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Abstract: Women outlive men, but life expectancy is not influenced by hormone replacement (estrogen + progestin) ther-

apy. Estrogens appear to protect brain, cardiovascular tissues, and bone from aging. Estrogens regulate genes directly 

through binding to estrogen receptors alpha and beta (ER  and ER ) that are ligand-activated transcription factors and in-

directly by activating plasma membrane-associated ER which, in turns, activates intracellular signaling cascades leading 

to altered gene expression. MicroRNAs (miRNAs) are short (19-25 nucleotides), naturally-occurring, non-coding RNA 

molecules that base-pair with the 3’ untranslated region of target mRNAs. This interaction either blocks translation of the 

mRNA or targets the mRNA transcript to be degraded. The human genome contains ~ 700-1,200 miRNAs. Aberrant pat-

terns of miRNA expression are implicated in human diseases including breast cancer. Recent studies have identified 

miRNAs regulated by estrogens in human breast cancer cells, human endometrial stromal and myometrial smooth muscle 

cells, rat mammary gland, and mouse uterus. The decline of estradiol levels in postmenopausal women has been impli-

cated in various age-associated disorders. The role of estrogen-regulated miRNA expression, the target genes of these 

miRNAs, and the role of miRNAs in aging has yet to be explored.  
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INTRODUCTION 

 Women live longer than men. Estrogens (estradiol, es-
trone, and estriol) are steroid hormones that regulate devel-
opment and homeostasis in a wide variety of tissues includ-
ing the brain, reproductive tract, vasculature, and breast. Es-
tradiol (E2) is synthesized in the ovary and is the primary 
estrogen in premenopausal women. Animal studies have 
shown that higher estrogen levels in females protect against 
aging by upregulating the expression of antioxidant, longev-
ity-related genes, e.g., selenium-dependent glutathione per-
oxidase (GPx) and Mn-superoxide dismutase (Mn-SOD) [1], 
by protecting against stroke-related injury [2], by vasorelax-
ing effects [3], by direct myocardial protection [4], and by 
activating the insulin receptor substrate (IRS)-1 signaling 
pathway [5]. Women’s life expectancy seems not to be influ-
enced by hormone replacement therapy (HRT = estrogens 
plus a progestin, usually conjugated equine estrogens and 
medoxyprogesterone acetate (MPA)) in postmenopausal 
women, but atherosclerosis and bone loss are considerably 
delayed. In addition, HRT protects against Alzheimer’s dis-
ease (AD) [6], perhaps by suppressing elevated gonadotropin 
levels, i.e., luteinizing hormone (LH), in postmenopausal 
women since elevated LH is thought to play a key role in AD 
pathogenesis [7]. Other age-associated impairments are also 
reduced by estrogen. For example, premenopausal women 
have a reduced risk for cataracts compared with men of the 
same age group and women in the Farmingham study who 
used estrogen replacement therapy (ERT) showed reduced  
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risk for cataracts [8]. miRNAs are a class of naturally-
occurring, small, non-coding RNA molecules that are related 
to, but distinct from, small interfering RNAs (siRNAs) 
which regulate mRNA translation or stability [9-11]. There 
are very few studies on the hormonal regulation of miRNAs 
expression. Select changes in microRNA (miRNA) expres-
sion correlate with diagnostic markers used in breast cancer 
therapies, e.g., estrogen receptor  (ER ) and tumor grade 
[12-22]. However, there are only 5 reports that E2 regulates 
miRNA expression that will be reviewed here. It is highly 
likely that hormones play a major role in regulating miRNAs 
by both genomic (transcriptional) and non-genomic mecha-
nisms of action. Identification and characterization of estro-
gen-regulated miRNAs may provide new biomarkers and 
therapeutic targets in aging as well as in diseases including 
breast cancer.  

Genomic ER Activities 

 Initiation of transcription is a complex event occurring 
through the cooperative interaction of multiple factors at the 
target gene promoter. I will use the term ER to refer to either 
ER  or ER  or to both subtypes. I will refer to each subtype 
individually as pertinent to the known functions of these two 
proteins. Estrogen action is primarily mediated through bind-
ing to ER. ER  and ER  are members of the steroid/nuclear 
receptor superfamily of proteins of which there are 48 mem-
bers in mammals [23]. ER  and ER  are highly conserved 
within the DNA binding domain (DBD, C domain), but dif-
fer in their N- and C- termini [24]. Structurally, ER has 6 
domains lettered A-F from N- to C-terminus. ER is believed 
to be the ancestral steroid receptor originating 600-1200 mil-
lion years ago, presumably because of the role of estrogens 
in reproduction and maturation [25, 26].  
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 In the simplest model, the binding of estradiol (E2) via 
hydrogen bonding to residues within the ligand binding 
pocket of the ligand binding domain (LBD, E domain) re-
sults in conformational changes termed activation [27]. 
These conformational changes induced by E2 binding result 
in loosening of contact between the N-terminus and the C-
terminus of ER  and exposes nuclear localization signals 
within the DNA binding domain (DBD, C domain) and 
hinge region (D domain) as well as altering structure of the 
LBD [28]. Crystal structure studies of the LBD of ER  ex-
cluding the F domain shows that the LBD has 12 alpha heli-
ces and E2 binding repositions helix 12 such that activation 
function-2 (AF-2) is exposed [29]. Helix 12 acts as a 
“switch” controlling accessibility of the coregulator interac-
tion site. Ligand binding also facilitates ER dimerization 
(homodimerization or heterodimerization of ER  and ER ).  

