regions. Thus,
lung vascular compartments behave like traps (integrators).
The outputs considered in this analysis are the fraction
absorbed (fa) and the AUC and MRT of the drug concentra-
tion in the whole lung. Whole lung concentration was
obtained as the sum of the solid and dissolved amounts in
the epithelial lining fluids with the amounts in the tracheo-
bronchial and alveolar extravascular compartments, divided
by the total volume. fa was obtained as fa = 1 − fCL, where fCL
is the fraction of the drug eliminated by the mucociliary
clearance at the steady state.

In the inter-compound GSA, we considered each of the
drug-related parameters varying in a range given by the
minimum and the maximum values observed in a set of nine
compounds belonging to the Chiesi Farmaceutici portfolio
(Table II). The parameter distributions were considered
uniform in these ranges. The PBPK model performances on
these nine compounds are shown in the supplementary
materials, section 5.

To have more homogeneous behaviour, inter-compound
GSA was performed separately for highly and poorly soluble
compounds. The criterion used to classify compounds in the
two groups was inspired to the one adopted for orally
administered compounds (24–26). A dose number for inhaled
compounds was defined as in Eq. (4).

D0;inh ¼ dose=Velf

CS;pHelf

ð4Þ

Drug dose was fixed to 10 μg (i.e. the typical selected
dose in the considered experiments), Velf is the lung epithelial
lining fluid (ELF) volume (sum of the central and peripheral
ELF volumes) and CS;pHelf is the drug solubility measured in
simulated lung fluid at pH 6.9 (27,28). A compound was
classified as highly soluble if D0, inh < 1 or poorly soluble if D0,

inh≥ 1. During GSA, we first extracted the values of D0, inh

and then we computed the CS;pHelf using Eq. (4) (6).
The intra-compoundGSAwas performed on the whole body

PBPKmodel for three representative compounds, characterizedby
different properties. The considered outputs are the drug whole
lung and plasma concentration AUC and MRT. Here, whole lung
concentration was calculated as the sum of the drug amount in all
the pulmonary absorption model compartments, divided by the
lung total volume. All the drug-specific model parameters were
considered uniformly distributed between the ranges reported in
Table III, except for the dose that was considered normally
distributed with a CV equal to 15% (29). When no experimental
data supporting the uncertainty range definition were available,
ranges reflecting the perceived parameter uncertainties were used.

To account for the population variability of rat weight, all
the volumes and blood flows were multiplied for (wsubj/wmean)
and (wsubj/wmean)

0.75, respectively, where wsubj is the extracted
rat weight and wmean is the mean rat weight equal to 250 g, as
used in (23).
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Fig. 1. Physiologically based model structure. The model is composed of three parts:
pulmonary absorption model, intestinal absorption model and systemic PBPK. Red and
blue arrows represent arterial and venous blood flows, respectively. Black dotted arrows
represent the clearance processes

Table I. Physiological and Drug-Related Parameters Used for Both Inter- and Intra-compound GSA

Parameters Reference values Min value Max value References

Finh: inhaled fraction 0.9 0.9 1 Internal data
kMC: mucociliary clearance [1/h] 0.55 0.46 0.69 (34)
w: rat weight [kg] 0.25 0.26 0.35 Internal data
α: correction factor for the alveolar permeabilitya 15.6 9.2 103.57
GFR: glomerular filtration rate [mL/min] 1.62 1.13 (− 30%) 2.11 (+ 30%) (35)
ρ: drug true density [mg/mL] 1 0.5 1.5 (36)

a Permeability values were calculated from bronchial and alveolar cell layer thickness taken from (37–43)
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All the analyses were performed by using MATLABR2019a
(30) on a 64-bit computer configuredwith Intel®Core™ i7-7700@
3.60 GHz x8 processors, running Ubuntu 16.04 LTS. The
differential equations were solved by using the ‘ode15s’MATLAB
solver, for a time span ranging from 0 to 400 h. An ad hoc
MATALBcode to implement variance-basedGSAwas developed.
To perform the GSA in both inter- and intra-compound cases, we
used 20,000 samples (n) extracted from a unit hypercube. Then,
samples were brought back to each parameter distribution by using
simple linear transformations for the uniformly distributed param-
eters and the inverse cumulative density function for the other
parameters. n number of samples corresponds to n(k+ 2) number
ofmodel evaluation needed to compute the sensitivity indices, with
k the number of parameters (17). Uncertainty on the calculation of
the sensitivity indices was estimated by using 10,000 bootstrap
samples (31).

