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ABSTRACT

The identity of cancer cells is defined by the inter-
play between genetic, epigenetic transcriptional and
post-transcriptional variation. A lot of this variation is
present in RNA-seq data and can be captured at once
using reference-free, k-mer analysis. An important is-
sue with k-mer analysis, however, is the difficulty of
distinguishing signal from noise. Here, we use two in-
dependent lung adenocarcinoma datasets to identify
all reproducible events at the k-mer level, in a tumor
versus normal setting. We find reproducible events
in many different locations (introns, intergenic, re-
peats) and forms (spliced, polyadenylated, chimeric
etc.). We systematically analyze events that are ig-
nored in conventional transcriptomics and assess
their value as biomarkers and for tumor classifica-
tion, survival prediction, neoantigen prediction and
correlation with the immune microenvironment. We
find that unannotated lincRNAs, novel splice vari-
ants, endogenous HERV, Line1 and Alu repeats and
bacterial RNAs each contribute to different, impor-
tant aspects of tumor identity. We argue that differ-
ential RNA-seq analysis of tumor/normal sample col-
lections would benefit from this type k-mer analy-
sis to cast a wider net on important cancer-related
events. The code is available at https://github.com/
Transipedia/dekupl-lung-cancer-inter-cohort.

GRAPHICAL ABSTRACT

INTRODUCTION

Over a period of 20 years, cancer transcriptomics has trans-
formed our understanding of tumor biology and led to im-
proved tools for tumor typing and outcome prediction (1,2).
While first generation transcriptome analysis was based on
DNA microarrays with a focus on protein-coding genes, the
current generation relies on RNA-seq data, which promises
to deliver a more comprehensive view of gene expression.
However, in spite of its potential for transcript discovery,
cancer RNA-seq data are still utilized mostly to quantify the
expression of annotated genes listed in a reference transcrip-
tome. This ignores a wide array of mRNA isoforms, non-
coding RNAs, endogenous retroelements and transcripts
from exogenous viruses and bacteria (3). The quantity of
information left unexploited in non-canonical transcripts
remains unknown. A number of studies have started to ad-
dress this question using publicly available cancer RNA-seq
data, focusing on specific transcript classes such as splice
variants (4,5), lncRNAs (6), snoRNAs (7), repeats (8), bac-
terial RNA (9) or viral RNA (10). Other neglected sources
of RNA diversity are the so-called blacklisted regions of the
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genome that are too variable or repeated to be properly an-
alyzed by conventional approaches (11). To our knowledge,
no attempt has been made to extract and evaluate at once all
this non-standard RNA information directly from the raw
RNA-seq data. We think this approach could be particu-
larly valuable in cancer since every individual tumor har-
bors a unique transcriptome that departs from that of nor-
mal tissues in multiple, unpredictable ways.

Previously we introduced a computational method, DE-
kupl (12), that performs differential analysis of RNA-seq
data at the k-mer level. As this method is reference-free
and mapping-free, it identifies any novel RNA or RNA iso-
form present in the data at nucleotide resolution, including
poorly mapped transcripts such as RNAs from repeats and
chimeric RNAs. Here we set ourselves to evaluate all non-
reference events discovered by DE-kupl in a comparison of
normal versus tumor samples using lung adenocarcinoma
as a test case. To mitigate false positives events inherent to
any gene expression profiling (13,14), we focused on events
that were replicated in two independent datasets. This re-
quired the development of a dedicated protocol to iden-
tify shared events in unmapped RNA sequences. Results
revealed a collection of novel tumor-specific unannotated
lincRNAs, intron retentions and splicing events. A collec-
tion of endogenous retroelements form a major class of tu-
mor defining transcripts and constitute potent survival sig-
natures. We also identified a subset of events with no expres-
sion in normal tissues which could be potential neoantigens
sources. We would like to suggest DE-kupl as a promising,
comprehensive approach to cancer transcript profiling.

MATERIALS AND METHODS

Datasets

LUAD-TCGA: 582 lung RNA-seq samples from the
LUAD-TCGA project were downloaded from the dbgap
repository with permission, including 524 lung adenocarci-
noma (LUAD) tissues and 58 adjacent normal tissues (15).
LUAD-SEO: The LUAD RNA-seq dataset of Seo et al.
(16) was downloaded from the SRA database (accession:
ERP001058). This dataset contains fastq files of 87 LUAD
and 77 adjacent normal tissues. Only the 77 paired normal
and tumor samples were analyzed. PRAD-TCGA: For con-
trol, 557 PRAD-TCGA prostate RNA-seq datasets were
downloaded from dbgap with permission, including 505
prostate adenocarcinoma (PRAD) and 52 normal controls
(17). Bam format files from the TCGA datasets were con-
verted to fastq format using Picard tools version 2.18.16
(http://broadinstitute.github.io/picard).

DE-kupl pipeline

DE-kupl (version 5.3.0) was applied to the three datasets
with the same parameters: in the filtering steps, k-mers with
abundance fewer than 5 (min recurrence abundance) and
present in no more than 10 samples (min recurrence) were
ruled out. In order to focus on non-canonical transcripts, we
masked all k-mers pertaining to the main transcript of each
Gencode gene as in (12). Normalization factors for k-mer
counts were computed by DE-kupl as medians of the ratios
of sample counts by counts of a pseudo-reference obtained

by taking the geometric mean of each k-mer across all sam-
ples. Herein we will use these counts as a proxy to represent
the expression of the corresponding RNA fragment.

