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Abstract: Optical microscopy has long been the gold standard to analyse tissue samples for the
diagnostics of various diseases, such as cancer. The current diagnostic workflow is time-consuming
and labour-intensive, and manual annotation by a qualified pathologist is needed. With the ever-
increasing number of tissue blocks and the complexity of molecular diagnostics, new approaches
have been developed as complimentary or alternative solutions for the current workflow, such as
digital pathology and mass spectrometry imaging (MSI). This study compares the performance
of a digital pathology workflow using deep learning for tissue recognition and an MSI approach
utilising shallow learning to annotate formalin-fixed and paraffin-embedded (FFPE) breast cancer
tissue microarrays (TMAs). Results show that both deep learning algorithms based on conventional
optical images and MSI-based shallow learning can provide automated diagnostics with F1-scores
higher than 90%, with the latter intrinsically built on biochemical information that can be used for
further analysis.

Keywords: mass spectrometry imaging; DESI-MSI; deep learning; shallow learning; FFPE; diagnostics

1. Introduction

Universally, histology has been used to diagnose any disease involving changes in
tissue structure. The analysis is based on a histopathologist´s observation of tissue morphol-
ogy following staining [1]. The default workflow for histopathological analysis comprises
formalin fixation and paraffin embedding (FFPE), as this treatment has been shown to
preserve the tissue structure for many years [2,3]. The indefinite storage of FFPE samples
while retaining its corresponding clinicopathological information makes these samples
valuable and essential for clinical research [4,5]. From merely using haematoxylin and
eosin (H&E) staining and periodic acid-Schiff staining to diagnose cancer, the typical work-
flow has become more complex, encompassing techniques such as immunohistochemistry
(IHC) and molecular genetics [6]. Although scientists can recognise histological subtypes,
only a qualified pathologist can correctly interpret and integrate biological, clinical, and
morphological patterns of a studied disease. Over the last decade, the number of tissue
blocks per case and the number of required slides per tissue block have increased by more
than 60%, reflecting the ever increasing complexity of histopathology diagnostics [6,7].
This diagnostic workflow is time-consuming, costly, and susceptible to error due to a
fundamental subjectivity that is observer-dependent, thus leading to a sensitivity of only
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around 70% [8]. As a result, there is a growing demand in cancer diagnosis for streamlined
histopathology procedures driven by tissue biology, which existing standard histology
platforms cannot meet [6,9,10].

As a potential solution for the observer subjectivity problem while interpreting mor-
phological patterns, computational pathology has significantly progressed over the last few
years, digitising the workflow for histopathologists to aid decision support and easing the
annotation process [11]. Digitisation of the workflow including the optical imaging of slides
as whole-slide images (WSIs) has facilitated computer-assisted diagnostics (CAD) utilising
deep learning (DL) methodologies. These workflows are envisioned to improve the effi-
ciency and accuracy of pathology services and, ultimately, to provide improved patient
care [11]. While traditional histopathology requires the annotation of specific regions by
visual inspection of individual images, commercially available digital pathology systems
(whilst not approved for diagnostic use) automate this process by using machine learning
methods for annotation. These methods are trained using a large number of visually anno-
tated sections as training sets; hence, classification is based on the knowledge of hundreds
or thousands of histopathology professionals. Examples of such software include Indica
Lab’s Halo AI [12] and Visiopharm’s Ontotopix [13]. The general requirement regarding
comprehensive annotations is certainly a drawback of the approach, especially given the
subjective nature of histopathological assessment [14], with one alternative approach being
the application of weakly supervised DL methods [11]. Weak supervision requires only
slide-level annotation (e.g., does this slide contain any cancer cells?) but can still be used to
provide comprehensive annotations of WSIs once properly trained. This approach allows a
routine histopathology process to be significantly accelerated while its diagnostic accuracy
is simultaneously improved.