RESULTS

Inter-compound GSA

Here, the results of the inter-compound GSA on the
pulmonary absorption model decoupled from the whole-body

PBPK, for both highly and poorly soluble compounds, are
reported. References to figures reported in the supplemen-
tary materials are indicated with an “S”, followed by an
Arabic number. In Fig. S7, the distributions of the selected
model outputs are shown. In Fig. 3 the sensitivity indices for
fa and for the logarithms of drug concentration AUC and
MRT in lungs are shown. We choose the log scale for the
AUC and MRT to avoid problems in the computation of the
variance-based sensitivity index estimation due to the skew-
ness of AUC and MRT distributions in natural scale (32).

For highly soluble compounds, the parameters that
mostly explain the fa variability are D0, inh and MMAD.
Concerning D0, inh, it is probably important because it
controls the solubility, and so the dissolution rate. The higher
the dissolution rate is, the faster the drug is removed from the
solid compartment in the central region. That is in fact the
region in which the drug could be eliminated via mucociliary
clearance. However, the fa variability is quite low, as shown in
Figure S7. So, D0, inh and MMAD are the most important
parameters, but the variation of the model output is in any
case limited.

For poorly soluble compounds, both MMAD and D0, inh,
even if with a minor contribution of GSD and the active

Fig. 2. Difference in the parameter space used for inter-compound and
intra-compound GSA. Inter-compound GSA (green area) considers the
“between-drug” variability, while intra-compound GSA (red area)
considers the uncertainty associated to the parameters in a specific
compound. As shown in the figure, generally variability is wider than
uncertainty

Table II. Drug-Related Parameters Used for Inter-compound GSA

Parametersa Min value Max value

mw: molecular weight [g/mol] 334.4 769.2
MMAD: mass median aerodynamic diameter [10−4 cm]b 1.11 6.14
GSD: geometric standard deviation of the aerodynamic diameters [10−4 cm]b 0.84 3.432
D0, inh: dose number 0.045 (1) 1 (160.89)
fu, t: fraction unbound in lung tissue 0.001 0.26
fu, elf: fraction unbound in epithelial lung fluid 0.1 1
Pp Calu3: fitted passive permeability [nm/s] c 12.85 174.7
Pa Calu3: fitted active permeability [nm/s] c 4e-6 60,600

aAll the data were internally available
bUsed to compute the deposition fraction as explained in the supplementary materials, section 2
c Permeability values were calculated as explained in the supplementary materials, section 3
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permeability (Pa), still impact the fa variability. Concerning
D0, inh, the reasons of its importance are probably the same of
highly soluble compounds. MMAD could be important in
determining fa variability mainly for two reasons: first of all,
the MMAD value could impact the dissolution rate when the
solubility is low; second, it determines FC and, mainly for
poorly soluble compounds, fa could be sensitive to the
repartition between central and peripheral regions. In fact,
in peripheral region the mucociliary clearance does not occur.
The main difference with respect to the high solubility case is
that fa variability is quite high. Thus, MMAD and D0, inh are
responsible for a great variation of the model output.

Concerning lung AUC, the parameters that mostly
explain its variability for highly soluble compounds are fu, t

(fraction unbound in the lung tissue), Pp (passive permeabil-
ity) and Pa. This probably happens because fu, t and the
permeabilities are parameters that determine the drug
retention into the lungs and thus they control the AUC. For
poorly soluble compounds, in addition to parameters that
control the drug retention into the lungs, D0, inh and MMAD
are also important. This happens because, as explained
before, they could impact fa.

Concerning lung MRT, the parameters that mostly
explain the variability for highly soluble compounds are still
fu, t and both passive and active permeabilities. The reasons
of their importance are probably similar to the one for the
AUC: these are the parameters responsible to the drug
retention in lungs. For poorly soluble compounds, the most
important parameters are the same of highly soluble com-
pounds, with the addition of D0, inh and MMAD.

Intra-compound GSA

Here the results of the intra-compound GSA for three
representative compounds belonging to the Chiesi Farmaceutici
portfolio, namely A, B and C, are reported. With respect to all the

other compounds, compound A is characterized by a lower
solubility, a higher permeability and a low fu, t. Compound B has
a higher solubility, a lower permeability and a higher fu, t. Finally,
compound C has an intermediate solubility and permeability and a
low fu, t. The parameter values and associated uncertainty or
variability are reported in Table III.