For differential expression analysis, the version of DE-
Seq2 available at the time of the experiment was too slow
for dealing with hundreds of samples and we found the
faster ‘T-test’ option to lack sensibility. Hence we used in-
stead Limma (18), adapted to millions of k-mers using a
chunk-based strategy. This was found to perform 10 times
faster than DESeq2. The performances of DESeq2, Limma
and T-test for differential expression analysis have been
evaluated before (19). K-mer counts were log-transformed
and Limma was used to calculate differential expression P-
values, adjusted for multiple testing using the Benjamini–
Hochberg procedure (20). Retention thresholds for log2
fold changes and adjusted P-values were 1 and 0.05, re-
spectively. All k-mers passing the filtering process above
were merged into contigs and the contig table was saved
as output. GC-contents in ‘up’ and ‘down’ contigs in the
PRADtcga dataset were verified and did not present any
bias (Additional File 2: Supplementary Table S1). 95.9%
of LUADtcga contigs (98.2% of LUADseo) mapped to the
human genome and, among mapped contigs, 86.1% were
aligned over >95% of their length, indicating a low rate of
misassembly (Additional File 2: Supplementary Table S2).
The ratio of correct assembly is certainly higher than this
since a contig can be partly aligned and yet be correctly as-
sembled. Also, this ratio increases with contig length (Ad-
ditional File 1: Supplementary Figure S1).

High-quality contigs (‘top contigs’) were contigs with
counts >10 in at least 15% of the smaller class (normal or
tumor).

Gene-level expression was measured using Kallisto
v0.43.02 (21) and Gencode v31 transcripts, followed by
summing TPM values of transcripts from the same gene.
Gene-level differential expression analysis was performed
using Limma and the same normalization procedure as
above. Downstream analyses were conducted using R ver-
sion 3.5.2. Heatmaps were drawn using the Complex-
Heatmap package (version 2.4.3) (22).

Shared event identification

Contigs from distinct DE-kupl analyses were decomposed
into their constituent k-mer lists, and a graph was con-
structed using the NetworkX Python package (version 2.3)
(23), with contigs as nodes and shared k-mers as edges. Con-
tigs corresponding to the same local event are expected to
form a fully connected subgraph or clique (Additional File
1: Supplementary Figure S2). As any k-mer is present in
only one contig per dataset and we compared two datasets,
all cliques only involved two contigs. However the method
can generalize to three or more datasets allowing cliques
of three or more. We thus extracted all cliques to identify
shared contigs. Hereafter we use the ∩ operator to repre-
sent contigs shared between two datasets.

Contig annotation

A uniform annotation procedure was applied to contigs
from each independent analysis (LUADtcga, LUADseo,
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PRADtcga) and to shared contigs (LUADtcga ∩ LUADseo
and LUADtcga ∩ PRADtcga). Initially, differential con-
tigs were mapped and annotated with DE-kupl annota-
tion (https://github.com/Transipedia/dekupl). Briefly, DE-
kupl annotation maps contigs to the human genome and
reports intronic, exonic or intergenic status, CIGAR string,
IDs of mapped or neighboring genes, differential usage sta-
tus. A new repeat annotation field (‘rep type’) was added
based on Blast (24) alignments of contigs to the DFAM re-
peat database (25). The results of DEkupl-annot were then
loaded into R and submitted to further filtering and anno-
tation. Firstly, a count filter was applied to retain only con-
tigs with a count of 10 in at least 15% of the smaller class
(normal or tumor). Contigs meeting this criterion were clas-
sified into event classes comprising SNV, intronic, splices,
split, lincRNA, polyA, repeat and unmapped, as described
in Additional File 2: Supplementary Table S3. Classes were
non exclusive, meaning that a contig can belong to sev-
eral classes. Since the TCGA datasets are unstranded, anti-
sense events were not called. Differential usage (i.e. the rel-
ative change in expression of a local event relative to the
expression of the host gene) was evaluated for each event
mapped to an annotated gene. Intergenic contigs were fur-
ther aligned with Blast against MiTranscriptome V2 (6)
retrieved at http://mitranscriptome.org/ and converted to
fasta using gffread (https://github.com/gpertea/gffread). Fi-
nally, we defined a new category called ‘neoRNAs’, which
includes contigs that are expressed in tumor tissues but
silent in normal tissues.

Functional enrichment of intronic events

Candidate intronic events were identified based on DE-
kupl’s differential usage adjusted P-value (computed by
comparing the expression or the contig with that of the host
gene). Gene Ontology biological process enrichment of host
genes was assessed using the clusterProfiler R package (ver-
sion 3.16.0) (26).