 E2-liganded ER interacts directly with a specific DNA 
sequence called the estrogen response element (ERE = 5’-
AGGTCAnnnTGACCT-3’), historically located in the pro-
moter region and currently established to be located at great 
distances from the transcription start site including in the 3’ 
flanking regions of target genes [30-34]. DNA binding in-
creases ER interaction with basal transcription factors and 
coregulator proteins (reviewed in [35]). Fig. (1) depicts es-
sential features of genomic ER action. EREs are enriched in 
genes upregulated by E2-ER , at least in MCF-7 cells [36]. 
ER  can also be activated by phosphorylation of ser118 in 
the N-terminal A/B domain that activates activation func-
tion-1 (AF-1) in the absence of ligand binding [37]. At least 
in HeLa cells transfected with fluorescent fluorescent-tagged 
ER  (GFP- or CFP- ER ), E2 causes rapid intracellular and 
intranuclear movement of ER  to form punctuate nuclear 
speckles that appear to indicate ER -nuclear matrix interac-
tion [38-40]. In addition to direct ER-ERE binding, ER also 
activates transcription via a “tethering mechanism” in which 
ER interacts directly with transcription factors, e.g. Sp1 [41] 
and AP-1 [42], bound to their response elements. These 
DNA-protein and protein-protein interactions recruit coacti-
vator/chromatin remodeling complexes resulting in histone 
modifications that lead to nucleosomal remodeling, in-
creased accessibility to the DNA template for RNA polym-
erase II interaction, and increased target gene transcription 
(reviewed in [43-45]). 

 By definition, coactivators are proteins that interact di-
rectly with transcription factors to enhance transcription 
[46]. It is important to note that the term coactivator or 
corepressor is used when referring to an ER (or other NR) 
coregulator is gene-, cell-type, and context- specific [47]. 
This indicates that proteins classified as coactivators can also 
repress transcription and corepressors such as SMRT are 
gene- and cell- specific coactivators for ER [48]. Coactiva-
tors promote the assembly of the transcription initiation 
complex in part by altering chromatin structure and ‘loosen-
ing’ DNA-histone interactions, facilitated by increased his-
tone lysine residue acetylation, methylation, ubiquitination, 
or sumoylation [49]. Once the transcription initiation com-
plex is complete, RNA polymerase II (RNA pol II) is re-
cruited to the transcription start site and begins transcription. 
By my count, at least 60 different ER coactivators and 23 
corepressors have been functionally identified (reviewed in 
[43, 50, 51], see also http://www.nursa.org/index.cfm). The 

current model predicts that ERE-bound, agonist-liganded ER 
recruits coactivator proteins to enhance gene expression [52]. 
In contrast for those genes at which tamoxifen (TAM) is an 
antagonist of ER transactivation, the LBD of TAM- occu-
pied ER  does not interact with coactivators due to key con-
formational differences between agonist and antagonist – 
occupied ER  in AF-2 [53]. TAM-occupied ER  interacts 
with corepressors, e.g. NCoR or SMRT [54-58], that recruit 
histone deacetylase (HDAC) complexes thus keeping chro-
matin condensed and blocking transcriptional activation. 
Antiestrogen ICI 182,780 (Fulvestrant)-occupied ER  is 
targeted to the 26S proteasome for degradation [40, 59]. In 
contrast, although ICI 182,780 inhibits ER -mediated tran-
scription, it stabilizes the ER  protein [60].  

Nongenomic Estrogen Action 

 In addition to its classical genomic/transcriptional effects 
mediated by ER-DNA interaction, described above, E2 has 
rapid “nongenomic, extra-nuclear, or membrane-initiated” 
effects that occur very rapidly, i.e., within seconds-minutes 
after E2 administration [61-64]. These effects are independ-
ent and distinct from the genomic, i.e., ER-mediated tran-
scription, activities reviewed in the preceding section. Fig. 
(1) highlights some of the established nongenomic activities 
of ER. Rapid estrogen-stimulated intracellular activities are 
mediated by plasma membrane (PM)-associated ER and/or 
by an ‘orphan’ G-protein coupled receptor GPR30 [65]. Evi-
dence of a PM-associated ER population is supported by 
experiments in which a cell-impermeable E2–bovine serum 
albumin or other E2-conjugate was shown to rapidly initiate 
intracellular kinase cascade activities including MAPK/ERK 
(p42/p44 MAPKs), endothelial nitric oxide synthase (eNOS), 
and PI3K/AKT [66-75]. In MCF-7 cells, E2 rapidly increased 
PIP2-phospholipase C activity [76], mobilized intracellular 
Ca

2+
, activated MAPK [62, 77-96], and PI3K/AKT [87, 97-

102]. Immunohistochemical techniques have visualized 
membrane ER  in a variety of cell types including endo-
metrial and breast cancer cells [103], pituitary cells [104], 
and lung cancer cells/tumors [91]. ER  was shown to be 
located in the PM of primary cortical neurons in recent con-
focal imaging studies [105]. Overall, the PM localization of 
ER appears to be cell type-specific.  

 Premenopausal women have a lower risk of developing 
cardiovascular disease [106, 107] and hypertension than men 
or post-menopausal women and estrogens are thought to be 
responsible for regulating peripheral resistance [108] as well 
as effects in the myocardium [106]. Many of the cardiopro-
tective activities of E2 may be mediated by nongenomic sig-
naling. Cumulative studies show that a subpopulation of in-
tact ER  is associated with the endothelial PM and with 
caveolae [61]. Recent electron microscopy studies revealed 
nuclear, cytoplasmic, and plasma membrane localization of 
both ER  and ER  in human umbilical vein endothelial cells 
(HUVEC) [109]. ER  [79, 110] has been shown to interact 
with caveolin-1 (Cav-1) which serves as a structural core for 
interaction of plasma-membrane-associated proteins includ-
ing the -subunit of G-proteins, Ha-Ras, Src-kinases, eNOS, 
epidermal growth factor (EGF) receptors, and some protein 
kinase-C isoenzymes [110]. E2-ER  interaction within 
caveolae leads to G i activation, MAPK and Akt signaling, 
and perturbation of the local Ca

+2
 environment, leading to 
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eNOS phosphorylation and NO production [61]. Endothelial 
PM-associated ER  is coupled via a G i to MAPK and 
eNOS [111].  

