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Abstract

Background: Inhaled nitric oxide (iNO) is one of the most promising therapies used in neonates. However, little information
is known about its impact on the developing brain submitted to excitotoxic challenge.

Methodology/Principal Findings: We investigated here the effect of iNO in a neonatal model of excitotoxic brain lesions.
Rat pups and their dams were placed in a chamber containing 20 ppm NO during the first week of life. At postnatal day (P)5,
rat pups were submitted to intracranial injection of glutamate agonists. At P10, rat pups exposed to iNO exhibited a
significant decrease of lesion size in both the white matter and cortical plate compared to controls. Microglia activation and
astrogliosis were found significantly decreased in NO-exposed animals. This neuroprotective effect was associated with a
significant decrease of several glutamate receptor subunits expression at P5. iNO was associated with an early (P1)
downregulation of pCREB/pAkt expression and induced an increase in pAkt protein concentration in response to excitotoxic
challenge (P7).

Conclusion: This study is the first describe and investigate the neuroprotective effect of iNO in neonatal excitotoxic-induced
brain damage. This effect may be mediated through CREB pathway and subsequent modulation of glutamate receptor
subunits expression.
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Introduction

Brain injury in the premature infant is a problem of major

importance. Approximately 10 percent of the survivors from very

preterm birth later exhibit cerebral palsy (CP) and an additional

25 to 50 percent exhibit cognitive, attentional, and/or behavioral

deficits. These neurologic disabilities observed relate in consider-

able part to cerebral white matter injury [1]. Factors that seem

involved in the pathophysiology of CP in these models include

hypoxia and ischemia, infection and inflammation, excitotoxicity,

accumulation of reactive oxygen species, and deficiencies in

growth factors [2,3]. These factors seem to act in combination to

cause damage to the developing white matter.

Glutamate accumulation may be a mechanism common to

many risk factors for CP. Glutamate, the major excitatory

neurotransmitter, acts via several groups of receptors, namely,

N-methyl-D-aspartate (NMDA) receptors, alpha-3-amino-hy-

droxy-5-methyl-4-isoxazole (AMPA) receptors, kainate receptors,

and metabotropic receptors (mGluRs). Excessive activation of

glutamate receptors may cause cell vulnerability, in part as a result

of intracellular calcium influx [4,5]. Intracerebral injection of

glutamate agonists into the neocortex and white matter of

newborn rodents produces histological lesions that mimic the

brain damage observed in preterm neonates [6–8]. In addition to

excitotoxicity, nitric oxide is recognized as being a key modulator

of risk factors involved in CP, by regulating vascular tone,

reperfusion, inflammation and oxidative stress [9,10].

Despite considerable advances in our understanding of the

pathophysiology of brain damage during development, therapeutic

options are still extremely limited. Inhaled nitric oxide (iNO) is one

of the most commonly used therapies, promising but also

controversial, in neonatal intensive care units. This molecule is

thought to have only a local effect, limited to the vascular tone of

the lungs, and has been proposed to treat pulmonary hyperten-

sion-related hypoxemia and chronic lung disease. However,

increasing experimental and clinical evidences suggest that iNO

could also have an impact on the developing central nervous

system [11,12].

Here, we describe the neuroprotective effect of iNO in neonatal

excitotoxic-induced brain damage. This effect appears to be

mediated through pAkt-pCREB pathway and subsequent modu-

lation of glutamate receptor subunits expression.
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Materials and Methods

Ethics statement
Full details of the study have been approved by Robert Debré

research council review board; the approval number is 2009-02.

All experiments were carried out in compliance with the ethical

rules of INSERM.

Animals and model of excitotoxic brain lesions
Twenty-four hours before delivery, pregnant female rats

(Sprague-Dawley, Janvier, Le Genest-St-Isle, France) were placed

in a normoxic, normocapnic gas chamber containing either 5 or

20 ppm inhaled NO and ,1 ppm NO2 for postnatal days (P) 0 to

7. The concentration of NO and NO2 was monitored using the

iNOvent system (INOTherapeutics, Clinton, NJ).

