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Skin cutaneous melanoma (SKCM) is the most aggressive and fatal type of skin cancer. Its
highly heterogeneous features make personalized treatments difficult, so there is an
urgent need to identify markers for early diagnosis and therapy. Detailed profiles are useful
for assessing malignancy potential and treatment in various cancers. In this study, we
constructed a co-expression module using expression data for cutaneous melanoma. A
weighted gene co-expression network analysis was used to discover a co-expression
gene module for the pathogenesis of this disease, followed by a comprehensive
bioinformatics analysis of selected hub genes. A connectivity map (CMap) was used to
predict drugs for the treatment of SKCM based on hub genes, and immunohistochemical
(IHC) staining was performed to validate the protein levels. After discovering a co-
expression gene module for the pathogenesis of this disease, we combined GWAS
validation and DEG analysis to identify 10 hub genes in the most relevant module. Survival
curves indicated that eight hub genes were significantly and negatively associated with
overall survival. A total of eight hub genes were positively correlated with SKCM tumor
purity, and 10 hub genes were negatively correlated with the infiltration level of CD4+ T
cells and B cells. Methylation levels of seven hub genes in stage 2 SKCMwere significantly
lower than those in stage 3. We also analyzed the isomer expression levels of 10 hub
genes to explore the therapeutic target value of 10 hub genes in terms of alternative
splicing (AS). All 10 hub genes had mutations in skin tissue. Furthermore, CMap analysis
identified cefamandole, ursolic acid, podophyllotoxin, and Gly-His-Lys as four targeted
therapy drugs that may be effective treatments for SKCM. Finally, IHC staining results
showed that all 10 molecules were highly expressed in melanoma specimens compared
to normal samples. These findings provide new insights into SKCM pathogenesis based
on multi-omics profiles of key prognostic biomarkers and drug targets. GPR143 and
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SLC45A2 may serve as drug targets for immunotherapy and prognostic biomarkers for
SKCM. This study identified four drugs with significant potential in treating SKCM patients.
Keywords: cutaneous melanoma, biomarker, WGCNA, bioinformatic analysis, experimental validation
INTRODUCTION

Skin cutaneous melanoma (SKCM) is one of the most aggressive
skin cancers, accounting for approximately 80% of skin cancer-
related deaths (1). Moreover, most melanoma patients relapse or do
not respond to treatments due to toxicity, intrinsic drug resistance,
and other reasons not completely understood. The molecular
characteristics of SKCM show internal heterogeneity, which is the
main obstacle to individualized treatment and the main
determinant of drug resistance. Therefore, accurate classification
of skin melanomas and identification of molecular markers to
identify candidate drug targets remain a top priority. This
requires a broad understanding of the heterogeneity at the
genomic, transcriptomic, and epigenomic levels (2).

At present, research on the expression module of cutaneous
melanoma is scant. Although studies have discovered some
important genes and pathways, and diagnosis and treatment of
cutaneous melanoma has progressed (3), prognosis for
cutaneous melanoma is still very poor (4). Detailed profiles of
these key genes at the genomic, transcriptomic, and epigenomic
levels are even rarer. Therefore, there is an urgent need to
identify new drug targets and detailed profiles of these cancer
targets to assess their malignant potential and prognosis.

Weighted gene co-expression network analysis (WGCNA)
(5) is a commonly used method to study the complex
relationships between genes and phenotypes. Its advantage is
that WGCNA converts gene expression data into co-expression
modules, offering insights into signal networks that may be
responsible for the phenotypic characteristics of interest. It is a
comprehensive set of R functions used for the weighted
correlation network analysis in all aspects. It is widely used in
cancer, genetics, and brain imaging to identify candidate
biomarkers (6) or therapeutic cancer drug targets (7). It not
only helps to compare the process of differentially expressed
genes, but also helps to understand the interaction between genes
in different co-expression modules.

The CMap is a large dataset that collects transcriptome changes
for a variety of small molecules that have been used in human cancer
cell lines in experiments and clinics. It mines these data and identifies
bioactive compounds with similar or opposite activities based
on pattern matching (https://portals.broadinstitute.org/cmap/).
Since most CMap compounds are FDA-approved drugs, these
analyses have become valuable tools for understanding the
mechanism of drug action and drug reuse in pan-cancer studies.