 The mechanism by which ER  and its splice variant 
ER 46 localizes to the PM involves palmitoylation [112-
115]. In addition, ER interaction with intracellular proteins is 
important in PM association. In MCF-7 cells, the adaptor 
proteins Shc shuttles ER  from the nucleus to the PM where 
ER  interacts with the IGF-1 receptor (IGF-1R) [89, 96]. 
Similarly, another scaffold protein, called MNAR (modula-
tor of nongenomic activity of ER), has been implicated in 
ER -cSrc interaction and MAPK signaling [85, 95, 98, 116-
128]. A role for a membrane caveolae-localized ER 46 in 
rapid NO release via PI3K/Akt activated eNOS has been 
reported in endothelial cells [112, 123, 129, 130].  

 In addition to PM-associated ER, GPR30 has reported to 
serve as a membrane estrogen receptor because it binds E2 

with high affinity (Kd = 2.7nM) and activates adenylate cy-
clase, thus increasing cAMP levels [70, 73, 131-134]. 
GPR30 is distinct from ER  and ER  in that ICI 182,780 
and tamoxifen also bind GPR30 with high affinity and 
mimic the effects of E2 [133]. Although the role of GPR30 in 
MCF-7 and SKBr3 breast cancer cells has been questioned 
[62], it appears likely that GPR30 is a bone fide membrane 
estrogen receptor in some cell types [135-141].  

MicroRNAs (miRNAs) 

 Evidence from the Encyclopedia of DNA project (EN-
CODE) has revealed surprising new information about the 
human genome. For example, although the protein coding 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Cell model showing genomic and nongenomic activities of ER  and ER . ER  and ER  are located in the cytoplasm and nucleus, 

bound to Caveolin-1 in caveolae in the plasma membrane and inside mitochondria. For genomic (nuclear) ER activity, E2 binds and activates 

ER resulting in dimerization, ERE binding or interaction with other transcription factors, e.g. AP-1 bound to DNA, coregulator and chroma-

tin remodeling complex recruitment, chromatin remodeling, and increased transcription of target genes. For nongenomic/membrane-initiated 

estrogen signaling, E2 binds ER  in caveolae in the plasma membrane [112, 215]. ER  interacts with G-proteins, the p85 subunit of PI3K, c-

Src, and Cav-1 to initiate PI3K/AKT and MAPK signaling cascades [61, 216]. ER  interacts with MNAR [127] and Shc [89] in the cyto-

plasm. ER  interacts with the EGF- and IGF-1 receptors in plasma membranes. In mitochondria, ER  interact with the D-loop of mtDNA 

[217, 218].  
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regions account for only 2% of the total DNA in the human 
genome, surprisingly, 80-93 % of the genome is “expressed” 
[142-144]. The transcribed RNAs are largely conserved be-
tween humans and mice suggesting that these noncoding 
RNAs (ncRNAs) have important functions. Evidence of the 
importance of the various types of ncRNAs was recently 
reviewed [145] and includes roles in cancer, diabetes, and 
coronary disease, all aging-associated disorders. Among the 
small ncRNAs are microRNAs (miRNAs). The importance 
of miRNAs is highlighted by the fact that the 2008 Albert 
Lasker Award for Basic Medical research was awarded to 
Drs. Victor Ambros [146] and Gary Ruvkun [147] who dis-
covered and characterized the first miRNAs in C. elgans and 
Dr. David Baulcombe who discovered let-7 miRNA in plants 
[148] (see also http://www.laskerfoundation.org/).  

 miRNAs are a class of naturally-occurring, small, non-
coding RNA molecules that are related to, but distinct from, 
small interfering RNAs (siRNAs) [9-11]. About half of 
miRNAs are expressed from introns of protein-coding tran-
scripts and miRNAs have 5' and 3' sequence features that 
form boundaries including transcription start sites, CpG is-
lands, and transcription factor binding recognition elements 
[149]. miRNAs may be differentially processed from the 
sense and antisense strands of the same hairpin RNA or tran-
scripts from the same locus, thus expanding the number of 
miRNAs from a single genomic locus [145].  

 The pathway of mature miRNA biogenesis is depicted in 
Fig. (2). miRNA genes are mostly transcribed by RNA po-
lymerase II into primary-micro-RNAs (pri-miRNAs) that are 

capped and polyadenylated [150]. Pri-microRNAs contain 
self-base-pairing stem-loop structure that is necessary for 
critical processing within the nucleus by Drosha, an endonu-
clease of the RNAse III family, and its cofactor DGCR8 into 
short (60 to 70 nt) imperfect hairpin structure precursor-
miRNAs (pre-miRNAs) [151]. These pre-miRNAs are ex-
ported from the nucleus by exportin and Ran-GTP. Pre-
miRNAs are processed by the cytoplasmic RNAse II enzyme 
Dicer to form mature ~22 nt transiently double-stranded 
miRNA duplexes that are transferred to Argonaute proteins 
(Ago1, Ago2, Ago3, and Ago4 [152]) in the RNA-induced 
silencing complex (RISC), leading to unwinding of the du-
plexes to form single stranded microRNAs. RISC guides 
RNA silencing with the miRNA binding either to the 3’ un-
translated region (3’ UTR) or to the open reading frame 
(ORF) of its target mRNA [153-156]. Most commonly, be-
cause of imperfect complimentarity of the base pairing be-
tween the miRNA and the 3’UTR, the RISC complex causes 
translational repression by RISC interaction with eIF6 which 
prevents assembly of 80S ribosomal assembly [157] or by 
inhibition of translation [16]. Thus, miRNA-mRNA 3’UTR 
interaction results in a decrease in target protein, not mRNA. 
The 7 to 8 nucleotide region of basepairing between the 5’ 
end of the mature miRNA and the mRNA is called the ‘seed 
sequence’. Base pairing of the miRNA-RISC complex within 
the ORF requires almost perfect complimentarity for its 
mRNA target and the mRNA is either degraded or transla-
tion is blocked [150]. The miRNA-containing ribonucleopro-
tein particle (miRNP)-silenced mRNA is directed to the P-
bodies, where the mRNA is either released from its inhibi-