P5 rat pups of both sexes were used for this study. Ibotenate

(Tocris, Bristol, UK), NMDA (Tocris) and S-Willardiine (Tocris)

were diluted in phosphate buffer saline (PBS). Ibotenate activates

NMDA and metabotropic glutamatergic receptors while S-Will-

ardiine activates both AMPA and kainate receptors. Ibotenate

(10 mg), NMDA (4 mg) or S-Willardiine (15 mg) was injected

intracerebrally on P5 to rat pups, as previously described [6].

Briefly, rat pups anesthetized with isoflurane were kept under a

warming lamp to maintain body temperature. They were injected

intracerebrally (into the neopallial parenchyma) on P5. Intracere-

bral injections were performed with a 26-gauge needle on a 50 ml

Hamilton syringe mounted on a calibrated microdispenser. The

needle was inserted 2 mm below the external surface of skin. The

tip of the needle was placed in the frontoparietal area of the right

hemisphere, 2.5 mm from the midline in the lateral-medial plane,

and 4 mm from the bregma in the rostro-caudal plane. It was

confirmed by histopathological observation that the tip of the

needle always reached the periventricular white matter. Two 1 ml

boluses of ibotenate, NMDA or S-Willardiine were injected at 20

second intervals. The needle was left in place for an additional 20

seconds.

In a first set of experiments, P5 rat pups were intracerebrally

injected with PBS. Pups treated with intracerebral PBS injections

had minimal lesions, mostly consisting of needle tracks, as

previously reported [13]. Therefore, control animals were kept

into room air and treated animals were exposed to iNO.

At least 12 animals of each treatment group were killed by

decapitation 5 days after the injection, and the brains were

processed as previously described [14]. In all the experiments

described below, two investigators blinded to treatment group

determined the size of the lesion in each pup.

Determination of lesion size
Rat pups were sacrificed by decapitation 5 (P10) or 25 (P30)

days after the excitotoxic challenge. Brains were fixed immediately

in 4% formalin and remained in this solution for 5 days. Following

paraffin embedding, we cut 16-mm thick coronal sections. Every

third section was stained with cresyl-violet. The size of neocortical

and white matter lesions can be defined by the length on three

orthogonal axes: the lateral-medial axis (in a coronal plane), the

radial axis (also in a coronal plane, from the pial surface to the

lateral ventricle), and the fronto-occipital axis (in a sagittal plane).

In previous studies [6,14], we found an excellent correlation

among the measurements from the three axes of the excitotoxic

lesions. Based on these findings, we cut serial sections of the entire

brain in the coronal plane for this study. This permitted an

accurate and reproducible determination of the sagittal fronto-

occipital diameter (which is equal to the number of sections where

the lesion was present multiplied by 16 mm). We used this measure

as an index of the lesion volume.

Immunohistochemistry
In each experimental group, we studied 6 to 10 pups in three

separate experiments. Immunolabeling with the primary antibod-

ies listed in File S1 was visualized using the streptavidin-biotin-

peroxidase method as previously described [15].

Immunoreactive cells were counted in the white matter

underlying the cortex (+2.16 to 20.36 mm from the bregma) in

animals sacrificed on P10. Cells were counted within a 0.25 mm2

grid, in at least 4 sections per animal, and 6 or more animals per

group.

Optical density of pCREB-positive cells
The optical density of pCREB-immunoreactive cells was

measured in the cortical plate in coronal sections (+2.16 to

20.36 mm from the bregma). At least 4 sections each from 6 to 10

animals per group, sacrificed on either P1 or P7, were examined.

Optical density was measured at 206 magnification using a

computerized image analysis system (ImageJ, NIH, MA, http://

rsb.info.nih.gov/ij/). Nonspecific background density was mea-

sured at each brain level in an area devoid of pCREB

immunostaining, and subtracted from the values for the cortex.