This study aimed to construct a co-expression module using
the expression data of cutaneous melanoma. A specific co-
expression gene module for the pathogenesis of this disease has
been discovered. Combined with GWAS, DEG analysis, and GO/
KEGG/GSEA enrichment analysis on the modules of interest and
determining the hub genes in each module will help us to
2

understand the potential mechanisms of the genes in these
modules. We also conducted tumor immune infiltration
analysis, gene DNA methylation, patient survival analysis,
isoform expression analysis, and gene mutation analysis of 10
selected hub genes. CMap was used to identify targeted therapy
drugs that may be effective treatments for SKCM.
MATERIALS AND METHODS

Data Sources
The two datasets used in this project were an RNA array GSE15605
dataset (8–13) from the GEO database and SKCM RNA-seq data
from the TCGA database (https://tcga-data.nci.nih.gov/tcga/). The
GSE42352 dataset consisted of 16 normal skin tissues (GSM390208-
GSM390223) and 46 primary skin melanoma tissues (GSM390224-
GSM390269) in the SKCM group. The platform for GSE15605 was
the GPL570. The number of patients in the TCGA-SKCM dataset
was 470, including 77 in stage I, 140 in stage II, 172 in stage III, and
24 in stage IV.

WGCNA Analysis
We used WGCNA to identify the co-expressed gene modules.
First, we calculated the Pearson correlation coefficient (PCC) for
all the paired genes, and an adjacency matrix was constructed
using a power function. The power of b was set to 7 (scale-free
R2 = 0.9) to ensure a scale-free network. We then converted the
adjacency matrix into a topological overlap matrix (TOM) so
that the genes with similar expression profiles were clustered into
modules using the average-linkage hierarchical clustering
method. The top 5,000 coding genes were selected. Notably,
the minimum base number of each gene network module was set
to 30 in this study. According to the TOM-based dissimilarity,
the genes were finally divided into 16 different modules.

PPI Network Construction
We obtained protein interactions (score > 0.4) of encoding genes
using the STRING database (14) (https://string-db.org/), and the
interaction network was visualized using Cytoscape (15). The top
10 key genes were obtained using CytoHubba, and the
interaction network was drawn.

Identification of Differentially
Expressed Genes
For the GSE15605 dataset, we obtained the gene expression
matrix file and the annotation file of the corresponding chip
platform (GPL570) simultaneously. The probe signal was
converted to the expression value of each gene. If multiple
probes corresponded to the same gene, the average value was
considered as the final gene signal value. We used the limma (16)
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package to analyze the DEGs, and the screening criteria were set
as |log2 (fold change) |> 2 and p < 0.05.

Functional Enrichment Analysis
We used the metascape database (17) (https://metascape.org/) to
perform GO function and KEGG pathway enrichment analysis on
theDEGs, with the parameters set asminimumoverlap = 3, adjusted
p-value cutoff = 0.01, and minimum enrichment = 1.5. We found
enrichedGOtermsandKEGGpathways in theseDEGs, andp-values
were adjusted using Benjamini–Hochberg (BH) correction.

Survival Curve
We used GEPIA 2 (18) to analyze the correlation between the
expression levels of the hub genes and survival time of the SKCM
patients. According to the best division of the gene expression,
SKCM patients were divided into high- and low-expression
groups. Kaplan–Meier (KM) survival curves were drawn to
represent the survival differences among patients with different
gene expression levels.

Tissue-Specific Expression of Genes and
Analysis of Tumor Immune Infiltration
We obtained gene expression profiles from the Expression Atlas
(19) (https://www.ebi.ac.uk/gxa/home). We analyzed the gene
expression data of the SKCM samples in the TCGA database
using TIMER2.0 (20) and determined the correlation between
gene expression levels and tumor purity. We also measured the
levels of immune cell infiltration.

DNA Methylation, Isoform Expression, and
Gene Mutation Analysis
We obtained information on the level of DNAmethylation in the
promoter region of genes from UALCAN (21) (http://ualcan.
path.uab.edu/index.html). Expression levels of gene isoforms
were also analyzed using GEPIA 2. We obtained mutation
information for the skin tissue of the original site of the hub
gene from COSMIC (https://cancer.sanger.ac.uk/cosmic). The
enhancer mutations were obtained using the CancerEnD
database (22) (https://webs.iiitd.edu.in/raghava/cancerend/
index.html).

Screening of Small-Molecule
Therapeutic Drugs
The selected hub genes were used for potential drug prediction in
the CMap. CMap is the most comprehensive transcriptome
database for drug intervention and is usually used to explore
potential drugs for disease treatment (https://portals.
broadinstitute.org/cmap/). A negative connectivity score was
considered a potential therapeutic drug. Therefore, enrichment
< 0.8 and p < 0.01 were used as screening criteria. The PubChem
(https://pubchem.ncbi.nlm.nih.gov/) database was used to
determine the molecular structure of the identified drugs.

Patient Tissue Specimens
Twenty-five melanoma specimens and 10 normal skin tissues
(Supplementary Table S1) were collected between 2015 and
Frontiers in Oncology | www.frontiersin.org 3
2021. Patient-informed consent was obtained and approved by
the First People’s Hospital of the Foshan Subject Review Board.