In this vein, other alternative approaches have also been developed for histological
assessment. One of these methods is mass spectrometry imaging (MSI) which has become
a promising approach for histological diagnostics. MSI enables the spatially resolved
chemical profiling of tissue sections, allowing for the identification and mapping of a wide
range of biomolecules such as metabolites, lipids, peptides, and drugs. Since the introduc-
tion of MSI in the early 1960s, a wide range of MSI techniques have been developed and
demonstrated to have high potential for biomedical research, as it allows both targeted and
untargeted analysis to discover biomarkers [15,16]. Among these techniques is desorption
electrospray ionisation mass spectrometry imaging (DESI-MSI), which is particularly suited
to investigate the spatial distribution of metabolites due to the lack of tissue modification
prior to analysis [17,18]. One of the advantages of DESI-MSI compared to other common
MSI techniques is that it can be used under ambient conditions with minimal sample
preparation, making it well-suited for the automated, direct tissue analysis [17,19,20]. Fur-
thermore, DESI-MSI has been proven to be reproducible and repeatable for various sample
types across multiple laboratories [21], which is a key factor for the method to be applicable
for clinical research that involves a large amount of slides that will inevitably have to be
imaged under contrasting conditions at different time points [19,22–27].

In this study, with the aim of streamlined histopathology, two promising approaches
for automated cancer diagnostics were investigated. The first approach is in line with the
recent trend of digital pathology, where DL was applied to optical images of FFPE breast
tissue microarrays (TMAs). In contrast, the second approach utilises shallow learning
to analyse DESI-MSI images of the same TMAs. The performance of both approaches is
discussed and compared.

In Section 2, the results and a discussion of the deep learning and shallow learning
approaches for the diagnostic of FFPE breast cancer tissue microarrays are presented. Using
deep learning algorithms, we show that it is possible to differentiate cancerous breast
tissue and normal breast tissue, which is in line with previously published artificial intelli-
gence approaches for histopathology problems. Using DESI-MSI with shallow learning
performs better than the DL and provides chemical information that can be used for more
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detailed analysis. In Section 3, the experimental and data analysis methods used are briefly
introduced. Section 4 concludes the findings of this paper.

2. Results & Discussion
2.1. Optical Imaging-Based Deep Learning Approach

The DL classification algorithm was used to predict the probability of a 224 × 224 pixel
tile being cancerous. Using these probabilities, a thumbnail-sized image was generated for
each TMA and examples are displayed in Figure 1. As shown in the images, the model
tends to classify most of the regions within tumour cores as being tumourous. In the case
of normal slides, few regions within the normal cores are marked as tumourous. However,
the areas marked as tumourous are much sparser and smaller in size compared to tumour
slides and cores. These results suggest that the model might have a small bias towards the
prediction of tumour cores.

Figure 1. Probability heatmaps of tumour slides (A) and normal slides (B). The output probabilities
for class positive predicted by the trained model on the TMA test set were used to reconstruct a
heatmap of the full TMA slide. Each tile was represented as a 224 × 224 region within the image,
which was then scaled to a thumbnail dimension. The heatmaps in (A,B) display only pixels with
probabilities p > 0.5 for cancer prediction.

The resultant DL confusion matrix is presented in Figure 2A. The true positive rate,
false positive rate, true negative rate, accuracy, and F1-score are reported in Figure 2B. The
full results are reported in Table S2, where the metrics introduced in Section 3 are reported
after considering thresholds for classifying a core as tumourous in the range between 0
and 5000 pixels. The accuracy and F1-score are, respectively, 0.85 and 0.91. The F1-score
is a more appropriate metric to evaluate model performance due to the class imbalance.
The true positive and negative rates were, respectively, 0.87 and 0.70, which shows that
the model correctly classifies both tumour and normal cores and, at the same time, that it
performs slightly better at predicting positive rather than negative cores.