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Model of miRNA biogenesis and function. Primary transcripts of microRNAs (pri-miRNAs) are transcribed by RNA polymerase II, 

processed by the RNAse III enzyme, Drosha and its cofactor DGCR8, to precursor microRNAs (pre-miRNAs) and are then exported from 

the nucleus by Exportin/RAN-GTP [150]. In the cytoplasm, pre-miRNAs are processed by the RNAse III enzyme, Dicer to form mature ~22 

nt transiently double-stranded miRNA duplexes that are transferred to Argonaute proteins (Ago1, Ago2, Ago3, and Ago4 [152]) in the RNA-

induced silencing complex (RISC), leading to unwinding of the duplexes to form single stranded miRNAs. The mature miRNAs bind either 

to the 3’ untranslated region (3’ UTR) or to the open reading frame (ORF) of its target mRNA [153-156]. Binding of miRNA/RISC complex 

with the 3’UTR causes translational repression [16]. Thus, miRNA-mRNA 3’UTR interaction results in a decrease in target protein, not 
mRNA. 
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tion upon a cellular signal and/or actively degraded [158]. 
Comparative genomics analyses have revealed that over 
45,000 miRNA binding sites within human 3'UTRs that are 
conserved above background levels [159]. This number was 
reported to indicate that more than 60% of human protein-
coding genes have been under selective pressure to maintain 
pairing to miRNAs [159]. Recent evidence indicates that 
miRNAs may also increase translation of select mRNAs in a 
cell cycle-dependent manner [160].  

 miRNAs have been demonstrated to play important roles 
in regulating various cellular processes including replication, 
differentiation, and apoptosis [11, 155, 161-176]. Since each 
of these processes play a role in aging, it is reasonable to 
suggest that altered expression and function of miRNAs 
regulate aging. The role of miRNAs in aging is completely 
unexplored. The human genome contains > 700-1,200 miR-
NAs http://microrna.sanger.ac.uk/sequences/ [149] and 
miRNAs are expressed in a tissue-specific manner [177]. 
Each miRNA targets ~ 200 transcripts directly or indirectly 
[178], but the bone fide physiological targets of the vast ma-
jority of miRNAs is virtually unknown.  

Altered miRNA Expression in Breast Cancer 

 The spectrum of miRNAs expressed in solid tumors, i.e., 
prostate, colon, stomach, pancreas, lung, and breast, is dif-
ferent from normal tissues [177]. Although the precise se-
quence of events leading to breast tumors is not understood, 
lifetime exposure to estrogens is widely accepted as a major 
risk factor for the development of breast cancer [179]. Some 
investigators have documented that E2 is carcinogenic in 
human breast epithelial cells [180-182]. However, epidemi-
ological evidence disputing the carcinogenicity of E2 in hu-
mans has been published [183]. Surprisingly, there are no 
published studies evaluating the effect of E2 on global 
miRNA expression in breast cancer cells.  

 Aberrant patterns of miRNA expression have been re-
ported in human breast cancer [12, 13, 18, 20, 21, 151, 162, 
164-170, 176-178, 184-191] and recently reviewed [150]. 
The first miRNA study in breast cancer indicated differential 
expression of miRNAs in concordance with other well-
established markers of breast cancer stage and patient prog-
nosis including ER  and PR expression, tumor stage, num-
ber of positive lymph nodes, and vascular invasion [20]. Dif-
ferent miRNA expression profiles were also associated with 
ErbB2+ versus ER+ tumors [22]. More recently, patients 
whose breast tumors showed reduced miR-126, miR-206, or 
miR-335 were found to have reduced survival, regardless of 
ER  or ErbB2 status [18].  

 A number of genes involved in breast cancer progression 
have been identified by in silico analysis to be targets of 
miRNAs that are deregulated in breast cancer [192] and 
some have been experimentally proven. A recent study re-
ported that miR-21 expression was reduced in breast tumors 
and that antisense to miR-21 suppressed MCF-7 breast can-
cer cell growth in vitro and as tumor xenografts in mice by 
regulating Bcl-2 [13]. Interestingly, we recently reported that 
overexpression of miR-21 in MCF-7 cells increased soft agar 
colony formation, reflecting increased tumorigenicity of 
these cells [193]. We demonstrated that miR-21 binds to a 

seed element in the 3'-UTR of the programmed cell death 4 
(PDCD4) gene and reduces Pdcd4 protein expression [193].  

 The breast cancer oncogene/coactivator AIB1/SRC-3/ 
NCOA3 is regulated by mir-17-5p and there is a reciprocal 
relationship between reduced miR-17-5p and increased AIB1 
in breast cancer cells [194]. Overexpression of miR-17-5p 
reduced E2-stimulated proliferation of MCF-7 breast cancer 
cells, indicating a role for deregulation of miR-17-5p in 
breast cancer [194]. Overexpression of miR-125a and miR-
125b decreased ERBB2 and ERBB3 mRNA and protein lev-
els, inhibited phosphorylation of ERK1/2 and AKT, and in-
hibited the anchorage-independent growth of ER -negative/ 
ErbB2-overexpressing SKBR3 breast cancer cells [195]. 
ER  mRNA stability is negatively regulated by miR-206 in 
MCF-7 cells and miR-206 expression is higher in ER  nega-
tive MDA-MB-231 cells [162].  