Immunohistochemistry Staining
Paraffin-embedded tissues were sectioned at 4 mm for IHC
analysis. Antigens were retrieved by incubating the samples in
citrate buffer (pH 6.0) for 15 min at 100°C in a microwave oven
and naturally cooled to room temperature. After blocking with a
mixture of methanol and 0.75% hydrogen peroxide, sections
were incubated overnight with appropriate dilatation of primary
antibodies (MLANA, Sangon Biotech, 1:100; PMEL, Sangon
Biotech,1:100; EDNRB, Sangon Biotech, 1:150; MIA, Sangon
Biotech,1:300; GPR143, Sigma, 1:500; SOX10, Cell Signaling
Technology, 1:150; PRAME, Cell Signaling Technology, 1:300;
TYR, Sangon Biotech, 1:50; MITF, Sangon Biotech 1:80;
SLC45A2, Proteintech, 1:150) followed by incubation with a
secondary antibody conjugated with HRP (goat anti-rabbit,
1:500, Cell Signaling Technology; goat anti-mouse, 1:800,
Abcam). The sections were washed three times with PBS and
incubated with AEC (ZSGB-BIO). The analysis process was
described in our previous paper (23).
RESULTS

Weighted Co-Expression Network
Construction and Trait-Related
Module Identification
To explore the relationship between SKCM occurrence and gene
expression, we conducted WGCNA analysis on GSE15605 and
found 16 modules. A total of 50,000 genes were included in the
WGCNA analysis. A power of b = 7 (scale-free R2 = 0.85) was
selected as the soft-thresholding parameter to conduct a scale-
free network (Figures 1A, B). The selected samples were
clustered using the average linkage hierarchical clustering
method. A total of 16 modules were identified by clustering
(Figures 1C–E). Further analysis showed that the red module
(Figures 1F, G) had the greatest positive correlation with the
occurrence of SKCM. There were 333 genes in this module, all of
which were protein-coding genes. The red module was selected
to identify the hub genes.

Identification of SKCM-Related Genes by
WGCNA and Validation by GWAS
There were many interactions among the proteins encoded by
the 333 genes in the red module (Figure 2A), including TYR,
PMEL, MITF, DCT, SLC45A2, MLANA, MLPH, GPR143,
Rab27A, and AURKA, which were the key components in the
PPI network (Figure 2B and Table 1). In addition, a total of 348
SKCM-related genes were identified using GWAS (https://www.
ebi.ac.uk/gwas/). The proteins encoded by these genes had many
interactions as well (Figure 2C), among which the top 10 key
components were MC1R, TYR, TYRP1, SLC45A2, OCA2,
KITLG, TP53, MITF, SLC24A5, and CDKN2A (Figure 2D
and Table 2). Among them, TYR, MITF, and SLC45A2 were
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the common hub genes of the PPI network in bothWGCNA and
GWAS, which supported the results of WGCNA.

Analysis of SKCM-Related Differentially
Expressed Genes
Through the analysis of SKCM-related DEGs, we identified 126
upregulated genes and 416 downregulated genes (p < 0.05)
(Figure 3A and Table 3). We selectively identified the top
significant GO biological process terms and the top significant
KEGG pathways meeting the selection criteria (Supplementary
Table S2). The DEGs showed significant metabolism-related and
hormone signaling-related GO terms and KEGG pathways after
BH correction. Through GO function enrichment analysis, we
found that these genes were mostly enriched in biological
processes such as epidermis development, organic hydroxy
compound metabolic processes, and fatty acid metabolic
Frontiers in Oncology | www.frontiersin.org 4
processes (Figure 3B). The molecular functions are mostly
involved in structural molecule activity, oxidoreductase
activity, and structural constituents of the epidermis
(Figure 3C). The related cellular components include
intermediate fibers, keratin membranes, and extracellular
matrix (Figure 3D). KEGG pathway enrichment analysis
suggested that these genes were enriched in the PPAR
signaling pathway, arachidonic acid metabolism, and the
estrogen signaling pathway (Figure 3E and Supplementary
Table S2).