A receiver operating curve - area under curve (ROC-AUC) analysis was performed
by placing a threshold of 0.5, 0.4, or 0.6 on the probabilities of a positive prediction, and
individual data points are generated by varying the criterion between 0 and 5000 with the
number of pixels detected as positive that are necessary to classify a core as tumourous.
The ROC curve is presented in Figure 3 with a corresponding AUC of 0.87, 0.85, and 0.70
for thresholds of, respectively, 0.5, 0.4, and 0.6.

While the DL model has demonstrated a robust and high performance when validated
with the completely independent FFPE TMA data, it should be noted that it also suffers from
some underlying limitations. Firstly, the performance can still be improved, for instance,
by including TMA data for training. While the addition of TMA cores in the training
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dataset could straightforwardly improve the model’s performance, using exclusively TMA
cores in the training, however, might be difficult to achieve due to the high number of
samples and tiles required to be able to train a DL algorithm that performs well. Indeed,
in order to achieve a highly accurate model, it is believed that around 10,000 samples are
required [11], and only 1032 images were available for this study. Apart from the obvious
requirement of data in high quality and quantity, this represents a more general challenge
in terms of concept drift [28] and indicates that a large amount of information (in this case,
morphological information) is needed for the DL model to ‘understand’ the predictive
problem, thus leaving space for improvement in terms of the specificity of the information
obtained. In addition, despite the ability of DL models to capture more complex patterns
when adequately trained, they do require more computational resources compared to
shallow learning models, and their classification mechanisms are not easily interpretable.

Figure 2. (A) Confusion matrix obtained from optical imaging-based DL. A core was classified as
tumourous if at least 300 pixels had a probability >0.5 for class positive. The confusion matrix reports
the number of true and false positives and negatives. (B) Model performance. The table reports the
true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), accuracy, and F1-score.

Figure 3. ROC-AUC curve to illustrate the deep learning model performance. An ROC-AUC curve
was obtained by using a range of thresholds (0.4–0.6) on the positive probabilities and by using all
thresholds between 0 and 5000 on the number of pixels necessary to classify a core as tumourous.
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2.2. DESI-MSI-Based Shallow Learning Approach

Before comparing the classification performance, it is worth examining the additional
dimension of information that MSI provides in the spectral domain. Traditionally, MSI has
been most commonly applied on fresh frozen (FF) tissues, as the use of FFPE samples for
metabolic research was anticipated to be challenging due to some of the molecular content
being lost because of the amount of ethanol gradient to remove water during sample prepa-
ration. To evaluate the extent of this effect and hence its impact on predictive modelling,
the spectral characteristics of the FFPE MSI dataset used for subsequent classification were
first compared to those of a corresponding dataset obtained from comparable FF tissues.
To visualise any change in spectral information compared to the more commonly used
FF samples, spatio-chemical structures of the FF and FFPE datasets were extracted from
similar tumourous areas by using the k-means segmentation approach [29] (Figure 4). After
pre-processing, 908 m/z and 158 m/z values were detected in the FF and FFPE samples,
respectively, where 26% (41 of 158) of the peaks between FF and FFPE were found to be
shared within a tolerance of 10 ppm. By inspection of their respective centroid spectra that
correspond to a tumourous region, the FFPE case shows an intensity reduction of features,
especially for (phospho)lipids (600–900 m/z), which agrees with previous findings stating
that processing FFPE samples with various solvents removes metabolites [5,30]. While not
as strong as in FF samples, FFPE samples nevertheless exhibit a fair amount of lipid signals.
These results are in line with findings by Hughes et al. [31], who reported that solvent-
resistant lipids remained in formalin-fixed tissue. Previous studies have reported up to
72% overlap of metabolites in FF and FFPE samples, but in those cases, analytical platform-
matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) was
used [5,32,33]. The ionisation process of MALDI-MSI and DESI-MSI is intrinsically different,
and the former involves the use of a matrix, which leads to the formation of matrix ion
artefacts, which may pose an additional challenge in FF samples. Specifically, ions from
low-molecular-weight metabolites (50–400 m/z) can be suppressed by the abundance of
fatty acids and complex lipids, which in the case of MALDI becomes negligible as their
signal is overwhelmed by the matrix and matrix fragment peaks. On the other hand, when
lipid signals are significantly reduced because of the ethanol gradient during the sample
processing of FFPE samples, high levels of low-molecular-weight molecules as well as fatty
acids become more prominent in the mass spectrum [34–36].