Estrogenic Regulation of miRNA Expression 

 A PubMed search for estrogen AND miRNA revealed 27 
papers. However, in that list and in total there are, to my 
knowledge, only 6 studies in which miRNA regulation by E2 
has been directly examined (see below). Indeed, although a 
software application that will retrieve all miRNA:mRNA 
functional pairs in an experimentally derived set of genes 
was recently developed and used to identify E2-regulated 
mRNA genes in breast cancer [196], this paper does not ex-
perimentally address miRNA changes regulated by E2. 

E2 Regulation of miRNAs in Animal Studies 

 The effect of E2 in miRNA expression has been exam-
ined in zebrafish [197], August Copenhagen Irish (ACI) rats 
[198], and mouse splenocytes [199]. A recent review of 
miRNA expression in female mammalian reproductive tis-
sues described transgenic and knockout mouse models and 
findings related to changes in miRNAs in the ovary and 
uterus in response to deletion of Dicer [200], LH, and during 
development (immature versus mature mice) [201]. Changes 
in miRNA expression in mouse uterus during implantation 
have been cataloged [202]. Importantly, the authors of this 
review concluded that the expression, regulation, and func-
tion of miRNAs within specific tissues and cells still needs 
to be determined [201].  

 A study of the effect of E2 on miRNA expression in the 
adult (3 mos) zebrafish male (Danio rerio) identified altered 
expression of 38 miRNAs in the whole body homogenates 
[197]. E2 was added to the aquariums at a final concentration 
of 5 g/liter (18 nM) and although various times of treatment 
were analyzed, most miRNA changes in response to E2 were 
observed after 12 h. miRNAs were regulated by E2 in a tis-
sue-specific manner with E2 downregulating miRNAs in the 
liver and increasing miRNA expression in the skin of the 
zebrafish. For example, miR-122 was decreased by E2 in 
skin, but increased in gills, intestine. and liver. Among the 
most up-regulated miRNAs were miR-196b and let-7h, and 
miR-130c and miR-101a were the most down-regulated. The 
authors identified Hoxb8a as a target of miR-196b and 
showed that E2, by increasing miR-196b, decreased Hoxb8a 
[197]. The authors concluded that miR-196b may serve as “a 
biomarker of exposure to environmental estrogens and endo-
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crine-disrupting chemicals that fish may encounter in their 
aquatic environment” [197].  

 In another study, miRNA expression was analyzed after 
6, 12, and 18 weeks of E2-induced mammary carcinogenesis 
in female ACI rats [198]. After 6 and 12 wks of E2 exposure, 
15 miRNAs were down-regulated, e.g., miR-22, miR-99a, 
miR-106a, miR-127, miR-499, and 19 miRNAs were-up- 
regulated, e.g., miR-17-5p, miR-20a, miR-21, miR-129-3p, 
miR-106a, miR-22, and miR-127. By 18 wks of E2 treatment, 
the mammary glands were characterized by lobular involu-
tion and hyperplasia, and only 1 miRNA was down-regula- 
ted (miR-139) and 5 miRNAs were up-regulated (miR-20b, 
miR-21, miR-103, mir-107, miR-129-3p, and miR-148a). 
Genes targeted by three of the altered miRNAs were exam-
ined: miR-20a regulates E2F1, miR-106a regulates RBI, and 
miR-127 regulates BCL6. Western blot of mammary gland 
lysates after 12 wks of E2 showed that levels of RBI and 
E2F1 were decreased and BCL6 protein was increased, data 
that are in agreement with the increase miR-20a and miR-
106a and the decrease in miR-127 detected [198].   

 E2 decreased miR-146a, miR 125a, miR-125b, let-7e, 
miR-126, miR-145, and miR-143 and increased miR-223, 
miR-451, miR-486, miR-148a, miR-18a, and miR-708 ex-
pression in mouse splenic lymphocytes [199]. Notably, 
transfection of cells with miR-146a decreased LPS-induced 
IFN . AS to miR-223 blocked LPS-induced IFN  secretion 
in splenocytes from E2 treated mice. This is the first report 
on E2 regulation of miRNA expression in immune cells 
[199], but provided no mechanism by which E2 regulated 
these changes.  

E2 Regulation of miRNAs in Human Cell Lines 

 E2 and the ER -selective agonist 4,4',4''-(4-Propyl-[1H]-
pyrazole-1,3,5-triyl)trisphenol (PPT) [203] decreased miR-
206 expression in MCF-7 cells whereas 2,3-bis(4-hydroxy- 
phenyl)propionitrile (DPN), an ER -selective agonist [204], 
increased miR-206, pointing to a regulatory loop [162]. In-
terestingly, miR-206 also reduced -actin. The authors of 
this report called miR-206 a “tumor suppressor” and found 
that miR-206 was higher in ER -negative MDA-MB-231 
cells [162], offering a mechanism, in addition to ER  pro-
moter methylation [205-209], for reducing ER  expression 
in MDA-MB-231 cells.  

 A study identifying miRNAs expressed in myometrial 
and leiomyoma smooth muscle cells (MSMC and LSMC) 
using microarray and real time PCR reported that E2 inhib-
ited the expression of miR-21 in MSMC and LSMC, 
whereas E2 increased and inhibited miR-26a in MSMC and 
LSMC, respectively [210]. In contrast, ICI 182,780 in-
creased the expression of miR-20a and miR-21 in MSMC 
and LSMC, and miR-26a in MSMC, while inhibiting the 
expression of miR-26a in LSMC [210]. No mechanistic stud-
ies or mRNA target gene studies were performed to identify 
the mechanism(s) involved in these cell-specific differences 
in miRNA regulation by E2 and ICI or their downstream tar-
gets.  