Combined Analysis of WGCNA and DEGs,
and PPI Network of Intersectional Genes
The STRING database (https://string-db.org/) was used to
analyze the PPI interactions among the DEGs, and a total of
421 nodes and 1,743 protein pairs were obtained with a
A B

D E

F G

C

FIGURE 1 | Construction of a co-expression network by WGCNA. (A) Determination of soft-thresholding power in WGCNA analysis. Scale-free fit index of WGCNA
for various soft-thresholding powers (b). (B) Analysis of the mean connectivity under the different soft-thresholding powers. (C) Dendrogram of the differentially
expressed genes (DEGs), clustered based on dissimilarity measure clustering (1-Tom). (D) Clustering of module genes. (E) Heatmap of the correlation among
modules (red represents high correlation; blue represents low correlation). (F) Correlation between gene modules and clinical characteristics of melanoma (red
indicates high positive correlation; blue indicates high negative correlation). (G) The relationship between gene significance and module membership of the blue
module was analyzed.
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combined weight score > 0.4. The interaction network was
visualized using Cytoscape (3) (Figure 4A). The intersection of
DEGs and SKCM-related genes identified by WGCNA included
34 common genes (Figure 4B). Based on the ranking of the key
genes at the intersection of DEGs and WGCNA, we obtained
Frontiers in Oncology | www.frontiersin.org 5
seven key genes, which did not include TYR, MITF, and
SLC45A2. To date, we have screened and identified 10 hub
genes, including MLANA, PMEL, EDNRB, MIA, GPR143,
SOX10, PRAME, TYR, MITF, and SLC45A2 (Figure 4C). The
10 selected hub genes were used for further analysis.
TABLE 1 | Information of hub genes related to SKCM identified by WGCNA.

Gene name Chr Start (bp) End (bp) Strand Description

SLC45A2 5 33946602 33956490 – Solute carrier family 45 member 2
DCT 13 94436811 94479682 – Dopachrome tautomerase
MLANA 9 5890889 5910606 + Melan-A
AURKA 20 56369389 56392337 – Aurora kinase A
GPR143 X 9725346 9786297 – G protein-coupled receptor 143
RAB27A 15 55202966 55319113 – RAB27A, member RAS oncogene family
PMEL 12 55954105 55973317 – Premelanosome protein
MITF 3 69739464 69968336 + Melanocyte inducing transcription factor
TYR 11 89177875 89295759 + Tyrosinase
MLPH 2 237485428 237555322 + Melanophilin
Oct
A B

DC

FIGURE 2 | Identification of SKCM-related genes by both WGCNA and GWAS. (A) Protein interaction (PPI) network of the genes that are most positively related to
SKCM identified by WGCNA. (B) PPI network of the top 10 genes identified by WGCNA. (C) PPI of SKCM-related protein coding genes identified by genome-wide
association study (GWAS). (D) The protein interactions of the top 10 genes identified by GWAS.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhou et al. Biomarker and Drug Target for Melanoma
TABLE 2 | Information of hub genes related to SKCM identified by GWAS.

Gene name Chr Start (bp) End (bp) Strand Description

SLC45A2 5 33946602 33956490 – Solute carrier family 45 member 2
OCA2 15 27871154 28099370 – OCA2 melanosomal transmembrane protein
TYRP1 9 12685439 12710285 + Tyrosinase related protein 1
CDKN2A 9 21967752 21995301 – Cyclin dependent kinase inhibitor 2A
SLC24A5 15 48120990 48142672 + Solute carrier family 24 member 5
MC1R 16 89912119 89920973 + Melanocortin 1 receptor
KITLG 12 88492793 88580851 – KIT ligand
MITF 3 69739464 69968336 + Melanocyte inducing transcription factor
TYR 11 89177875 89295759 + Tyrosinase
TP53 17 7661779 7687538 – Tumor protein p53
Frontiers in Oncology | www
.frontiersin.org
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FIGURE 3 | Identification and functional enrichment analysis of SKCM DEGs. (A) Volcano plot of the identified DEGs (orange and blue dots represent upregulated
and downregulated genes, respectively). (B) Functional enrichment analysis of GO (gene ontology) and biological process (BP) of DEGs. (C) Enrichment analysis of
GO molecular function (MF) of DEGs. (D) Functional enrichment analysis of GO cell components (CC) of DEGs. (E) Functional enrichment analysis of KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway in DEGs.
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TABLE 3 | DEGs of SKCM (top 10 upregulation and top 10 downregulation according to p-value).