Owing to the plentiful information obtainable from these fatty acids, as well as from
the select lipid species that are stable in FFPE samples [37], it is reasonable to assume that
the spatial mapping of all these biochemical features using DESI-MSI may provide greater,
more specific diagnostic power than the optical modality alone. Indeed, a clear linear
separation is observed when the MSI data obtained from FFPE breast TMAs are visualised
by principal component analysis (PCA) (Figure 5A). The PCA score plot reveals that the
spectral characteristics of normal and tumourous tissue cores are clearly distinguishable
from each other, which is almost exclusively shown by the third principal component (7.90%
of total variance, with 34.60% for PC1 and 25.97% for PC2, respectively). To demonstrate
the statistical significance of this observed separation, a Mann-Whitney test was conducted
on this principal component, which produced test statistics of U = 339 and p < 0.05 (two-
tailed). As some material is always consumed during MSI, the thinly cut FFPE sections
(4 µm) in this case could not be used for further staining due to the large number of missing
and incomplete cores after DESI-MSI. Similarly, due to the limited number of sections
available, it was not possible to generate another balanced, independent test set to evaluate
the robustness of the trained model as in the deep learning case. As a result, an LR model
trained on these data was evaluated by cross validation only. Figure 5B illustrates the
imbalanced distribution of the sample classes, as well as the cross-validation behaviour
over 10 iterations of the LR model training. It can be seen that data from multiple slides are
always used in training and testing, which is essential in avoiding the bias introduced due
to the intrinsic unfair distribution of cancer and normal cores on slides.
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Figure 4. Spectral information comparison in FF and FFPE breast cancer tissue samples. (A) Corre-
sponding H&E images of the FF and FFPE breast cancer tissue samples being compared. (B) The
K-means image segmentation approach was used to visualise similar regions from the raw hyper-
spectral datasets by assigning a false colour to each identified spectral cluster. Specifically, the green
clusters (in both cases) are tumour regions, red clusters are tumour stroma, blue clusters are the tissue
background, and black clusters are the slide background. (C) Spectral information (50–1000 m/z)
illustrated by the mean spectra extracted from breast tumour regions (green) of FF and FFPE tissue
samples. The spectral intensities are raw unnormalised counts.

Figure 5. (A) 3D PCA plot (first 3 components) visualisation of normal (blue) and cancer (red) FFPE
core MSI data. PC1 = 34.60%, PC2 = 25.97%, and PC3 = 7.90% (B) The cross-validation behaviour is
visualised and colour-coded to display the imbalance in distribution. The group colour codes show
the number of samples in each TMA. The data was split 10 times, and the samples chosen for training
(blue) and testing (orange) are clearly indicated for each iteration of CV.

Figure 6 shows that a higher classification performance was achieved by the resulting
model when compared to the optical data-based model, misclassifying only two cancerous
cores, with a balanced accuracy of 0.99 and an F1-score of 0.99 (TPR = 0.99, TNR = 1.00,
FPR = 0), albeit based on cross validation alone.
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Figure 6. (A) Confusion matrix of the MSI-based LR classification model produced by the cross-
validating normal and cancerous FFPE samples, comparing the predicted label (x-axis) with the true
label (y-axis), with true positives appearing along the matrix diagonal. (B) Model performance. The
table reports the true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), accuracy,
and F1-score.