 To identify E2 regulated miRNAs in a classical estrogen-
responsive human breast cancer cell line, we treated ER -
positive MCF-7 cells with 10nM E2 or EtOH (vehicle con-

trol) for 6 h to identify primary E2 target miRNAs. RNA was 
harvested, labeled either with Cy3 or Cy5, and hybridized 
with two identical, dual-color miRNA microarrays from LC 
Sciences. This array contained probes to detect mature 
miRNA sequences as well as precursor (pre)-miRNAs in the 
Sanger miRNA registry 7.0 (http://microrna.sanger.ac.uk/ 
sequences/). The differentially expressed transcripts that 
were consistent on both chips are summarized in Table 1. 38 
miRNA genes were regulated by E2: 9 were reduced and 29 
were increased. A summary about what is known about each 
of these E2-responsive miRNAs in terms of breast cancer and 
estrogen-responsiveness is included in Table 1.  

miRNAs Regulating ER Expression or Activity 

 miRNAs can influence estrogen-regulated gene expres-
sion by directly reducing ER  mRNA stability or translation. 
Four miRNAs have been reported to reduce ER  protein 
levels (Fig. 3). Two miR-206 recognition sites were identi-
fied in the 3’UTR of ER  and transfection of an expression 
vector for miR-206 in MCF-7 cells reduced both mRNA and 
protein levels of ER  [162]. Treatment of MCF-7 cells with 
1nM E2 or the ER  agonist PPT (10nM) reduced miR-206 
levels by ~ 80%. In contrast the ER  agonist DPN (10nM) 
increased miR-206 expression by ~ 60%. Interestingly, the 
investigators found that miR-206 levels were significantly 
higher in ER -negative MDA-MB-231 cells than in MCF-7 
cells, suggesting a mechanism for miR-206 in repressing 
ER  protein levels in MDA-MB-231 cells. The authors sug-
gested that miR-206 may function in a mutually negative 
feedback loop to temporally regulate ER  expression and 
ductal/lobuloalveolar proliferation [162]. More recent studies 
showed that miR-206 is inversely correlated with ER  ex-
pression, but not ER , in human breast tumors [211]. Fur-
ther, transfection of MCF-7 human breast cancer cells with 
an expression plasmid for pre-miR-206 reduced ER  mRNA 
expression ~ 25%, reduced the basal expression levels of PR, 
cyclin D1, and pS2 (all well-established ER -regulated 
genes), and inhibited cell proliferation with or without E2 
[211].  

 miR-221/222 was recently reported to be higher in ER  
negative than ER  positive breast cancer cell lines and hu-
man breast tumors [212]. Two miR-221 and miR-222 seed 
elements were identified in the 3’UTR of ER  and transfec-
tion of miR-221 and miR-222 suppressed ER  protein, but 
not mRNA in ER  positive MCF-7 and T47D cells. Con-
versely, knockdown of miR-221 and miR-22 in ER -
negative MDA-MB-468 partially restored ER  protein ex-
pression and increased tamoxifen-induced apoptosis [212]. 

 miR-22 regulates ER  protein expression in a pancreatic 
cancer cell line [213]. In a study to identify curcumin gene 
targets, curcumin increased miR-22 by 65% in BxPC-3 hu-
man pancreatic carcinoma cells [213]. One of the predicted 
3’UTR gene targets of miR-22 was ESR1 (ER ) [213]. Fol-
low-up studies showed that curcumin reduced ER  protein 
expression in BxPC-3 cells and that transfection of an an-
tisense RNA oligonucleotide of miRNA-22 into BxPC-3 
cells increased ER  protein by ~ 1.9-fold. Thus, miR-22 
regulates ER  protein levels and the authors suggest a role 
for ER  as anti-tumorigenic in pancreatic cancer.  
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Table 1. Comparison of miRNA Expression in MCF-7 Cells Treated for 6 h with E2 Versus EtOH 

MCF-7 cells were grown in dextran-coated charcoal-stripped, phenol red free IMEM medium for 48 h prior to a 6 h treatment with ethanol 

(EtOH, vehicle control) or 10 nM E2. RNA was isolated using miRVana and sent to LC Sciences for miRNA microarray analysis. All miRNA 

gene changes included in this table are statistically significant as analyzed by LC Sciences. Negative values indicate decreased expression and 
positive values indicate increased expression with E2. NS = no significant change in miR gene expression with E2-treatment. 

miRNA 
Log 2  

(E2/EtOH) 

Comments Regarding the Possible Connection of the Identified miRNA Gene with Breast Cancer and/or Estrogenic 

Responses. Bone Fide Targets of miRNAs are Indicated 

let-7a -0.3 

Expressed in ER  positive human breast tumors [22].  

Expression was higher in ER + than ER - tumors [12]. 

Expressed in ZR-75, MCF-7, BT474, SK-BR-3, and MDA-MB-231 breast cancer cells [219]. Expression of Let-7 family 

members is reduced in ‘breast cancer stem cells’(CD44+CD24 /low) [220].  

Targets of let 7 are Ras [170] and Caspase-3 [221].  

let-7c 0.3 
Expression was higher in PR+ versus PR- human breast tumors [22] and in ER + than ER - tumors [12]. let-7c increased 

TRAIL-induced caspase 3 activation in MDA-MB-453 breast cancer cells and let-7c was predicted to target CD95L [222]. 

let-7d 0.25 let-7d was increased in acute promyelocytic leukemia patients [223]. 

let-7f -0.25 
let-7f was > in node negative versus positive human breast tumors [22] and higher in ER + tumors [12]. let-7f in mammary 

gland was reduced by E2 treatment of female ACI rats [198].  

let-7g 1.66 let-7g was expressed in ErbB2 positive human breast tumors [22].  

let-7i 1.34  

miR-106b 1.14 

Higher in PR+ than PR– tumors, but higher in ER - than ER + breast tumors [12]. miR-106b is overexpressed in breast 

tumors compared to normal breast and miR-106b reduced p21 mRNA and protein and thus stimulates G1-S cell cycle pro-

gression in human mammary epithelial cells [224]. miR-106b in mammary gland was increased by 6 wks of E2 treatment of 

female ACI rats [198].  