Gene name Chr Start End Strand Description LogFC p-value

EDNRB 13 77895481 77975529 – Endothelin receptor type B 2.66285171 1.25E-13
CRACD 4 56049073 56328625 + Capping protein inhibiting regulator of actin dynamics 2.37323301 2.36E-13
C4orf48 4 2041993 2043970 + Chromosome 4 open reading frame 48 2.54917458 3.99E-13
SLC45A2 5 33946602 33956490 – Solute carrier family 45 member 2 3.72836758 1.77E-12
TUBB4A 19 6494319 6502848 – Tubulin beta 4A class Iva 4.22450924 2.74E-12
SOX10 22 37970686 37987422 – SRY-box transcription factor 10 2.76028069 9.39E-12
BACE2 21 41167801 41282530 + Beta-secretase 2 2.2186336 1.00E-11
TRIB2 2 12716889 12742734 + Tribbles pseudokinase 2 2.32263761 1.31E-11
PLOD3 7 101205977 101218420 – Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 2.44516108 2.44E-11
PRAME 22 22556806 22568466 – PRAME nuclear receptor transcriptional regulator 5.29935881 6.57E-11
TSPAN8 12 71125085 71441898 – Tetraspanin 8 −4.4020815 3.94E-14
SLC27A6 5 128538013 129033642 + Solute carrier family 27 member 6 −3.3370382 2.36E-13
MFSD4A-AS1 1 205554272 205569305 – MFSD4A antisense RNA 1 −2.803971 2.36E-13
DCD 12 54644589 54648493 – Dermcidin −7.7019636 2.80E-13
PIP 7 143132077 143139739 + Prolactin induced protein −6.7613591 3.99E-13
HMGCS2 1 119748002 119768905 – 3-hydroxy-3-methylglutaryl-CoA synthase 2 −3.0959742 4.45E-13
SCGB2A1 11 62208673 62213943 + Secretoglobin family 2A member 1 −4.9284683 8.57E-13
RERGL 12 18080869 18320107 – RERG like −3.5612684 1.12E-12
KRTAP4-6 17 41139433 41140487 – Keratin associated protein 4-6 −4.7315792 1.12E-12
KRTAP4-9 17 41105332 41106488 + Keratin associated protein 4-9 −4.5516704 1.77E-12
Frontiers in Oncolog
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FIGURE 4 | PPI network diagram of the DEGs. (A) PPI network of the genes obtained from DEGs analysis. (B) Intersection of DEGs identified by the DEGs analysis
and SKCM-related genes identified by WGCNA. (C) PPI network of intersecting DEGs and SKCM-related genes identified by WGCNA.
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Expression of Hub Genes in Different
Tissue of Human
We first analyzed the expression of the 10 hub genes in normal
human tissues. From the data of GTEx and 32 Uhlen’s lab, genes
were highly expressed in skin tissues and are provided in
Supplementary Figure S1A, and genes were also expressed in
other tissues and are listed in Supplementary Figure S1B.

Ten Hub Genes as Prognostic
Markers of SKCM
Combined with the clinical data, we analyzed the survival rate of
these 10 hub genes, including the overall survival (OS) rate and
Frontiers in Oncology | www.frontiersin.org 8
disease-free survival (DFS) rate. We found that, except for
SOX10 and PRAME, the remaining eight genes were
significantly associated with the OS of patients (p < 0.05).
Moreover, gene expression levels were negatively associated
with the OS of patients (p < 0.05). The expression trend of the
MIA gene was opposite since the expression trend of MIA was
positively associated with the OS of patients. The expression
levels of PMEL, GPR143, SOX10, TYR, and SLC45A2 were
significantly correlated with DFS (p < 0.05), and the higher the
gene expression level, the lower the DFS rate of patients. There
was no significant correlation between the other five
genes (Figure 5).
A B

D

E F
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H
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C

FIGURE 5 | Survival analysis of candidate genes. Correlation between the expression levels of candidate genes (A) MLANA, (B). PMEL, (C) EDNRB, (D) MIA,
(E) GPR143, (F) SOX10, (G) PRAME, (H) TYR, (I) MITF, and (J) SLC45A2 and the survival rates (left: overall survival, right: disease-free survival) of the SKCM
patients (p-value: log-rank test).
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Abnormal Expression of Immune Cells and
Hub Genes Exhibits Correlation to Immune
Microenvironment of SKCM
The lack of sufficient SKCM-related datasets, including clinical
data, fomented our use of the TCGA database for subsequent
analysis. First, we analyzed the tumor immune infiltration of
these 10 hub genes. The results showed that their expression
levels were positively correlated with SKCM tumor purity
(except PMEL, MIA, and SLC45A2). The expression of these
genes was negatively correlated with the infiltration level of
CD4+ T cells and B cells, but not with the infiltration level of
CD8+ cells and macrophages (Figures 6 and 7). It is worth
noting that the expression pattern of SLC45A2 is slightly
different from other genes.

DNA Methylation of Hub Genes
Next, we explored the relationship between DNA methylation in
the promoter region of hub genes and the occurrence of SKCM
to elucidate the potential mechanisms of abnormal upregulation
of these hub genes. By comparison, except for GPR143, SOX10,
PRAME, and MITF, the methylation levels of other genes in
Frontiers in Oncology | www.frontiersin.org 9
stage 2 SKCM were lower than those in SKCM stage 3 (p < 0.05;
Supplementary Figure S2).