Quantitative real-time PCR
DNA-free total RNA from the brain cortex including the white

matter was obtained using a protocol adapted from Chomczynski

and Sacchi [16]. Quantitative RT-PCR was used to assess gene

expression for VEGF, VEGF-R1 and 2 and for glutamate receptor

subunits GluR1–4, NR1, NR2A, NR2B, NR2C and NR2D and

mGluR1–8. To standardize gene expression across samples, we

first compared the expression levels of four well-known house-

keeping genes within the samples. For reverse transcription, we

used 600 ng of total RNA and the Iscript cDNA synthesis kit (Bio-

Rad, Hercules, CA). Real-time PCR was set up with Supermix

(Bio-Rad) containing syber green for 50 cycles with a three-step

program. Each reaction was run twice with a least 6 animals per

group, and in both cases, samples were assessed in triplicate. The

applied primers for real time-PCR have been previously reported

[17].

Western Blot
Membrane proteins were extracted from forebrain cortex,

including white matter, taken in P1 and P7 rat pups. Extraction

was achieved by homogenization in Hepes buffer containing

protease inhibitors from Sigma, according to the manufacturer’s

instructions. We loaded 50 mg of protein from each sample were

incubated overnight with either a Akt, pAkt, pCREB, ERK1/2 or

pERK1/2 antibody or an anti-a-actin antibody. Western blot

experiments were run in triplicate with at least 4–6 animals (see

File S1).

ELISA assays
We used specific ELISA assays from R&D system Europe (Lille,

France) to quantitate VEGF and cAMP Response Element

Binding Protein (CREB) phosphorylated at S133 levels in the

whole brain samples according to the manufacturer’s instructions.

Statistical analysis
All data were reported as means 6 S.E.M. Analysis of variance

was performed with age and groups as the factors, and the

Newman-Keuls post-hoc test was used. Statistical tests were run on

NO and Brain Damage
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GraphPad Prism version 4.00 (GraphPad Software, San Diego,

CA).

Results

Effect of iNO on brain lesion induced by intracranial
injection of various glutamate agonists

Rat pups injected on P5 with ic ibotenate, NMDA or S-

Willardiine developed cortical lesions and periventricular white

matter cysts in all cases. The cortical lesion was typically

characterized by neuronal loss in all neocortical layers and almost

complete disappearance of neuronal cell bodies along the axis of

excitotoxin injection. In P5 rats, iNO 20 ppm induced a significant

neuroprotection of both the cortical plate and the developing white

matter against ibotenate- or NMDA-induced lesions (Figure 1A, C–

D); in contrast, iNO induced a moderate neuroprotection of the

cortical plate but not white matter of S-Willardiine-induced brain

lesions when observed on P10 (Figure 1A). The protective effect of

iNO was dose-dependent as iNO at 5 ppm induced a non

significant trend to decrease the cortical and white matter lesion

size in excitotoxic-induced lesions (Figure 1B). No significant

neuroprotective effect was detected when rat pups were exposed

to iNO only after the excitotoxic challenge. No difference was

observed between male and female pups.

Because maximum neuroprotective effect was observed when

ibotenate injection was associated with iNO 20 ppm, further

experiments were conducted using this excitotoxin and iNO

concentration. In the developing white matter, iNO 20 ppm

reduced ibotenate-induced astrogliosis (GFAP) and microglial

activation (ED-1) when analyzed 5 days after the insult. Glial cells

counts were performed within external capsule around white

matter cyst (see Figure 1C). To analyze cell types in the glial scars

in the injured white matter, mature activated astrocytes density

was assessed by counting GFAP-positive cells with number of

processes and enlarged cell bodies in P10 rat pups (Figure. 2 A–B).

This density was found significantly higher in pups exposed to

room air compared to those exposed to iNO. Because ic injection

of excitotoxins was associated with infiltration of monocytes-

macrophages around white matter lesion, we measured microglial

cells density using ED-1, a marker for macrophages [13].