miR-149 -3.17 miR-149 in mammary gland was increased by 6 wks of E2 treatment of female ACI rats [198].  

miR-15a 2.32 

Higher in low versus high tumor stage in human breast tumors [20] and greater in ER + than ER - tumors [22]. Higher in 

PR+ than PR- tumors [22]. miR-15a is a tumor suppressor [225]. miR-15a negatively regulates Bcl2 at a posttranscriptional 

level [226].  

miR-15b 1.13  

miR-151 0.27 
Higher in ER +/lymph node negative breast tumors from patients with a short time to distant metastasis (TDM) versus those 

with a long TDM [15]. 

miR-16 0.79 

Higher in ER + than ER - tumors [22]. miR-16-1 negatively regulates Bcl2 at a posttranscriptional level [226]. The miR-16 

family negatively regulates cell cycle progression by inducing G0/G1-cell accumulation [227] by reducing CCND1 (cyclin 

D1), CCND3, CCNE1, and CDK6 [228].  

miR-182 0.83 

Higher in ER + than ER - human breast tumors and not significantly higher in ErbB2 –vs. positive tumors [22] significantly 

higher in PR+ vs. PR– tumors [22]. miR-182 inhibited TRAIL-induced caspase 3 activation in MDA-MB-453 breast cancer 

cells and miR-182 was predicted to target caspase 3 and FADD [222]. 

miR-183 0.98  

miR-195 2 

Higher in ErbB2- vs. ErbB2 positive tumors [22], but not significantly > in ER + than ER - or PR+ vs. PR– tumors [22]. 

miR-195 expression was increased by hypoxia in MCF-7 cells [229]. miR-195 inhibits CCND1,CCND3, CCNE1, and CDK6 

protein expression [228].  

miR-200a 2.58 

Correlated with ER  status in human breast tumors [22] and was significantly > in ER + than ER - and PR+ than PR- 

breast tumors [22]. miR-200a is expressed in MCF-7 and other epithelial breast cancer cell lines [230]. miR-200 expression 

was reduced in tamoxifen-resistant MCF-7 cells [17]. 

miR-200b 0.7 miR-200b is expressed in MCF-7 and other epithelial breast cancer cell lines [230].  

miR-200c -0.42 miR-200c is expressed in MCF-7 cells [166] and is higher than miR-200a or -200b in MCF-7 [230]. 

miR-203 1.84 

Expression is increased in ovarian, breast and melanoma cancers [178]. 

Higher xpression in high versus low tumor stage in human breast tumors [20] and increased in tamoxifen-resistant MCF-7 

cells [17].  
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(Table 1) contd…. 

miRNA 
Log 2  

(E2/EtOH) 

Comments Regarding the Possible Connection of the Identified miRNA Gene with Breast Cancer and/or Estrogenic 

Responses. Bone Fide Targets of miRNAs are Indicated 

miR-20a 0.83 

Increased in lung, breast, stomach, prostate, colon, and pancreatic tumors [177]. miR-20a expression was low in MCF-7 and 

other breast cancer cell lines and overexpression of the miR-17/20 locus in MCF-7 inhibited cell proliferation and cyclin D1 

expression [19]. miR-20a was increased in mammary gland after 6 or 12 wks of E2 treatment of female ACI rats [198]. Both 

E2 and ICI decreased miR-20a in human endometrial stromal cells [231]. Targets of miR-20a are PCAF, RUNX1, and 

TGFBR2 [232]. 

miR-21 -0.14 

Significantly up-regulated in tissues or cell lines of breast cancer [20]. overexpressed in all solid tumors (lung, breast, stom-

ach, prostate, colon, and pancreatic) [177]. significantly higher in ER + than ER -, in ErbB2 - vs. ErbB2 +, and in PR+ vs. 

PR– breast tumors [22]. Expression was higher in breast tumor compared to adjacent normal breast tissue [233]. miR-21 

expression was increased by hypoxia in MCF-7 [229]. miR-21 in mammary gland was increased after 18 wks of E2 treatment 

of female ACI rats [198]. Both E2 and ICI decreased miR-21 in human endometrial stromal and glandular epithelial cells, but 

when combined, miR-21 expression returned to basal [231]. E2 suppressed and ICI increased miR-21 in human human myo-

metrial smooth muscle cells [210]. E2 inhibited the ICI-induced increase in miR-21 in these cells [210]. E2 (75% decrease) 

and Progesterone (41% decrease) reduced miR-21 expression on the uterus of ovex mice [202]. miR-21 expression was sig-

nificantly reduced in tamoxifen-resistant MCF-7 cells [17]. 

miR-23a 0.31 Increased by hypoxia in MCF-7 cells [229]; reduced in tamoxifen-resistant MCF-7 cells [17]. 

miR-23b 0.32 Increased by hypoxia in MCF-7 cells [229]. 

miR-25 1.6 

Higher in ER + than ER - breast tumors [12] and PR+ vs. PR– breast tumors [22], but ot significantly higher in ErbB2-

negative vs. positive breast tumors [22]. increased in ovarian, breast and melanoma cancers [178]. miR-25 was increased in 

mammary gland after 6 wks of E2 treatment of female ACI rats [198].  

miR-26a 0.87 

Significantly > in ER + than ER - breast tumors [20, 22]. significantly higher in ErbB2 – vs. ErbB2-positive breast tumors 

[22] and PR+ than PR- tumors [20]. miR-26a expression was increased by hypoxia in MCF-7 cells [229]. Both E2 and ICI 

increased miR-26a in human endometrial glandular epithelial cells, but when combined, miR-26a expression was suppressed 

below basal [231]. E2 and ICI increased miR-26a in human myometrial smooth muscle cells, but each inhibited miR-26a in 

human leiosarcoma cells [210].  

miR-26b 2.07 
Higher in ER + than ER - breast tumors [22], but mot significantly higher PR+ vs. PR–tumors [20]. 