Sample clustering based on repeats

We used the K-means algorithm to cluster LUAD patients
into two main subgroups based on the expression of contigs
matching AluSx, L1P1 orf2 and L1P3 orf2 repeats. Clus-
ters were then analyzed for enrichment in clinical features,
immune infiltration, tumor mutational burden and copy
number variants. LUAD driver genes were retrieved from
the COSMIC Cancer Gene Census (CGC) list (27). On-
coplots were drawn using the maftools R package (ver-
sion 2.4.10) (28). The estimated tumor mutational burden
(TMB) for each patient was computed using the total num-
ber of non-synonymous mutations from the Mutation An-
notation Format (MAF) file, divided by the estimated size
of the whole exome. Copy number variation (CNV) data
were downloaded by the TCGAbiolinks R package (ver-
sion 2.16.3) (29), which provides a mean copy number es-
timate of segments covering the whole genome (inferred
from Affy SNP 6.0). The ratio of gain and loss for each pa-
tient was estimated by the fraction of segments indicating
CNVs. Heatmap representations were produced with Com-
plexHeatmap (22).

Correlation with immune infiltration

Immune infiltration analysis was performed on the LU-
ADseo dataset. Relative proportions of infiltrating im-
mune cells were determined using CIBERSORT (30). Re-
lationships between immune cell types and shared contigs
(grouped by annotation category) were computed as the
Spearman correlation between the contig expression and
the relative proportion of the cell type in all samples. Any
contig with an absolute Spearman correlation coefficient
above 0.5 with at least one immune cell type was retained.

Neoantigen prediction

For prediction of recurrent tumor-specific antigen, we se-
lected contigs absent in all normal tissues but present in at
least 15% of tumor tissues. We translated contig sequences
using EMBOSS transeq over 6 frames (31). Sequences with
stop codons were ruled out and candidate peptides were
submitted to netMHCpan 4.0 (32) to predict binding affin-
ity to MHC-class-I molecules. Peptide–MHC Class I inter-
actions with strong binding levels (by default 0.5%) were
reported.

Survival analysis based on event classes

Since the LUADseo dataset does not include survival infor-
mation, we only performed the survival analysis on the LU-
ADtcga dataset. Overall survival time and status was down-
loaded from the GDC portal (https://portal.gdc.cancer.
gov/projects/TCGA-LUAD). We performed both univari-
ate Cox regression and multivariate Cox regression on
each event class to assess the prognosis value of the dif-
ferential events. Survival analysis was performed using the
survival (version 3.2.3) and survminer (version 0.4.7) R
packages (https://CRAN.R-project.org/package=survival;
https://CRAN.R-project.org/package=survminer). Hazard
ratios (HR) and adjusted P-values were calculated for each
contig. Contigs with HR > 1 and adjusted P-value < 0.05
were considered as potential risk factors. For multivariate
Cox regression, contigs were initially selected by cox-lasso
regression using the glmnet R package (version 4.0.2) (33)
applied independently to each contig class. The multivariate
model was then constructed using selected contigs. Patients
were divided into high and low-risk groups based on the
median value of all risk scores for representation in Kaplan–
Meier (KM) curves (34).

Unsupervised clustering analysis

We applied Principal Component Analysis (PCA) and hi-
erarchical clustering to each event class. PCA analysis
was performed with the factoextra R package (version
1.0.7) (https://CRAN.R-project.org/package=factoextra).
Heatmap views were obtained using ComplexHeatmap
(22).

Sequence alignment views

We created ‘metabam’ alignment files for tumor and normal
tissues from each cohort. To this aim, we randomly sam-
pled 1M reads from each fastq file of each subcohort using
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seqtk (https://github.com/lh3/seqtk) and aligned the aggre-
gated reads to the genome (GRCh38) using STAR (version
2.7.0f) (35) with default parameters. BAM files were visual-
ized using Integrative Genomics Viewer (IGV 2.6.2) (36).

RESULTS

Gene-level versus contig-level differential events

We performed tumor versus normal differential expression
(DE) analysis on two independent lung adenocarcinoma
RNA-seq datasets from TCGA (LUADtcga) and Seo et
al. (LUADseo) and on a prostate adenocarcinoma dataset
from TCGA (PRADtcga) as a control. Each dataset was
submitted to a conventional, gene-level, differential expres-
sion analysis and a k-mer level differential expression anal-
ysis where all k-mers from annotated genes were first re-
moved and the resulting differential k-mers were assembled
into contigs (Figure 1A). For simplicity, we shall hereafter
use term ‘expression’ when referring to either gene expres-
sion or k-mer/contig counts. While the number of DE genes
in the three comparisons ranged from 6000 to 9000, the
number of DE k-mers was about a thousand times larger
(2 to 12 millions). Assembly of k-mers into contigs reduced
this number to about 400 000 DE contigs in each analy-
sis (Figure 1B). Comparison of DE contigs and DE genes
identified by a conventional protocol showed that most DE
genes were covered by DE contigs (74% in the LUADtcga
cohort), and this in spite of the removal of k-mers from
annotated genes. Indeed, as noted before (12), SNPs and
intronic reads generate k-mers that are not present in ref-
erences and thus are not removed. However, DE con-
tigs were also found in 22% of non-DE genes and 11%
of intergenic regions (Additional File 2: Supplementary
Table S4).