Compound A

The distribution of drug plasma and whole lung AUC
and MRT and the sensitivity indices relative to compound A
are reported in Figure S8 and Fig. 4, respectively.

Whole lung AUC variance is mainly explained by the Pp

uncertainty, together with a minor contribution of the dose, fu, t,
rat weight and kMC (mucociliary clearance) variabilities. Even if
the drug has a low solubility, it seems that the highest impact on
the AUC is attributed to the passive permeability. This probably
happens because compound A has very low fraction unbound in
tissue; thus, even if the permeability of the free compound is
relatively high, the overall drug flux across the cell membrane
results to be the rate limiting step. In addition to that, it should be
noted that the uncertainty associated to the passive permeability
is higherwith respect to those associated to other parameters. The
passive permeability is still the most important parameter when
whole lungMRT is considered. The reasons seem to be similar to
those discussed for the AUC. Plasma AUC variability is mainly
explained by the extraction ratio and, to a minor extent, by the
dose,MMAD and GSD variabilities. These results highlight that
the elimination process plays a major role in determining the
plasmaAUC variability. Unless nonlinear processes are involved,
the importance of the dose and the extraction ratio on the plasma
AUC is completely expected fromaPKpoint of view.Concerning
the plasma MRT, the most important parameter is the passive
permeability. This probably happens because the drug is slowly
absorbed from the lungs into the systemic circulation.

Table III. Drug A, B and C Parameter Ranges for Intra-compound GSA

Parameters Drug Aa Drug Ba Drug Ca

dose: drug dose [μg] b 10 15 23
logPc 3.87 (± 30%) 1.99 (± 30%) 5.4 (± 30%)
pKa 8.7 (± 0.1) 9.81 (± 0.1) 8.5 (± 0.1)
Pp Calu3: fitted passive permeability [nm/s] 55.86 (± 70%) 16.06 (± 70%) 20.54 (± 70%)
Pa Calu3: fitted active permeability [nm/s] 4 ∙ 10−6 (± 70%) 68.82 (± 70%) 598.74 (± 70%)
CACO2AB: gut wall permeability [nm/s] 4.7 (± 70%) 49.2 (± 70%) 0.3 (± 70%)
BP: blood to plasma ratio 0.8 (± 10%) 1.6 (±10%) 1 (± 10%)
Er: Extraction ratio, derived from IV Non-Compartmental Analysis 0.8 (± 30%)e 0.95 (±30%) e 0.95 (± 30%)e

S: drug solubility [ng/ml] 696 (± 30%) 360,000 (± 30%) 14,300 (± 30%)
MMAD: mass median aerodynamic diameter [μm]d 2.59 (± 30%) 3.2 (± 30%) 1.71 (± 30%)
GSD: geometric standard deviation [μm]d 2.1 (±30%) 1.67 (± 30%) 2.33 (± 30%)
Finh: fraction inhaled 0.9–1 0.9–1 0.9–1
fu, elf: fraction unbound in epithelial lung fluid 0.16 (± 30%) 1 (± 30%)e 0.1 (± 30%)
fu, t: fraction unbound in lung tissue 0.0015 (± 30%) 0.26 (± 30%) 0.001 (± 30%)
fup: fraction unbound plasma 0.032 (± 30%) 0.82 (± 30%)e 0.0015 (± 30%)

aMinimum or maximum range limit (difference with respect to the baseline value, in percentage)
bThe dose was considered normally distributed with a CV equal to 15% (29)
cThe ranges were calculated as ± 30% of the natural value
dRanges were set equal to − 30% the minimum and + 30% the maximum of multiple measurements
eThe upper limit was set equal to 1
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Compound B

The distribution of drug plasma and whole lung AUC
and MRT and the sensitivity indices for relative to compound
B are reported in Figure S9 and Fig. 5, respectively.

The parameter that mostly explains compound B whole lung
AUC and MRT variation is Pp. This probably happens because
compound B has a lower permeability and higher solubility with
respect to the other compounds of interest; thus, the absorption
rate is probably permeability limited. Moreover, as explained for
compound A, with respect to all the other parameters, the
permeability has associated a greater uncertainty; thus, it is more
likely that they have a relevant impact in explaining the AUC
variation.