Isomer Expression Analysis of
10 Hub Genes
We simultaneously analyzed the isomer expression level of the 10
hub genes. MLANA, MLANA-001, MLANA-003, and MLANA-
004 were highly expressed in the SKCM (Supplementary Figure
S3A). The expression levels of PMEL-002, PMEL-004, PMEL-
005, and PMEL-017 were higher in SKCM (Supplementary
Figure S3B). EDNRB, EDNRB-001, EDNRB-003, and
EDNRB-004 were highly expressed in SKCM (Supplementary
Figure S3C). MIA-001, MIA-003, and MIA-004 were highly
expressed in SKCM (Supplementary Figure S3D). GPR143,
GPR143-001, GPR143-002, and GPR143-004 were highly
expressed in SKCM (Supplementary Figure S3E). SOX10,
SOX10-002, and SOX10-004 were highly expressed in the
SKCM (Supplementary Figure S3F). PRAME, PRAME-001,
PRAME-003, and PRAME-201 were highly expressed in
SKCM (Supplementary Figure S3G). For TYR, the expression
level of the TYR-001 isomer in SKCM was higher
A

B

D

E

C

FIGURE 6 | Correlation between candidate genes and immune cell infiltration of MLANA, PMEL, EDNRB, MIA, and GPR143. (A) Correlation between the expression
of candidate genes (A) MLANA, (B). PMEL, (C) EDNRB, (D) MIA, and (E) GPR143 and the levels of immune cell infiltration (tumor purity, CD4+ T cells, CD8+ T cells,
B cells, and macrophages from left to right, respectively).
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(Supplementary Figure S3H). MITF, MITF-001, MITF-004,
MITF-005, and MITF-201 were highly expressed in the SKCM
(Supplementary Figure S3I). SLC45A2, SLC45A2-001, and
SLC45A2-002 were highly expressed in the SKCM
(Supplementary Figure S3J).

Mutation Analysis of Hub Genes
Among these 10 hub genes, we found that all 10 hub genes had
gene mutations in the skin tissue (Supplementary Table S3).
However, no mutations in the gene enhancer region associated
with SKCM were found (Supplementary Table S4).
Frontiers in Oncology | www.frontiersin.org 10
Small-Molecule Therapeutic Drugs
Using the CMap database, the 10 hub genes were analyzed to
predict potential therapeutic drugs for SKCM. A total of four
drugs, cefamandole, ursolic acid, podophyllotoxin, and Gly-His-
Lys, were identified (Table 4 and Figure 8). These drugs have
potential inhibitory effects on the 10 hub genes.

Histologic analysis
We next explored the protein expression levels of hub genes in
melanoma tissues and normal skin. The IHC staining results showed
that all 10 molecules (MLANA, PMEL, EDNRB, MIA, GPR143,
A

B

D

E

C

FIGURE 7 | Correlation between the candidate genes and immune cell infiltration of SOX10, PRAME, TYR, MITF, and SLC45A2. The correlation between the
expression of A–E candidate genes: (A) SOX10, (B) PRAME, (C) TYR, (D) MITF, and (E) SLC45A2 and the infiltration level of immune cells (tumor purity, CD4+ T
cells, CD8+ T cells, B cells, and macrophages from left to right, respectively).
TABLE 4 | Ten hub genes were used to predict potential drugs for the treatment of SKCM.

Cmap name Mean N Enrichment p Specificity Percent non-null

Cefamandole −0.76 4 −0.861 0.00068 0 100
Ursolic acid −0.739 4 −0.852 0.00092 0 100
Podophyllotoxin −0.696 4 −0.85 0.00093 0.0588 100
Gly-His-Lys −0.726 3 −0.842 0.00791 0.0448 100
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SOX10, PRAME, TYR, MITF, and SLC45A2) showed higher
expression levels (n = 25) than normal skin (n = 10) (Figure 9).
DISCUSSION

Melanomas are highly heterogeneous at the genetic, expression,
and epigenetic levels. The rapid progress in understanding this
heterogeneity is making molecular classification and
individualized treatment of melanoma possible. Despite
considerable progress, early recognition of invasive melanoma
remains a goal in the field of melanoma research. The underlying
co-expression modules that drive heterogeneity among patients,
including key biomarkers and therapeutic drug targets, remain
unclear. Furthermore, biomarkers take various forms, including
DNA methylation, isomer expression, and genetic mutations in
cancer cells. Therefore, in this study, we comprehensively
identified 8 of 10 hub genes, which proved to be independent
prognostic factors for SKCM. In addition, eight of these genes
seem to be closely related to immune cell infiltration and tumor
Frontiers in Oncology | www.frontiersin.org 11
purity of SKCM. We further illustrated a detailed profile of
methylation levels, isomer expression levels, and mutations in
these selected hub genes.