We next compared the DE genes and contigs discovered
in independent datasets to identify shared DE events. While
this process is trivial for genes, it is not for contigs, since
contigs found in each dataset have no standard identifier
that could be used to relate them. We thus implemented
a graph analysis procedure that identified shared contigs
based on their common k-mers (Figure 1A, Additional File
1: Supplementary Figure S2). A final annotation step as-
signed contigs to non exclusive categories based on their
mapping characteristics or expression (repeats, lincRNAs,
splice variant, polyadenylation variants, split RNAs, tumor-
specific RNAs) as described in Additional File 2: Supple-
mentary Table S3 and Materials and Methods. The num-
bers of shared elements slightly differ between LUADtcga
and LUADseo because a minority of elements are in a 2-to-
1 or 1-to-2 relationship in the contig graph. If not otherwise
specified, numbers of elements are given for the LUADtcga
cohort.

Overall 160 610 differential contigs were shared be-
tween the two LUAD analyses (Figure 1C). Over these, 120
822 contigs were considered of sufficient quality based on
counts and occurrence in a minimal number of samples (see
Materials and Methods). 83% of shared contigs were over-
expressed in tumors versus only 17% underexpressed (Fig-
ure 1C).

Event replicability

The replicability of differential events was generally lower
for k-mer or contigs than for genes. Figure 1D shows the
number of DE genes and contigs shared by the two inde-
pendent LUAD analyses, with contigs binned by annotation
class. About 41% of DE genes (3032 genes) were shared by
the two LUAD analyses, compared to an average of 14%
for DE contigs (repeats: 3.7%, unmapped RNAs: 10%, al-
ternative polyAs: 13%, lincRNAs: 14%, alternative splices:
20%, retained introns: 20%). Although the ratio of shared
events was relatively low for k-mer analysis, it was consid-
erably higher than when comparing two unrelated patholo-
gies (LUADtcga ∩ PRADtcga, Figure 1D), and this applied
to all event classes except repeats. This indicates that, al-
though k-mer based DE events are noisy, a significant sub-
set is replicable in independent studies. The likelihood to
be shared between cohorts was strongly correlated with the
fold-change value of DE contigs (Additional File 1: Supple-
mentary Figure S3), demonstrating the non-randomness of
high scoring, non-reference events. Likelihood to be shared
also increased with contig size (Additional File 1: Supple-
mentary Figure S1). More than 65% of contigs over 500 nt
in size were shared between cohorts, thus reaching a higher
level of replicability than DE genes.

DE contig localization, hypervariable genes

The majority of shared contigs are genic (83%), 45% are in-
tronic and 32% carry SNVs or indels (Figure 2A). These
characteristics are induced by the initial filter that removed
all k-mers matching reference transcripts, retaining any in-
tronic or SNV-carrying k-mer. Therefore a large number of
SNV and intronic contigs are just ‘passenger’ events of DE
genes. We confirmed this by analyzing the correlation be-
tween numbers of DE contigs and host gene expression. We
found a significant correlation (Pearson CC = 0.45), but this
correlation was reduced (Pearson CC = 0.28) in shared DE
contigs, indicating shared contigs contain fewer passenger
events (Additional File 3).

More than 400 genes were matched by 35 or more con-
tigs. We classified these genes into two categories: for 296
genes, most contigs matched introns and were up-regulated
in tumors (Figure 2A, B, Additional File 2: Supplemen-
tary Table S5). These mostly correspond to the aforemen-
tioned passenger events. The second category is composed
of 107 genes we refer to as ‘hypervariable’ as they tend
to yield a large number of contigs carrying SNVs, indels
and larger rearrangements (Figure 2A, C, Additional File
2: Supplementary Table S5). The largest sets of hypervari-
able genes are IGK, IGL and IGH immunoglobulin genes.
This is not surprising given immunoglobulins (i) are highly
variable due to V(D)J segment recombination and (ii) are
expressed by plasma B cells which are abundant in the tu-
mor immune infiltrate (37), hence these genes are seen as up-
regulated in tumors. Interestingly, those IG sequence vari-
ants are found expressed in different patients and across
the two cohorts, suggesting our approach can be used to
profile immunoglobulin repertoires, as performed recently
with other RNA-seq datasets (38). To evaluate the accu-
racy of DE-kupl contigs assembled from IG genes, we se-
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Figure 1. Overall analysis procedure and properties of identified contigs. (A) Computational pipeline for inferring differential contigs in each tumor/normal
cohort, extraction of shared contigs and annotation. (B) Sizes of RNA-seq cohorts analyzed and numbers of differential events observed. (C) Summary
statistics of differential contigs identified as shared between the LUADtcga and LUADseo analyses. (D) Number of differential genes, k-mers and contigs in
each independent analysis and shared between analyses. On each row, lateral areas represent differential genes/k-mers/contigs found in each independent
analysis and the central area represents shared differential genes/k-mers/contigs. Contigs are classified into different annotation groups.

lected all contigs mapped to one arbitrary IG gene (IGHV:
100 contigs) and aligned them to IGHV contigs from the
IMGT database (39). Ninety out of 100 contigs had signifi-
cant matches in the corresponding IMGT category extend-
ing over 90% of the contig length (Additional File 2: Sup-
plementary Table S6).