Additionally, this FFPE cohort includes relatively old samples from as early as 1935,
and the newest samples were collected in 2013. Sample age is another consideration that is
frequently raised in clinical work; however, our previous study on the metabolic effect of
sample age [37] indeed showed that the intensity of metabolites in the lower mass range
(100–500 m/z) decreases with age, while metabolites in the higher mass range (500–900 m/z)
remain relatively stable over time (Figure S1). Despite a decreased signal in the lower mass
range, it seems not to have an impact on classification of the FFPE samples, highlighting
that FFPE samples have sufficient biochemical information for not only diagnostic but also
biomarker and therapeutic discoveries. As FFPE samples have been stored for decades in
institutes all over the world, these results could further expand the study of rare diseases
where sample availability is limited and samples are available in FFPE archives.

Further investigation was therefore carried out to determine the features involved
in classification. Important features were extracted from the dataset using LR coefficients
generated by the classification model for each feature and univariate analysis of variance.
A total of 48 features were found to be significant in predicting the FFPE breast TMA
samples, and some have been tentatively identified via literature search and reversed-phase
liquid chromatography mass spectrometry in the case of lipids (Table S3). Amongst these,
there are several fatty acid species, which have previously been reported to have increased
signals in breast tumour tissue compared to normal breast tissue [38]. We also note the
emergence of one specific lipid species, LPI(18:0) (599.32 m/z), which coincides with a
previous study [23] that also reported its increased expression in breast tumour tissue using
DESI-MSI.

With further validation, these features can thus be considered to be potential biomark-
ers for the automated diagnosis of FFPE TMA samples. By generating a new LR model
using only these significant features, the new confusion matrix (Figure 7) shows the perfor-
mance of the model, where a balanced accuracy of 0.96 and an F1-score of 0.97 (TPR = 0.95,
TNR = 0.97, FPR = 0.03) were achieved. ROC curve analysis was applied on the LR models
before and after feature selection (Figure 8), which shows that feature selection retains the
model performance with AUC reducing from 1.0 to 0.99 (Figure 8), suggesting that a robust
model free of over-fitting is obtainable.
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Figure 7. (A) Confusion matrix of the final MSI LR classification model based on only significant
features. The model is produced by the cross validation of normal and tumour breast cores, comparing
the predictive label (x-axis) against the true label (y-axis). (B) Model performance. The table reports
the true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), accuracy, and F1-score.

Figure 8. ROC-AUC curves for MSI-based LR models before (blue line) and after feature selection
(orange line).

Naturally, the MSI-based approach also has its limitations. Compared to the optical
imaging-based gold standard, which can resolve sub-micron features, the pixel size of
85 µm (and hence the spatial resolution) used in this study is orders of magnitude inferior.
Although this was evidently sufficient for identifying the existence of malignancy, the
identification of isolated tumour cells (about 20 µm in diameter) is not feasible at this
level of resolution, making comparison with IHC images difficult. While a resolution
as high as 20 µm has been described in the literature for DESI-MSI [39], this resolution
mismatch does present a challenge for the interpretation of the data in conjunction with the
current gold standard. In this vein, MALDI and secondary ion mass spectrometry have
been reported to provide appropriate resolution for single cell identification; however, the
higher spatial resolution also increases the analysis time, making the method impractical
for clinical applications.

Despite the lower resolution, the outlined DESI-MSI approach is reasonably quick
when compared to the optical workflow. In principle, a 1 cm2 tissue section can be analysed



Metabolites 2022, 12, 455 9 of 15

in 5–10 min on a commercially available Time-of-Flight mass spectrometer. In comparison,
the optical scanning of a similar area would take 35–60 min, depending on the scanning
mechanism used [8]. The analysis speed can be further improved by using more sensitive
instrumentation and restricting the investigation to a well-defined panel of metabolic markers.