Concerning the plasma AUC, the most important parameters
are the dose and the extraction ratio, followed by rat weight and the
blood to plasma ratio (BP). As for compound A, the elimination
process is more important than the distribution or absorption
processes in determining the AUC variation. The most important
parameter in explaining theMRT variance is the passive permeabil-
ity. As for compound A, this probably happens because the drug is
slowly absorbed from the lungs into the systemic circulation.

Compound C

The distribution of plasma and whole lung AUC and
MRT and the sensitivity indices relative to compound C are
reported in Figure S10 and Fig. 6, respectively.

For both whole lung AUC and MRT, the parameter that
with its variation mainly explains their variability is Pp. The
reasons are probably similar to those reported for compounds
A and B. Moreover, compound C has a higher solubility, but
lower permeability than compound A and, together with a
low fraction unbound, this could explain the slightly higher
importance of the passive permeability with respect to
compound A.

Concerning the plasma AUC, the parameters that mainly
explain its variation are the dose and the extraction ratio,
followed by the passive permeability, rat weight and BP.
These results highlight that probably, for this drug, the
elimination process has a greater role in determining the
AUC variability with respect to the distribution or absorp-
tion. Concerning the plasma MRT, the situation resembles the
one of compound A.

DISCUSSION

In this manuscript, we showed how GSA techniques
were used to assess model behaviours and support the
development of a mechanistic model describing pulmonary
absorption for inhaled compounds. We identified two ways of
performing GSA that differ in the aims and, thus, in the
considered parameter variability: inter-compounds and intra-
compound. Both the approaches helped in understanding
different model aspects.

Fig. 3. Inter-compound GSA results for the output of interests: a fraction absorbed for highly soluble compounds; b
logarithm of whole lung AUC for highly soluble compounds; c logarithm of whole lung MRT for highly soluble compounds;
d fraction absorbed for poorly soluble compounds; e logarithm of whole lung AUC for poorly soluble compounds; f
logarithm of whole lung MRT for poorly soluble compounds. Concerning the parameters: mw is the compound molecular
weight; MMAD is the mass median aerodynamic diameter; GSD is the geometric standard deviation; rho the drug true
density; D0_inh is the dose number; F_inh the inhaled fraction; fu_t is the fraction unbound in lung tissue; fu_elf is the
fraction unbound in the epithelial lining fluid; P_p is the passive permeability; P_a is the active permeability; weight is the rat
body weigh; k_MC is the mucociliary clearance; alpha is the scaling factor for the peripheral lung passive permeability
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The inter-compound GSAwas performed for the absorp-
tion model decoupled from the distribution PBPK. This
analysis can be performed in more “homogeneous” sub-
spaces of the whole parameter space, as we have done
distinguishing highly soluble from poorly soluble compounds.
Looking at the model output distributions gives the possibility
of assessing the extent of the inter-compound variability of
the metrics of interest. Then, GSA helps in understanding
what the parameters are that mostly determine the observed
variation of the output predictions between different com-
pounds. For example, from our analysis it was possible to
understand that the between-compound differences in the
lung AUC for the low solubility compounds are mainly driven
by the variation of both solubility- and permeability-related
parameters and that strong interaction effects are present. In
particular, the latter means that the effect of solubility and
permeability on the lung AUC is not additive. This informa-
tion may be particularly useful if the inter-compound GSA
results are used to inform the optimization of the compounds’
physicochemical properties. As a consequence of performing
inter-compound GSA, we gained insights on the model
behaviour and, consequently, we increased the knowledge of
the model. For these characteristics, inter-compound GSA is
particularly useful for the error detection. In fact, in case of
discrepancies between the expected and the actual model
behaviours, GSA gives useful information that helps in
identifying the reasons and, thus, possible errors in the model
assumptions or implementation. When the inter-compound

GSA was applied for the first time to our in-house PBPK
model (that was still in the development phase), we immedi-
ately noticed that the model did not behave as expected.
Guided by the GSA results, we found and corrected the
implementation error. The implementation of complex PBPK
models often consists of thousands of lines of code and
hundreds of parameters (this is particularly true for commer-
cial PBPK software). A ‘little bug’ in the code may have a
huge impact on the model behaviour. For its ability to assess
the model behaviour, to help in the error detection and, as
reported by Iooss and Saltelli, for the general GSA capability
of helping in identifying sensitive assumptions (33), the inter-
compound GSA is particularly useful during the process of
model development. Theoretically, if the model structure and
the physiological and inter-compound parameter variabilities
are correctly identified and fixed, this analysis can be
performed just once (e.g. when the model is firstly presented
or at the PBPK platform release).