Other hypervariable loci were found in surfactant pro-
tein (SFTP) and Mucin genes which are known to harbor
a high level of polymorphism (40,41). We observed poly-
morphism not only in the form of SNPs but also in the
form of splicing variations. Five SFTP genes alone combine
over 9000 SNVs and 800 splice sites contigs, while 12 Mucin
genes harbor 1324 contigs including 42 splice variants (Ad-
ditional File 1: Supplementary Figure S4A,B, Additional
File 2: Supplementary Table S5). While SFTP contigs were
all underexpressed in tumors, Mucin contigs were mostly
overexpressed (Additional File 2: Supplementary Table S5).
Mucins are immunogenic (41) and are important biomark-
ers for prognosis (42) and drug resistance (43). The existence
of recurrent mucin variants overexpressed in tumors may be
relevant for these therapeutic and biomarker developments.
We also observed hypervariability in CEACAM5 and KR19,
two other prognostic biomarkers and/or immunotherapy

targets (44,45) (Additional File 1: Supplementary Figure
S4C, Additional File 2: Supplementary Table S5).

Intron retention and other intronic events

We found intronic contigs with differential usage (DU) in
313 host genes, 290 (93%) of which were up-regulated in tu-
mors (Additional File 2: Supplementary Table S7). About
70% of the host genes were also up-regulated, thus the ap-
parent overexpression of these intronic sequences may have
been confounded by overexpression of host genes. However,
30% of host genes were not overexpressed, and in 103 cases,
intron and host gene expressions varied in opposite direc-
tions (93 introns up and 10 introns down). Our annotation
pipeline did not differentiate intron retentions (as shown
for example in Additional File 1: Supplementary Figure
S5A) from transcription units occurring within introns (ex-
ample in Additional File 1: Supplementary Figure S5B).
We observed intron retention events in lung cancer drivers
EGFR and MET (Additional File 1: Supplementary Figure
S5C and Additional File 1: Supplementary Figure S5D). In
EGFR, the retained intron was located between exons 18
and 19, just upstream of the principal oncogenic EGFR mu-
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Figure 2. General properties of shared differential expression contigs in LUAD. (A) UpsetR plot of major contig categories based on mapping location
and presence of SNV or indels. (B) 45 top genes by number of mapped contigs in the circled intronic category. (C) 45 top genes by number of mapped
contigs in the circled exonic+SNVindel category. Numbers of contigs mapped to each gene are indicated.

tations located in exons 19–21. Intron retention before exon
19 would likely produce a truncated form of EGFR compat-
ible with oncogenic activation.

The 20 intronic events with the most significant differen-
tial usage (Additional File 1: Supplementary Figure S6A)
all show opposite directions of intron and gene expression.
Gene Ontology enrichment analysis indicates host genes are
enriched for inflammation and immune response pathways
involving neutrophil and T cells (Additional File 1: Sup-
plementary Figure S6B), suggesting these events may come
from regulations in the tumor microenvironment rather
than in the tumor itself.

Novel lincRNAs

Contigs that do not map any Gencode annotated gene are
of particular interest as they potentially represent novel lin-
cRNA biomarkers of lung tumors. Overall we identified
shared DE contigs in 885 intergenic regions, which we la-
beled as lincRNAs. As genic regions already included an-
notated lncRNAs and pseudogenes from Gencode, the ac-
tual number of DE contigs in lncRNAs and pseudogenes
was much higher (N = 2892), but we focus here on unanno-
tated regions. lincRNA contigs were mostly overexpressed
in tumors (83% of contigs) and often contained a known
repeat element (73% of contigs). Their average length was
137 nt; however, actual transcription units were generally
longer as most units were composed of multiple contigs,
as shown in examples in Additional File 1: Supplemen-
tary Figure S7. Most intergenic contigs (793 out of 823)

were already annotated in the independent Mitranscrip-
tome lncRNA database (6), which was expected since this
database was also produced from TCGA RNA-seq data.
Less than one-third of the flanking genes of intergenic con-
tigs were differentially expressed, indicating that novel lin-
cRNA expression was most often independent from that of
flanking genes.

Expressed repeats

Transposable elements (TEs) are reactivated in cancer
(46,47), and their expression correlates with changes in
the tumor microenvironment (8,48,,49. Those repeated
elements are difficult to analyze by standard RNA-seq
pipelines due to ambiguity in the alignment process. We
questioned whether the alignment-free procedure could
help reveal these events. From the initial set of 50 572 con-
tigs annotated as repeats (Figure 1C), we selected a high
quality subset of 10 341 contigs over 60 bp in size and with
expression above a set threshold (see Materials and Meth-
ods). Of these, 87.7% were overexpressed in tumors (Addi-
tional File 2: Supplementary Table S7).

Figure 3A shows the distribution of contigs per repeat
family. Most repeats correspond to Line 1 and Alu family
sequences. The most frequent repeat overall is L1P1, a Line
1 of the L1Hs family which is the only retrotransposition-
competent TEs in the human genome (50). L1P1/L1Hs el-
ements, as well as human endogenous retrovirus (HERV),
were almost exclusively over-expressed in tumors, consis-
tent with tumor-specific activation of these elements. In
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Figure 3. Analysis of differential repeats. (A) Top 20 repeat types with the most contigs in the LUADtcga dataset. (B/C) Expression heatmaps of top repeat-
containing contigs (ranked by fold change) in the LUADseo (A) and LUADtcga (B) datasets. Contig expression level is represented from blue (lowest) to
red (highest). For each type of repeat, the contig with the highest absolute fold-change is shown.
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contrast, Alu elements, which are often expressed as part of
protein coding genes, were either over- or under-expressed
in tumors. Figure 3A shows the top 20 repeat types that
contribute more contigs. Figure 3B,C shows the expression
heatmaps of the 60 repeats contributing more contigs. Com-
parison with DE repeat families identified with the Salmon
software (51) on the LUADtcga dataset (albeit restricted to
matched normal/tumor samples) (47) shows our approach
identifies a higher number of DE repeat families (732 versus
61, Supplementary File S2: Supplementary Table S8). How-
ever, one should keep in mind that Salmon assigns reads to a
predefined list of full-length transcripts, which is much more
stringent than reporting DE contigs.