WGCNA was used to build a co-expression network,
revealing a red module composed of genes that are
significantly related to the clinical characteristics of SKCM
patients. Among the 10 hub genes screened by WGCNA, three
genes (TYR, MITF, and SLC45A2) were also SKCM-related
when screened by GWAS. This result demonstrated that the
method of screening SKCM-related hub genes using the
WGCNA method is stable and reliable. Next, we analyzed
the intersection genes of WGCNA and DEGs and identified
seven key genes (MLANA, PMEL, EDNRB, MIA, GPR143,
SOX10, and PRAME), except TYR, MITF, and SLC45A2.

Many studies have reported that some of the 10 hub genes are
SKCM-related, which function in tumorigenesis and malignant
phenotypes such as MLANA, PMEL, EDNRB, MIA, SOX10,
PRAME, TYR, and MITF. However, few reports implicate
GPR143 and SLC45A2 in SKCM. MITF is a well-known
melanoma-related transcription factor. EDNRB, MITF, and
A B

DC

FIGURE 8 | Molecular structure of the potential small-molecule drugs predicted by CMap for the treatment of SKCM based on the 10 hub target genes.
(A–D) Molecular structure of the four targeted drugs.
A B

FIGURE 9 | Gene expression of the hub genes in melanoma tissue and normal skin specimens. Using IHC staining, all the hub genes (MLANA, PMEL, EDNRB,
MIA, GPR143, SOX10, PRAME, TYR, MITF, and SLC45A2) are expressed at higher levels in the melanoma tissue (n = 25) when compared to normal skin. (A) IHC
staining. (B) Quantification of the protein levels of the hub genes in melanoma tissues. IHC: Immunohistochemistry. IHC stain, AEC, original magnification: 100 ×
(inset, IHC stain, AEC, original magnification: 400 ×).
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TYR are melanogenesis-related genes. EDNRB and MITF also
belong to the “pathways in cancer” pathway. In melanoma, the
BRAF (V600E)/ERK1/2 pathway is especially involved in
regulating the expression and/or activity of MITF, suggesting
the role of MITF as a melanoma addiction oncogene. MITF is
considered a driving factor of melanoma progression, but its role
in inhibiting invasion and metastasis has also been confirmed.
Therefore, it is important to better understand the intracellular
mechanisms of MITF (24). EDNRB, a receptor of the endothelin
signaling pathway, is essential for the development of neural
crest melanocytes and is associated with the progression of
melanoma. EDNRB was found to be upregulated in melanoma
metastasis and altered tumor–host interactions leading to
melanoma progression (25). TYR is a mouse gene encoding
tyrosinase, which triggers the first and rate-limiting step in
melanin biosynthesis. MITF and GPR143 were expressed at
higher levels in tumors from non-responders to DTIC/TMZ
therapy (26) . MLANA/MART1 was reported to be
transcriptionally regulated by MITF in melanocytes and
melanomas (27). PMEL is a co-expression gene with BAP1
(BAP1 loss is common in uveal melanoma UM and is
associated with a worse prognosis). In both CM and UM,
PMEL encodes a melanosome structural protein (28). Serum
MIA interacts with extracellular matrix proteins, and its
overexpression is also observed in breast cancer and colorectal
cancer (29). MIA is also a reliable tumor marker in the serum of
patients with malignant melanoma (30). SOX10 is a
transcription factor that positively regulates MITF expression
in melanocytes (31). Previous data suggest that SOX10 is an
important melanocyte marker. Gene expression profiles of
different stages of melanoma progression show that PRAME is
expressed in primary melanoma, but not in healthy skin tissues
or benign melanocytic lesions (nevi or moles), indicating that
PRAME expression may be an event in melanocytic
transformation (32). PRAME was significantly associated with
an increased risk of metastasis in UM, and PRAME also had
prognostic value in UM (33). Previous GWAS studies have
identified MITF, TYR, and SLC45A2 as SKCM susceptibility-
related genes (34). Although they are associated with individual
risk estimation, a thorough understanding of these biomarkers
based on patient survival analysis, tumor immune infiltration
analysis, gene DNA methylation, isoform expression analysis,
and gene mutation analyses is rare. Therefore, a comprehensive
understanding of risk genes may be more meaningful.