Higher in ErbB2 –ve vs. positive breast tumors [22]. miR-26b expression was increased by hypoxia in MCF-7 cells [229]. 

miR-27a 1.73 
Higher in ErbB2- vs ErbB2+ and PR+ vs. PR- breast tumors [22], but not significantly higher in ER+ vs. ER– tumors [20]. 

miR-27a expression was increased by hypoxia in MCF-7 cells [229]. 

miR-27b 1.94 Higher in ER + than ER - breast tumors [22], in ErbB2-vs ErbB2+ tumors [22], and in PR+ vs. PR– tumors [22]. 

miR-30b 2.17 
Higher in node negative versus positive human breast tumors [20], higher in ER + than ER -, in ErbB2 - vs ErbB+ and in 

PR+ vs. PR– breast tumors [22]. miR-30b expression was increased by hypoxia in MCF-7 cells [229]. 

miR-320 -0.84  

miR-328 -3.92 
Overexpression of miR-328 in A431 human epithelial carcinoma cells reduced cell adhesion, aggregation, and migration by 

repressing CD44 expression [234]. 

miR-342 -0.26 
Higher in ER + than ER - ,in ErbB2 – vs. ErbB2+ , and in PR+ vs. PR– tumors [22]. miR-342 expression was reduced in 

tamoxifen-resistant MCF-7 cells [17].  

miR-365 1.47 Decreased by E2 treatment in female ACI rat mammary gland [198]. 

miR-423 -1.49  

miR-489 0.59 
Metastasis suppressor: decreased expression in metastatic sublines of MDA-MB-231[18]. miR-489 expression was reduced 

in tamoxifen-resistant MCF-7 cells [17].  

miR-7 1.84  

miR-92 0.45 

Higher in ER + than ER - and in PR+ vs. PR– breast tumors, but not higher in ErbB2- vs. ErbB2+ tumors [22]. 

miR-92 was increased in mammary gland after 6 wks of E2 treatment of female ACI rats [198]. miR-92 is in the miR-17/20 

cluster and overexpression of the miR-17/20 cluster in MCF-7 cells inhibited basal and E2-stimulated cell proliferation and 

cyclin D1 transcription [19].  

miR-98 1.55 Overexpressed in breast tumor compared to adjacent normal breast tissue [233]. 
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Fig. (3). MiRNA regulation of ER  and ER  regulation of miRNA 

expression. MiRNAs that inhibit ER  protein expression are shown. 

E2-ER represses miR-206 [162] and miR-21 [202, 210] expression. 

Target genes of miR-21 are PTEN, Pdcd4, and Bcl2 [193]. MiR-

206 also represses -actin expression [162].  

 miRNAs can affect estrogen-regulated gene expression 
by reducing the expression of the coactivator SRC-3/AIB1/ 
NCOA3. miR-17-5p was demonstrated to inhibit translation 
of SRC-3/AIB1/NCOA3 [194]. Transfection of CHO-K1 
cells with ER  and miR-17-5p inhibited E2-stimulated ERE-
driven luciferase reporter activity by 50%. This report also 
demonstrated that transfection of MCF-7 cells (which do not 
express miR-17-5p) with miR-17-5p reduced E2-induced 
proliferation and E2-induced endogenous cyclin D1 tran-
scription [194].  

E2 Regulation of Ago2 and ER  in Human Breast  

Cancer Cell Lines 

 Argonaut-2 (Ago2), the catalytic subunit of the RISC 
complex that mediates miRNA-dependent cleavage/degrada- 
tion in mammals [154, 170, 214], expression is higher in 
ER -negative, HER2-positive (basal) than ER -positive/ 
HER2 negative (luminal) human breast cancer cell lines and 
tumors [14]. E2 and the ER -agonist PPT, but not the ER -
agonist DPN, increased Ago2 protein expression in MCF-7 
cells [14]. Further studies showed that EGF acts through the 
MAPK pathway to increase Ago2 protein stability, but there 
were no studies examining the mechanism by which E2 and 
PPT, presumably through ER , increase Ago2 protein levels. 
Surprisingly, Ago2 overexpression in MCF-7 cells increased 
ER  protein levels by 3-fold, despite also increasing miR-
206 that reduces ER . The authors concluded that this “dis-
cordant” finding indicates that there is a greater concentra-
tion of miRNAs than target proteins involved in ER  sup-
pression than those that target ER  itself” [14]. 

CONCLUSION 

 Estrogen signaling plays a critical role in regulating re-
production, lactation, bone density, cardiovascular function, 
neuronal signaling, immune function, and homeostasis in a 
wide variety of tissues. The reduction in serum E2 in post-
menopausal women is involved in a number of age-
associated disorders. Research on the mechanisms by which 
E2 and other estrogens regulate diverse physiological effects 
has established both genomic and nongenomic mechanisms 
involving ER , ER , and GPR30 in signal transduction (Fig. 
1). miRNAs are small, non-coding RNAs that bind to the 3’ 
UTR of target mRNAs and either block the translation of the 

message or bind the ORF and target the mRNA transcript to 
be degraded. Although there are a number of studies identi-
fying miRNA changes in breast tumors and comparing ER -
positive versus ER -negative miRNA signatures for their 
potential use as biomarkers, there are few studies identifying 
E2-responsive miRNAs in any normal or neoplastic tissues or 
cell models. In those few studies that have identified E2-
induced alterations in miRNA expression, there is little, if 
any, mechanistic detail elaborated for the E2 effect (s) on 
miRNA expression. Further, it appears that E2 regulates 
miRNA expression in a cell-type-dependent manner. Thus, 
identification of E2-regulated miRNAs and the function of 
miRNAs within specific tissues and cells still remains to be 
determined.  
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