Repeat contigs also included a group annotated as ‘sim-
ple repeats’, containing microsatellites and other low com-
plexity elements. Contrarily to EREs, these do not have the
capacity to be expressed independently. Indeed, in over 70%
of cases, these contigs were uniquely mapped to genic se-
quences. In addition to annotated repeats and simple re-
peats, DE-kupl identified 4762 contigs (4497 up, 265 down)
with multiple genome hits but no match in the DFAM re-
peat database (Additional File 2: Supplementary Table S7).
Many of these repeats were from Mucins, immunoglobu-
lins and multicopy gene families such as NBPF and TBC1.
These repeats are shared between two cohorts and thus rep-
resent robust events of (mostly) overexpressed RNA frag-
ments in tumors that would hardly be noticed in regular
RNA-seq analysis due to their low mappability.

To investigate repeat-based patient subgroups, we per-
formed clustering of tumors based on the most frequent
repeat elements in Figure 3A: AluSx, L1P1 orf2, and
L1P3 orf2 (as FLAM repeats are a family of Alu-like
monomers that give birth to the left arms of the Alu ele-
ments, we did not account for FLAM C 1 143). K-means
clustering with k varying from 2 to 4 groups consistently
found two major subgroups: subgroup 1 (‘repeat-low’) dis-
played generally low expression of Alu and L1 repeats com-
pared to subgroup 2 (‘repeat-high’) (Figure 4A).

We then related the two repeat subgroups with so-
matic alterations observed in TCGA patients. Patients in
the repeat-high group were more frequently mutated in
LUAD drivers CSMD3, TP53, EGFR, PTPRD, PTPRT,
GRIN2A, EPHA3 and MB21D2 (Figure 4B, Fisher P <
0.05). Patients in the repeat-high group had a significantly
higher TMB (Wilcoxon P = 1.5e-07) and a higher ratio of
CNVs than other patients (Wilcoxon P = 5.5e-05 for gain;
P = 0.019 for loss) (Figure 4C). We finally compared re-
peat subgroups for immune cell contents predicted by gene
expression deconvolution. The repeat-high subgroup had a
lower overall immune content than the repeat-low subgroup
(Figure 4D).

In summary, properties of ‘repeat-high’ tumors are con-
sistent with previous observations that derepression of TEs
can be controlled by P53 (48,52), correlate with a repressed
immune environment (8,47,52,49) and can lead to genome
instability (46).

Immune cell-associated contigs

We extracted DE contigs correlating with predicted immune
cell contents in both LUADtcga and LUADseo cohorts

(Additional File 1: Supplementary Figure S8A, S8B). Most
contigs were uniquely mapped to genic sequences and un-
derexpressed in tumors. Positive correlations were consis-
tently observed in both cohorts with M1/M2 macrophages
and resting cells, i.e. with a generally repressive or quiescent
immune environment. In both cohorts, most immune cell-
associated contigs were from leukocyte-specific or immu-
nity related genes (e.g. MSA4A7, MSR1, OSCAR, TLR8,
etc.), suggesting these contigs originated from the immune
cells themselves.

In the LUADseo cohort, two contigs positively correlated
with naive CD4+ T-cells (Additional File 1: Supplemen-
tary Figure S8B). One of them was strongly repressed in
tumors and matched a Klebsiella pneumoniae rRNA frag-
ment. Klebsiella is a common lung bacterium against which
cross-reactive T-cells are present in the naive CD4+ T-cell
repertoire (53). This result thus suggests the joint occur-
rence of Klebsiella and matching CD4+ T-cell in normal
lungs, and their disappearance in tumors. Of note, this Kleb-
siella contig also correlates positively with multiple contigs
in the SFTP gene (Additional File 2: Supplementary Table
S9), in line with SFTP roles in defense against respiratory
pathogens (54).

We noticed among immune cell-correlated contigs the
presence of HERV (human endogenous retrovirus) fam-
ily repeats overexpressed in tumors in both cohorts. An
HERV-E contig in the LUADseo cohort correlated with
CD4+ T-cells and was expressed from the env gene of a
near full-length retroelement. Relaxing correlation thresh-
olds on HERV contigs revealed several HERV-E elements
overexpressed in tumors and correlating with various types
of CD4+ T-cells, but also with CD8+ T-cells and NK-cells
in both cohorts (Additional File 1: Supplementary Figure
S9).