3. Materials and Methods
3.1. Materials

A total of 11 FFPE TMA blocks were obtained from the Department of Pathology
at Landspitali, the National University Hospital in Iceland (Reykjavik, Iceland). After
initial assessment by a trained histopathologist, annotations were assigned to cores that
contained sufficient pathologically relevant tissue types. Out of these, nine blocks included
586 breast cancer tissue cores from 214 patients (1–6 cores per patient) [40], while two other
blocks included 73 adjacent normal breast tissue cores from 27 individuals (3–4 cores per
individual). All 11 TMA blocks used for imaging included a kidney and a liver core that
were used as controls, and the kidney cores were used to scale the data intensity (see
Section 3.3.1). Additionally, 44 FF breast tumour and normal samples were obtained from
the same department. The samples were hydrogel-embedded [41] into 7 TMAs including
2–5 sections of either breast cancer tissue or adjacent normal tissue randomly distributed
in each block. The FFPE samples were sectioned at 4 µm by the hospital, and the FF TMA
blocks were cryosectioned to 12 µm and stored at −80 °C until use. The study was approved
by the Icelandic Bioethics Committee (reference number: VSNb2017030012-03.03).

3.2. Deep Learning
3.2.1. Optical Imaging

To generate the test data for DL, consecutive slides obtained from the same FFPE TMA
block used for MSI were stained and scanned with a digital slide scanner (NanoZoomer2.0-
HT, Hamamatsu City, Japan). A high-resolution objective (40×) was used for all (n = 11)
slides. After an initial autofocus procedure to identify the optimal focal positions of the
cores, each slide was imaged within 10–20 min depending on the size of the effective ROI.

3.2.2. Training Data

The algorithm was trained on 1032 whole-slide images (WSIs), which were part of three
different datasets with its corresponding annotations: (1) 270 images from CAMELYON16 [42],
(2) 475 from CAMELYON17 [43], and (3) 287 from in-site produced data. WSIs in this training
set were pre-processed according to the steps outlined in Giunchiglia et al. [44], which resulted
in 8,899,519 tiles, each measuring 224 × 24 pixels. The following algorithms were applied
to the training data: (1) background homogenisation, (2) the detection of blue dye and
ink, (3) the detection of green dye and ink, (4) the detection of yellow dye and ink, (5) the
detection of bubbles, (6) the detection of tissue fold, (7) the detection of grey ink, coverslip
edge, and broken glass, (8) the detection of black regions, (9) the detection of red dye and
pen ink, (10) tissue and non-tissue segmentation, (11) the detection of out-of-focus images,
(12) tiling and tile selection, and (13) stain normalisation. The DL algorithm was then tested
on 11 FFPE TMA H&E slide images produced on-site, which served as an independent test
set, and, prior to pre-processing, the slides were split into smaller patches, where each patch
would contain one single core, to be processed separately. The splitting into smaller patches
was realised first by an automated approach and by further manual curation. Additional
manual quality control was completed to ensure that the correct set of cores were included
in the analysis. As there were fewer artefacts in these 11 TMA images compared to the
training set images, only background homogenisation, tissue and non-tissue segmentation,
and tiling and tile selection were performed. Only tiles with less than 60% background
were kept.
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3.2.3. Algorithm