Furthermore, we screened two novel biomarkers, GPR143 and
SLC45A2. GPR143 is a gene related to X-linked ocular albinism
type 1. GPR143 is a protein-coding gene expressed only in pigment
cells. It has been proven that GPR143 is closely related to SKCM
occurrence and development. One study demonstrated that
GPR143 was the most highly upregulated GPCR in SKCM and
suggested that GPCR mRNA signatures characterize specific tumor
types (35). SLC45A2 encodes a putative transporter that is mainly
expressed in the pigment cells. SLC45A2 mutation leads to
oculocutaneous albinism type 4 (OCA4). The polymorphism of
SLC45A2 is associated with variation in pigmentation (36).
However, the roles of GPR143 and SLC45A2 in SKCM
Frontiers in Oncology | www.frontiersin.org 12
development remain unclear. To our knowledge, only a few
studies have reported the potential impact of GPR143 and
SLC45A2 on the prognosis of SKCM. We determined that
GPR143 and SLC45A2 were not only significantly upregulated in
SKCM tissues, but were positively correlated with worse prognosis,
suggesting important contributions to the pathogenesis of SKCM.
Furthermore, comprehensive analyses showed that both genes
appeared to be promising candidates as therapeutic drug targets
and prognostic predictors.

From the data of GTEx and 32 Uhlen’s lab, we found that
these genes were highly expressed in skin tissues, and these genes
were also expressed in other tissues. Survival curves indicated
that eight hub genes (MLANA, PMEL, EDNRB, MIA, GPR143,
TYR, MITF, and SLC45A2) were negatively associated with the
OS of patients (p < 0.05), except for SOX10 and PRAME. The
expression levels of PMEL, GPR143, SOX10, TYR, and SLC45A2
were also significantly correlated with DFS. Therefore, these were
all independent predictors of SKCM. Functional enrichment
analysis of SKCM-related DEGs revealed significant
metabolism-related, hormone signaling-related GO terms and
KEGG pathways. SKCM is known to be associated with
melanogenesis and pigmentation caused by UVB-induced a-
MSH/MC1R pathways. a-MSH-stimulating hormones can
subsequently alter metabolic pathways and reactions (37). The
enrichment results suggested that hub genes selected from these
DEGs may play key roles in SKCM and may be therapeutic drug
targets and potential prognostic indicators of SKCM.

The 10 genes were also confirmed to be associated with
immune cell infiltration using the TIMER algorithm. The
results showed that the expression levels of MLANA, EDNRB,
GPR143, SOX10, PRAME, TYR, MITF, and SLC45A2 were
positively correlated with SKCM tumor purity (except PMEL,
MIA, and SLC45A2). The expression of the 10 genes was
negatively correlated with the infiltration level of CD4+ T cells
and B cells, but not with the infiltration level of CD8+ cells and
macrophages. The tumor environment consists of tumor cells,
stromal cells, and tumor-infiltrating immune cells of both innate
and adaptive lineages (38). The composition of tumor-
infiltrating immune cells varies with cancer type (39). Tumor-
infiltrating T cells show the phenotype and functional
characteristics of exhausted T cells (40), indicating that they
are impaired due to tumor antigen overload and various tumor
immune escape mechanisms. T cells (CD3+, CD8+, and CD4+)
and B cells (CD20+) are associated with better patient outcomes
(41); however, the 10 hub genes may be related to worse
outcomes caused by the low density of immune T cells.

By using hub genes to predict potential drugs for disease
treatment, four drugs were recognized, and previous related
research supported that cefamandole, ursolic acid,
podophyllotoxin, and Gly-His-Lys can induce cancer apoptosis
in vitro. Finally, we further validated protein expression levels of
the hub genes in our melanoma tissue samples. Additionally,
experimental assays demonstrated that all hub genes showed
high expression levels in clinical samples.

This study has some notable limitations. First, the sample size
was relatively small. Hence, further studies with larger sample
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sizes and prospective designs are warranted to increase the
statistical power and achieve more meaningful outcomes.
Second, cross-validation with external validation in future
studies on the immune microenvironment of SKCM would be
needed to support these conclusions. Third, although
microarray-based bioinformatics analysis is a powerful tool for
effectively understanding the molecular mechanism of SKCM
and identifying potential biomarkers, further experimental
verification of these hub genes is needed at the molecular,
cellular, and in vivo levels.
CONCLUSION

We identified and screened 10 genes with prognostic ability for
SKCM by combining WGCNA, GWAS, and DEG analysis.
These genes are associated with immune cell infiltration in
patients with SKCM. Importantly, we further identified these
hub genes as independent prognostic factors associated with OS
and DFS in patients with SKCM. In addition, we analyzed 10 hub
genes at the genetic, transcriptional, and methylation levels. We
identified cefamandole, ursolic acid, podophyllotoxin, and Gly-
His-Lys, as having anti-tumor functions in vitro. Furthermore,
we validated the protein expression levels in the SKCM samples.
These findings suggest an important prognostic and predictive
role for these 10 hub genes in SKCM. This has implications for
melanoma immunobiology, and the potential development of
multi-omics features to predict survival and response to
drug treatment.
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