Novel sources of shared neoantigens enriched in lincRNAs

Tumors express a large diversity of transcripts that are
not usually expressed in normal tissues. When translated,
these transcripts can produce peptides recognized as non-
self by the epitope presentation machinery, triggering an-
titumor immune response (55). These tumor-specific anti-
gens or neoantigens are the object of active investigation
for immunotherapy and tumor vaccine development. Pro-
tocols for neoantigen discovery usually start from a list of
nonsynonymous somatic mutations identified from WES
or WGS libraries and whose expression is confirmed by
RNA-seq. Candidate mutated peptides are then submitted
to an epitope presentation prediction pipeline (56). This
protocol predicts potential neoantigens from annotated
and mappable regions. However, neoantigens can be pro-
duced from any transcript, including repeats and suppos-
edly non-coding lncRNAs (57,58). Therefore we thought
our reference-free approach could be a valuable source for
such elements.

We considered contigs with no expression in normal tis-
sues as potential neoantigen sources. To focus on shared
neoantigens, we further requested contigs to be expressed
in at least 15% of tumor samples. This selected 2375 contigs
in the LUADtcga dataset (Figure 5A). About 20% of these
contigs (N = 472) were also silent in normal tissues of the
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Figure 4. Characterization of patient subgroups based on repeat-containing contigs. (A) Clustering of LUADtcga patients into two subgroups based on
Alu and L1P1 repeat expression. Subgroups were defined by K-means. (B) Fraction of patients with driver mutations for 16 COSMIC LUAD drivers.
Drivers with Fisher P value < 0.05 were marked with star. (C) Mutational burden and CNV frequency distribution between two subgroups. (D) Variation
of immune features between subgroups. The red and blue represent the repeat-high and repeat-low subgroups, respectively. P-values are computed by
Wilcoxon test.

LUADseo cohort (Figure 5B). We evaluated the potential
of these ‘strictly tumoral’ contigs for neoantigen presenta-
tion. Fifty five strictly tumoral contigs produced peptides
predicted to be strong MHC-class-I binders by netMHC-
pan (Additional File 2: Supplementary Table S10). Al-
though potential neoantigen-producing contigs were found
in several categories and locations, intergenic location was
the most significantly enriched category (Additional File
1: Supplementary Figure S10). Overall, contigs from in-
tergenic regions, non-coding RNAs and pseudogenes con-
tributed 58% of predicted neoantigens (Additional File 2:

Supplementary Table S10), consistent with previous reports
of abundant neoantigen production from non-coding re-
gions in other cancers (58).

Repeats, intronic RNAs and lincRNA as survival predictors

To identify RNA elements associated with outcome, we re-
trieved overall survival (OS) data for the TCGA cohort
and performed univariate Cox regression with the differ-
ent classes of contigs. Thirty nine contigs were significantly
related to OS after multiple testing correction (Additional
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Figure 5. Expression heatmap of potential neoantigen sources in the two LUAD datasets. Tumor-specific contigs were first selected in LUADtcga (A) and
validated in the LUADseo dataset (B).

File 2: Supplementary Table S11). Outcome-related con-
tigs are mostly enriched in repeats (Additional File 2: Sup-
plementary Table S12), especially HERV elements (4 out
of the 10 top repeats) and Alu/L1 family elements (AluSx
and L1P3 orf2). While HERV elements expression was al-
ways negatively related to OS, the trend for other repeats
was variable, with different Line1 and Alu elements hav-
ing either positive or negative relation to OS (Additional
File 2: Supplementary Table S11). Another interesting OS-
related element was a novel splice variant in ELF1, a
transcription factor of the ETS family involved in multi-
ple cancers (Additional File 2: Supplementary Table S11)
(59).

We then performed multivariate Cox regression using sets
of contigs selected by lasso regression within each contig
category and using differentially expressed genes (Addi-
tional File 2: Supplementary Table S13). Models based on
annotated and simple repeats had the best prognostic power
(log-rank P = 2e-16, 2e-13, respectively, Figure 6). The ‘an-
notated repeat’ model was based on 12 contigs, including
six L1 and three HERV elements, reinforcing the relevance
of these repeats for prognosis. The ‘simple repeat’ model in-
cluded 12 contigs with microsatellite-like repeats, of which

11 were uniquely mapped to the genome (Additional File 2:
Supplementary Table S13). Other strong outcome predic-
tors were obtained using lincRNA, intronic and unmapped
contigs, all of which achieved a better patient stratification
than a model based on DE genes (Figure 6).

Unsupervised sample clustering based on non-reference
RNAs

To investigate the capacity of non-reference RNAs to dis-
tinguish tumor and normal tissues in an unsupervised fash-
ion, we performed PCA clustering of samples using contigs
from each class (Figure 7). Tumor and normal tissues can
be distinguished based on SNV, splice, intron, and lincRNA
event classes as clearly as based on differentially expressed
genes (‘DEG’ in Figure 7). This capacity is consistently ob-
served in both cohorts. However, while many repeats are
important with respect to tumor subclasses and survival,
repeats altogether do not permit a clear separation of tu-
mor and normal tissues in unsupervised clustering. Classes
‘polyA’, ‘split’ and ‘unmapped’ did not achieve clear sepa-
ration either, which was more expected as these sets were
much smaller in size.
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Figure 6. Kaplan–Meier curves of multivariate survival models per class of event. Patients in high and low-risk groups are shown in red and blue, re-
spectively. Repeat events were separated into annotated, new and simple repeats. The other categories with more lasso-selected contigs were also included
(Additional File 2: Supplementary Table S12).