The deep learning algorithm was first implemented by Campanella et al. [11] but
was characterised by two modifications, namely, it runs in parallel across multiple GPUs
and does not require the use of OpenSlide to access the slides, since the input consists of
pre-processed tissue tiles saved as hierarchical data format version 5 (HDF5) files. The
algorithm consists of a convolutional neural network (CNN) based on a multiple instance
learning (MIL) approach, which corresponds to a weakly supervised method. MIL defines a
set of slides Si, with i = 1, 2 . . . n, as either tumourous or normal. Each Si is characterised by
n instances Ii, which corresponds to tiles. If the slide Si is labelled as tumourous (positive),
then at least one of the instances Ii is tumourous. Instead, if Si is annotated as normal
(negative), then none of the instances Ii is tumourous. This approach is necessary due to
the lack of comprehensive annotation at the tile level. The CNN architecture was based
on Resnet24, and the model was initialised with the weights trained on ImageNet. In the
inference step of the MIL training, the probability of class positive is determined for each
tile. For each slide, the tile with the highest positive probability is extracted, and these n
tiles, with an n equal to the number of slides, are compared to the slide level annotation in
order to compute the cross entropy loss. A weighted cross entropy loss was used to correct
for class imbalance, and empirical weights of 0.6 and 0.4 were set, respectively, for class
positive and negative, based on the numbers of positive and negative samples. The learning
rate was 0.001, the loss was minimised through a stochastic gradient descent, the model was
trained for 9 epochs, and the Adam optimiser was used. In total, the algorithm required
8 GPUs, and 124 GB of memory to be trained and was implemented in PyTorch [45]. The
output of the algorithm is a prediction at the tile level, where a prediction threshold was
set such that one entire core was classified as tumourous if at least 300 pixels were positive
within the tile and vice versa.

3.2.4. Model Performance Evaluation

The model performance was evaluated throughout by computing the standard metrics,
including the true positive rate (TPR), true negative rate (TNR), false positive rate (FPR),
balanced accuracy, and F1-score, and through ROC-AUC curves. Once the probability
of class positive for each tile was predicted, a heatmap showing the probability that the
original TMA slide was class positive was reconstructed, by using the grid coordinate
information of the tiles. Each tile was represented as a 224 × 224 region within the image,
since 224 × 224 was the original size of the extracted tiles. The heatmap was scaled to a
thumbnail, with a size fixed at 4000 pixels, and then scaled according to the aspect ratio
of the original image. The heatmap was binarised using a threshold of 0.5, and only the
regions within the reconstructed image where the probability of class positive was greater
than 0.5 were marked as tumourous.

3.3. Shallow learning
3.3.1. DESI-MSI Analysis

DESI-MSI analysis was performed on 4 µm sections of FFPE and 12 µm FF TMAs
using a XEVO G2-XS Qtof mass spectrometer (Waters, Milford, MA, USA) controlled by
MassLynx software (Waters, Milford, MA, USA). The mass spectrometer was coupled
to a two-dimensional DESI stage from Prosolia Inc. (Indianapolis, IN, USA) and set at
a pixel size of 85 µm. The NanoAcquity binary solvent manager (Waters Corporation,
Milford, MA, USA) was used to deliver the solvent, 95:5 MeOH (Sigma-Aldrich, St. Lewis,
MO, USA):H2O (Thermo Fisher Scientific Inc., Waltham, MA, USA) + 0.0001% raffinose,
to the electrospray at a flow rate of 1.5 µL/min. Detailed information about the MS
instrumental parameters can be found in Table S1. Prior to the DESI-MSI analysis, FFPE
TMAs were deparaffinised by incubating the samples for 1 h at 60 °C, rinsing with xylene
(2 × 8 min) and air-drying in a fume-hood overnight as described by Ly et al. [33]. Due to
the deterioration of the DESI-MSI analysed tissue, consecutive FFPE and FF TMAs were
stained with H&E for optical imaging.
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3.3.2. MSI Data Pre-Processing

An in-house Python pipeline was used first to pre-process raw data. In concise form,
the pipeline consists of (1) a signal-to-noise ratio (SNR)-based peak detection procedure,
(2) region-of-interest (ROI) selection via segmentation, and (3) peak alignment and recal-
ibration. As a result, the intra-data (between pixels) and inter-data (between MS runs)
variabilities were removed. Only features from tissue-specific regions were kept to reduce
the effective data size. Features that were characterised as noisy or unlikely according to
spatial distributions were filtered by means of the R package SPUTNIK [46]. Finally, a
single data matrix of dimension M × N was produced as output for each run, where M is
the total number of pixels, and N is the length of the common mass axis, which was shared
between data from all runs.