Activated microglial cells density was found significantly lower in

iNO-treated animals (Figure 2C). When compared to control

animals, iNO failed to increase the density of total population of

oligodendrocytes around the white matter lesion; similarly, iNO

was unable to improve the density of cells labelled with APC, a

marker of mature oligodendrocytes (Figure 2D).

Effect of iNO on glutamate receptors subunits gene
expression

Because excitotoxicity and genetic regulation of glutamate-

receptor expression are known to play a key role in brain damage

[17], we investigated whether glutamate-receptor gene expression

Figure 1. iNO confers neuroprotection in excitotoxic-induced brain lesion in neonatal rat. A. Quantitative analysis of lesion size in cortical
plate and white matter induced by ic injection of either ibotenate (ibo), NMDA or S-willardiine (will) in P5 rat pups with and without iNO exposure
(***p,0.001; *p,0.05). B. Dose-dependence of the neuroprotective effect of iNO at 5 and 20 ppm in rat pups subjected to ic injection of ibotenate
(**p,0.01; *p,0.05). C–D. Cresyl violet–stained sections showing brain lesions induced by ibotenate intracerebrally injected on P5 and studied at the
age of P10. iNO exposure reduced ibotenate-induced cortical lesion and white matter cyst (asterisk). Bar = 50 mm. Boxes delineate the regions in
which glial cell counts were performed.
doi:10.1371/journal.pone.0010916.g001
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was altered by iNO, and may account for the neuroprotective

effect of iNO. We assessed the expression of glutamate-receptor

subtypes using quantitative real-time PCR demonstrating a

downregulation of most of them just before the intracranial

injection of glutamatergic agonist in P5 rat pups. Significant 1.5 to

2-fold downregulation was observed for AMPA/kaı̈nate-receptor

subunits GluR1 and 4, the NMDA receptor subtypes NR1, 2B and

2D, and the metabotropic receptor subunits mGluR1, 3, 4, 5, 6, 7

in at least 6 animals in two separate experiments, compared to

normoxic controls (Figure 3). Again, no difference was observed

between male and female pups.

Signaling pathway involved in the neuroprotective effect
of iNO on excitotoxic-induced brain lesion

Finally, we explored a potential signaling pathway acting as a

common modulator of glutamate-receptor expression in response

to iNO. We hypothesized that CREB/Akt signaling pathway

might be involved as CREB is recognized to bind the CRE

sequence in the promoter of several glutamate receptor genes [18].

First, we found a significant reduction of pCREB protein

concentration 24 h after the onset of NO exposure in P1 but

not in P7 rat pups. This decrease was observed on ELISA assays,

immunocytochemistry and western blot as well as (Figure 4A–D).

To delineate upstream signaling pathways we further explore

VEGF-Akt and ERK expression in response to NO exposure. We

found that iNO was associated with a significant decrease in brain

VEGF concentration (ELISA) and gene expression (but no change

in VEGFR1 and VEGFR2 using qPCR). Furthermore, iNO

induced a decrease in Akt and phosphorylated Akt in P1 rat pups

(Figure 4E). In contrast, Erk1/2 expression was found similar in

iNO-exposed animals compared to controls (data not shown). In

contrast to these early effects of iNO on pAkt/pCREB expression

observed at P1, we found that iNO did not change pCREB protein

level and induced a significant increased of pAkt protein

concentration in P7 brains in response to excitotoxic challenge

(Figure 4E). Therefore, we speculate that complex modulation of

pAkt-pCREB signaling pathway by exogenous NO could be

involved in its impact on glutamate receptors regulation and

excitotoxic brain damage.

Discussion

We demonstrated here that iNO exposure during the first week

of postnatal life significantly reduced the lesion size in an

excitotoxic-induced brain lesions rat model. This effect appears

to be associated with early downregulation of pCREB expression

and subsequent downregulation of several glutamate receptors

subunits.