DISCUSSION

Using reference-free analysis of LUAD RNA-seq data, we
identified a large set of differential RNA elements that
were present in two independent LUAD cohorts. We clas-
sified these elements based on their genomic location, map-
ping characteristics and repeat contents. We did not analyze
in detail all contig classes but focused instead on contigs
mapping to hypervariable genes, repeats, lincRNAs and in-
tronic elements. Besides these, a number of splice variants,
chimeras, exogenous (non-human) sequences were found
differentially expressed and may be pursued further.

A defining class of differential events involved endoge-
nous repeats. The expression of L1 and Alu repeats defined
two major tumor subgroups. The subgroup with higher
L1/Alu expression was associated with more frequent mu-
tations in P53, a higher mutational and copy number bur-
den and a reduced immune cell infiltrate, recapitulating
prior knowledge on the effects of TE reactivation (8,47–
49,52,52).

Expressed repeats also had significant prognostic power.
Multivariate signatures composed of HERV and L1 ele-
ments, or simple repeats, stratified patients into distinct
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Figure 7. Principal component analysis of samples based on DE contigs and genes. Each panel represents PCA performed with one class of contigs and
with differentially expressed genes (DEG), for the LUADtcga (TCGA) and LUADseo (SEO) datasets. Normal and tumor samples are marked using circles
and triangles, respectively. Confidence ellipses are drawn with package factoextra for each group.

survival groups. HERV contigs were among the strongest
outcome predictors, with least favorable outcome for
higher HERV expression, in line with previous observa-
tions of HERV expression associated with poor prognosis
in melanoma, breast and colorectal cancer (60–62).

A limitation of k-mer approaches for TE analysis is that
transcripts are not fully assembled and thus the nature of
repeats, whether expressed as functional retroelements or
as part of mRNA or lncRNAs cannot be systematically
established. Nonetheless, the majority of DE contigs are
long enough to enable unambiguous mapping on the hu-
man genome; hence their origin may be further explored,
including when coming from novel insertion events. Fur-
thermore, it should be noted that conventional read map-
ping does not guarantee either that full-length TEs are ex-
pressed.

An alternative strategy for reference-free RNA-seq anal-
ysis is to assemble reads first using de novo assembly soft-

ware. However, this process is error-prone (63,64) and com-
putationally intensive. Kazemian et al. achieved de novo as-
sembly of over a thousand TCGA samples (65), but this
was restricted to unmapped reads, therefore missing most
RNA variations. More recently, an assembly-first strategy
was introduced to identify patient-specific abnormal tran-
scripts under a ‘1 to n’ experimental design (66). De novo
read assembly produces longer contigs, which facilitates bi-
ological interpretation and is better suited to large struc-
tural variants. With insertions longer than the size of a k-
mer, de novo assembly can recover the whole insertion while
k-mer assembly may end up with two contigs. However our
‘DE-first’ strategy retains many advantages. First, by re-
moving condition-irrelevant k-mers at the initial stage, it
significantly reduces computing costs and limits risks of
mis-assembly. Second, as our assembly process stops when
ambiguities are met, every variation is singled out; thus ev-
ery SNV, splice junction or other type of local event is in-
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dependently quantified and its association to disease can be
assessed.

An attractive aspect of reference-free RNA-seq analysis is
the capacity to identify novel forms of known cancer drivers
or biomarkers. We identified novel intron retention events in
EGFR and MET and multiple new variants of CEACAM5
and KR19. Perhaps even more interesting is the ability to
detect potential neoantigen sources in variant transcripts.
Tumor-specific neoantigens have previously been identified
from repeats and non-coding regions, mostly based on map-
ping strategies (55) but also reference-free using k-mers (58).
The reference-free approach casts a wider net as it collects
all events independently of their origin, including when aris-
ing from unmappable or profoundly rearranged regions. In-
deed we identified about 500 strictly tumoral contigs shared
by patients from the two independent cohorts, 55 of which
were predicted to produce MHC-class-I neoantigens. These
shared neoantigen candidates are of particular interest since
their targeting by antitumor therapy would potentially ben-
efit large patient groups.

The wealth of information uncovered in the present
study is a strong incentive to explore other applications of
reference-free transcriptomics, notably for building predic-
tive models. We (67) and others (68,69) are exploring this
kind of approach to classify cancer RNA-seq samples with
promising results. Finally, reference-free differential analy-
sis of the type used in this study could be of particular in-
terest in meta-transcriptomics projects where RNAs are se-
quenced from an environment containing unknown bacte-
rial, archaeal or eukaryotic species. Our protocol guaran-
tees that any RNA that is specific to a sample subset will be
captured independently of its origin. We hope the present
analysis will encourage others to explore other data sources
in a reference-free manner.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Cancer online.
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et al. (2018) Noncoding regions are the main source of targetable
tumor-specific antigens. Sci. Transl. Med., 10, eaau5516.

59. Sizemore,G.M., Pitarresi,J.R., Balakrishnan,S. and Ostrowski,M.C.
(2017) The ETS family of oncogenic transcription factors in solid
tumours. Nat. Rev. Cancer, 17, 337–351.

60. Hahn,S., Ugurel,S., Hanschmann,K.-M., Strobel,H., Tondera,C.,
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