To further reduce the possible batch effect, the reference cores on each slide (i.e., the
kidney) were used to perform intensity scaling, and the resulting data also underwent
median fold change scaling to stabilise the variance [47]. To enable the subsequent super-
vised analysis, a clinical pathologist manually annotated cancerous and normal tissue cores
on the accompanying H&E stained optical images with clinicopathological information
that allowed for more in-depth data mining. To correlate the optical and chemical images,
total-ion-count images from each slide were co-registered with their corresponding H&E
images, specifically by the use of affine transformation by gradient descent [27]. Average
spectra per core were assigned labels accordingly and used for predictive modelling.

3.3.3. Supervised Shallow Learning & Statistical Analysis

Due to the clear imbalance in the number of samples for cancer and normal tissues,
a cost-sensitive approach [48] was used to weight each group accordingly during model
training. As such, a weighted logistic regression (LR) classification model was built using
the pre-processed MSI data, and its performance was assessed using stratified K-Fold
(K = 10) cross validation to predict a core as either cancerous or normal [49]. The cross-
validation training and testing sets were chosen such that the slide-to-slide bias was
minimised. The model performance was evaluated by the same metrics used for deep
learning for easy comparison. In addition, model refinement was carried out by performing
the log likelihood ratio test to reject the null hypothesis that a given spectral feature
was not significant in the classification of the data using LR, for all spectral features. To
visualise comparison between models, the receiver operator characteristic (ROC) curve
using different probability thresholds in the LR model was plotted, hence; its corresponding
area under the curve (AUC) was used as the metric.

The labelled data matrices were also analysed univariately, in the form of a Kruskal–
Wallis test. A threshold of (p < 0.05) was used to select significantly different features
in the intensity domain, which was followed by false discovery rate correction with the
Benjamini–Hochberg procedure. Both the multivariate and univariate features were then
compared. Overlapping features from the two approaches were ultimately considered
features of interest and used in constructing the optimised model. Due to a limited amount
of clinical tissues, the use of well-established online databases [50–52] as well as previous
publications were used for only tentative metabolic annotations.

4. Conclusions

With visual analysis of H&E-stained histological sections using a traditional micro-
scope being the cornerstone of pathological diagnostics for the past century, there is a
need for more rapid, automatic, and reliable diagnostic methods. DL-assisted analysis
of histological optical images has led the way in recent years towards a truly automated
workflow, as we demonstrate here that a weakly supervised deep learning method can be
used to provide diagnoses of breast cancer FFPE TMA samples with an overall F1-score of
91%. For this approach to be routinely used for clinical studies, however, a large amount
of high-quality training data is still needed due to the lower specificity in the image con-
trast. Alternatively, the chemically specific contrast from MSI provides a cross-validated
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predictive accuracy of close to 100% based on the F1-score obtained from shallow learning
approaches that are easy to interpret. While not directly comparable to the DL results,
model optimisation via feature refinement has revealed chemical species that are correlated
with the underlying biology, which can potentially be used as biomarkers to build a robust
model that can be used across data obtained from different sample types and experiments,
once validated. Thanks to the 102–103 channels that are available from hyperspectral
imaging of this kind, this even unveils the possibility of more in-depth data mining based
on the associated pathological information of the patients, potentially shedding light on
the pathways and networks that drive different strata of cancer, e.g., subtypes, age, grade,
etc. Finally, it should be noted that the two approaches presented here are not mutually
exclusive. In fact, future research may well make use of the accessibility of FFPE samples
to enable DL approaches based on MSI data. Likewise, optical images as an established
standard could also be used jointly with MSI in building more accurate predictive models
based on the chemical information, with the use of novel approaches such as manifold
alignment for knowledge transfer [53].

Supplementary Materials: The following supporting information can be downloaded at www.
mdpi.com/xxx/s1, refs. [37,54–56] are cited in the supplementary materials. Table S1: Instrumental
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