It is now well established that NO is a physiological mediator of

the central nervous system. The role of NO in developing brain

remains poorly understood, but it seems to be involved in the

Figure 2. iNO reduces glial reaction around excitotoxic-induced brain lesion in neonatal rat. A: Quantitative analysis of GFAP-positive
cells density in P10 rat pups with and without iNO exposure in cortical plate and white matter (***p,0.001). B: Coronal sections showing GFAP+ cells
within white matter in room air-exposed P10 rat pups (controls). Activated mature astrocytes displayed number of processes and enlarged cell bodies
(arrows). Bars = 50 mm. C: Quantitative analysis of ED1-positive cells density in P10 rat pups with and without iNO exposure around the white matter
lesion (**p,0.01). D: Quantitative analysis of Olig2- and APC-positive cells density in P10 rat pups with and without iNO exposure around the white
matter lesion.
doi:10.1371/journal.pone.0010916.g002
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regulation of cerebral blood flow, and in memory acquisition. In

fact, NO appears to be a double-edged sword, simultaneously

neurotoxic and neuroprotective. Numerous experimental studies

demonstrated the deleterious effects of nitrogen reactive species

accumulation in ischemic-reperfusion cerebral injury through

depletion of energy, lipid peroxidation, protein nitrosylation, DNA

alterations and increased permeability of the blood brain-barrier

[19–21]. Hypoxia-ischaemia results in inflammation, especially in

the developing white matter. High concentrations of NO and

peroxynitrite produced locally by activated microglia may become

toxic to neurons and immature oligodendrocytes in vitro [22,23]. It

is also well known that hypoxia-ischaemia results in the

accumulation of extracellular glutamate, inducing the excitotox-

icity cascade that causes neuronal death. More or less effective

neuroprotection can be achieved by using NOS inhibitors that

inhibit nNOS at the early phase and iNOS during the reperfusion

of hypoxic insult [24].

In the other hand, endogenous NO could also result in

contradictory effects, probably as a function of the intracellular

redox state [25]. Endogenously produced NO in the brain also

regulates local blood flow and could therefore offer neuroprotec-

tion [21,26]. An increase in brain infarct volume has been

reported in the sheep and rat when NO production is decreased by

NOS inhibitors [27]. Transgenic mice helped dissect out the

respective contribution of nNOS, as the extent of the lesions after

medial cerebral artery occlusion is reduced in eNOS2/2 [28],

whereas secondary neuronal damage-induced by prolonged

ischemia is lessened in iNOS2/2 [29]. The protection conferred

on the ischemic brain by NO seems to be linked to vasodilatation

which improves cerebral blood flow and hinders capillary

microthrombi formation. Thus, NO seems to be beneficial on

the brain mostly through its vasodilatory effects, and maybe its

potentially proangiogenic effects.

In contrast to the numerous studies focused on endogenous NO,

almost no data was available on the experimental effect of

exogenous inhaled NO. Extrapulmonary effect of iNO on

reduction of myocardial infarction size and improved left

ventricular systolic function have been shown in a murine model

[30]. These studies demonstrate that an extrapulmonary vasopro-

tective effect of iNO is possible. There are several possible

mechanisms for neuroprotection with iNO as well, such as

modulation of circulating neutrophils, monocytes, and platelets as

they pass through the lung [31]. iNO down-regulates lung-derived

cytokines and free radicals production, which may lead to a

decrease in brain injury [32]. Another possible mechanism in

neuroprotection may relate to delivery of NO or NO-related

metabolites, such as hemoglobin-derived S-nitrosothiol or nitrites/

nitrates, which account for a distant vasodilatory activity [32,33].

NO may also play an important role in ischemic preconditioning

in vivo [34].