The intra-compound GSA was instead performed for
three representative compounds on the whole body PBPK
model. The parameter variation was defined to represent the
uncertainties associated to their values for a specific com-
pound. With this analysis it is possible to know how much the
model output variation is apportioned to the uncertainty of
the parameters. When doing this analysis, it is useful to look
at the output distribution, to determine if it is narrow enough
to be considered acceptable. If not, GSA helps in selecting
which parameters should be known with less degree of

Fig. 4. Intra-compound GSA results for a whole lung AUC, b whole lung MRT, c plasma AUC and d plasma MRT for
compound A. Concerning the parameters: dose is the drug dose; weight is the rat body weight; k_MC is the mucociliary
clearance; logP_ow is the logarithm of the octanol-water partition coefficient; pKa is the drug pKa; P_p is the passive
permeability; P_a is the active permeability; Caco2AB is the permeability calculated using the CACO2 cell layer; BP is the
blood to plasma ratio; Er is the extraction ratio; S is the drug solubility; MMAD is the mass median aerodynamic diameter;
GSD is the geometric standard deviation; F_inh the inhaled fraction; fu_elf is the fraction unbound in the epithelial lining
fluid; fu_t is the fraction unbound in lung tissue; fu_p is the fraction unbound in plasma;GFR is the glomerular filtration rate;
rho is the drug true density; alpha is the scaling factor for the peripheral lung passive permeability
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uncertainty in order to give a more accurate prediction. For
example, we believe that the uncertainty associated to
compound A lung MRT is too high. So, if one is interested
in using this model for lung MRT predictions (e.g. for
different dosages or species), from the GSA results we know

that a better characterization of the passive permeability is
needed in order to reduce uncertainties of the considered
metrics. This situation probably does not happen for com-
pound A lung AUC, given that we believe that the
uncertainty associated with the prediction of this metric can

Fig. 5. Intra-compound GSA results for a whole lung AUC, b whole lung MRT, c plasma AUC and d plasma MRT for
compound B. For the parameters’ acronyms, please refer to Fig. 4 label

Fig. 6. Intra-compound GSA results for a whole lung AUC, b whole lung MRT, c plasma AUC and d plasma MRT for
compound C. For the parameters’ acronyms, please refer to Fig. 4 label
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be considered acceptable. Differently from inter-compound
GSA, intra-compound GSA should be performed each time
the model (or the PBPK platform) is used for a specific drug.

One challenge that we have faced in performing GSA
was that, in certain situations, determining the uncertainty or
variability ranges was not an easy task, in particular for the
intra-compound GSA. In fact, due to the lack of available
data, it was sometimes difficult to appropriately quantify the
parameters’ degree of uncertainty. In these cases, expert
opinion can be used to fill this gap.

In our work, we presented the applications of inter-
compound and intra-compound GSA in a preclinical setting
involving animal models. However, the use of these analyses
is not limited to this context. The results of the inter-
compound GSA highlight how a simultaneous variation of
the compounds’ physicochemical properties impacts the
model outputs. This information could be particularly pre-
cious in guiding compound optimization in early discovery
phases. Moreover, similarly to what was shown here, the
inter-compound GSA can be used in clinics to understand
how the model behaves varying together both drug- and
subject-specific parameters. Moreover, a comparison of the
clinical inter-compound GSA results with the ones from the
preclinical setting could give insights on how physiological
changes across the species impact the model results. Intra-
compound GSA can be useful outside of the preclinical
setting as well. For its characteristics, this analysis is
particularly suitable when the model is used to predict unseen
scenarios, such as for the first in human translation and for
predicting the PK in different populations (e.g. paediatrics).

CONCLUSION

In this work, we showed how GSA can be used within
PBPK modelling and simulation. Performing GSA during
both the model development and routine use increases the
knowledge of the model; it helps in finding errors and in
identifying the parameters that must be known with higher
confidence, if one is interested in reducing the model
prediction uncertainties. GSA is a crucial instrument for the
quality assessment of model-based inference; for this reason,
we suggest its use during both PBPK model development and
use.
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