Clinically, the impact of iNO on the development of the central

system remains controversial. For many years, iNO was feared to

increase the incidence of intracranial haemorrhage in critically ill

preterm neonates, because NO was demonstrated to increase

bleeding time and inhibit platelet aggregation [35]. Later clinical

studies demonstrated there was no significant increase in

intracranial bleeding in preterm neonates [31]. Furthermore,

both Schreiber et al. [36], and Kinsella et al. [37] found a lower

incidence of severe brain damage in the iNO treated group,

respectively. More intriguing and exciting was the fact that this

short-term improvement translated into a significant improvement

in neurodevelopmental outcome in the group given iNO at two-

Figure 3. iNO dowregulates several glutamate receptor subunits gene expression. Relative gene expression of glutamate receptor
subunits in P5 rat pups subjected to 20 ppm iNO normalized to controls (***,0.001; **p,0.01; *p,0.05).
doi:10.1371/journal.pone.0010916.g003
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year follow-up, and this was primarily due to a 47% decrease in

the risk of cognitive impairment [38].

It is conceivable that a downregulation of glutamate receptors

could reduce the lesion size induced by glutamate agonists. Here,

we found that iNO-induced neuroprotection was associated with

an early downregulation of pCREB expression and downregula-

tion of several glutamate receptors subunits. CREB activates gene

transcription in response to elevation of intracellular cAMP levels

which in turn phosporylates CREB at Ser133. Phosphorylated

CREB binds to the cAMP response element (CREs), represented

by the palindromic consensus sequence TGACGTCA found in

the 59 flanking region of target genes [18]. This consensus

sequence was found in the 59 flanking region of most of the iNO-

regulated glutamate receptors genes (ie, NR1, NR2B, mGlu1, 3

and 6) but interestingly, was not found in the 59 flanking region of

NR2C gene which transcription was unchanged in iNO-exposed

rat pups (see Figure 2). Mutational analysis demonstrated that

transcription of NR1 and NR2B are regulated by the c-AMP

signaling pathway, most likely through the binding of CREB and

its activation by signal-dependent phosphorylation [18,39].

Conversely, glutamate receptor activation and subsequent calcium

influx may activate CREB shortly [40]. Moreover, most data

indicated that pAkt was found neuroprotective [41]. In our model,

CREB transcription level was found unchanged after the

excitotoxic insult and pAkt protein level was significantly increased

in response to excitotoxic challenge in P7 iNO-exposed rat pups as

compared to room air-exposed controls. In addition to calmodu-

line-dependent kinases and MAPK/ERK kinases pathways, the

Figure 4. pAkt-pCREB pathway is involved in the neuroprotective effect of iNO. A. Quantitative analysis of pCREB protein content of P1
and P7 brain measured by ELISA assay (*p,0.05). B. Quantitative analysis of cortical pCREB immunoreactivity optical density in P1 and P7 rat pups
subjected to iNO compared to controls (**p,0.01). C. Photomicrographs (with enlarged image) showing nuclear localization of cortical pCREB
immunostaining in P1 rat pups with (iNO) or without (Ctl) NO (20 ppm) exposure. The area of optic density measurement (B) is indicated by a square.
D, E. Quantitative analyses of western blot using pCREB (D) and pAkt (E) in response to iNO exposure (20 ppm) in P1 (before excitotoxic challenge)
and P7 (after excitotoxic challenge) rat pups (*p,0.05; **p,0.01).
doi:10.1371/journal.pone.0010916.g004
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accumulation of cAMP in response to G-protein-coupled receptors

also induces activation of Akt/proteine kinase B which directly or

indirectly affects CREB [42]. Here, our data suggest that

exogenous NO induced subtle modulation of Akt/CREb signaling

pathway in the developing brain. We speculate that iNO may

induce an early downregulation of pCREB and subsequent

upregulation of pAkt after excitotoxic insult leading to a decreased

expression of several genes including those encoding for glutamate

receptors subunits, and subsequent neuroprotection.

In conclusion, this study is the first to describe and to investigate

the neuroprotective effect of iNO in neonatal excitotoxic-induced

brain damage. This effect appears to be associated with changes in

VEGF-pAkt-pCREB and glutamate receptor subunits expression.

Further preclinical studies are needed to confirm the ability of iNO

to induce neuroprotection in other animal models of perinatal

brain damage.
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