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Abstract

Discovered in a large-scale screening of natural plant chemicals, Taxol/paclitaxel and the taxane 

family of compounds are surprisingly successful anti-cancer drugs, used in treatment of the 

majority of solid tumors, and especially suitable for metastatic and recurrent cancer. Paclitaxel is 

often used in combination with platinum agents and is administrated in a dose dense regimen to 

treat recurrent cancer.

The enthusiasm and clinical development were prompted by the discovery that Taxol binds beta-

tubulins specifically found within microtubules and stabilizes the filaments, and consequently 

inhibits mitosis. However, questions on how paclitaxel suppresses cancer persist, as other specific 

mitotic inhibitors are impressive in pre-clinical studies but fail to achieve significant clinical 

activity. Thus, additional mechanisms, such as promoting mitotic catastrophe and impacting 

non-mitotic targets, have been proposed and studied. A good understanding of how paclitaxel, 

and additional new microtubule stabilizing agents, kill cancer cells will advance the clinical 

application of these common chemotherapeutic agents.

A recent study provides a potential non-mitotic mechanism of paclitaxel action, that paclitaxel-

induced rigid microtubules act to break malleable cancer nuclei into multiple micronuclei. 

Previous studies have established that cancer cells have a less sturdy, more pliable nuclear 

envelope due to the loss or reduction of lamin A/C proteins. Such changes in nuclear structure 

provide a selectivity for paclitaxel to break the nuclear membrane and kill cancer cells over 

non-neoplastic cells that have a sturdier nuclear envelope.

The formation of multiple micronuclei appears to be an important aspect of paclitaxel in the 

killing of cancer cells, either by a mitotic or non-mitotic mechanism. Additionally, by binding to 

microtubule, paclitaxel is readily sequestered and concentrated within cells.
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This unique pharmacokinetic property allows the impact of paclitaxel on cells to persist for several 

days, even though the circulating drug level is much reduced following drug administration/

infusion. The retention of paclitaxel within cells likely is another factor contributing to the efficacy 

of the drugs.

Overall, the new understanding of Taxol/paclitaxel killing mechanism—rigid microtubule-induced 

multiple micronucleation—will likely provide new strategies to overcome drug resistance and for 

rational drug combination.
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The Taxane Family of Chemotherapeutic Drugs

The class of taxane drugs, including paclitaxel (tradename-Taxol) and docetaxel (tradename-

Taxotere), is among the most effective anticancer agents commonly used in clinics 

today to treat several major cancers, including metastatic breast, ovarian, prostate, lung, 

pancreatic, and cervical cancers [1–7]. Currently, a cisplatin (or carboplatin)/paclitaxel 

regimen following debulking surgery is a standard frontline chemotherapy for ovarian cancer 

[1,8–12], and a dose intensive regimen of paclitaxel is also used in salvage treatment 

following recurrence [10–12].

Despite the impressive clinical success of paclitaxel as a frontline and salvage cancer 

therapy [12–14], a major challenge is the development of drug resistance in recurrent cancer 

[15–19]. Extensive investigations led to the proposal of a list of possible mechanisms for the 

important clinical question of paclitaxel resistance [7,20]. However, the common ability of 

cancer cells to acquire taxane resistance indicates that another major mechanism(s) has not 

yet been uncovered [15,19,21].

Since investigation of new microtubule-stabilizing agents, such as epothilones (ixabepilone), 

laulimalide, and discodermolide, is under development [22–24], our understanding of the 

mechanism of taxanes and other microtubule-stabilizing drugs is important and may have a 

significant clinical implication in the years to come [5,25,26].

Paclitaxel Binding to Beta-Tubulin within Microtubules and Their 

Stabilization

The discovery in the 1980s that paclitaxel binds and stabilizes microtubules [27–29] and 

inhibits mitosis [30,31] in culture cells propelled the development of the compound into a 

common anti-cancer drug [13]. Cell culture studies provided clear evidence that paclitaxel 

inhibited mitosis, and the mechanism that paclitaxel acts as a mitotic inhibitor quickly 

gained widespread acceptance and is now considered a dogma [7].
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Generally, paclitaxel was thought to induce mitotic arrest and subsequently apoptosis in 

cancer cells [31–33] (Figure 1A). This idea seems reasonable and self-evident, as cancer 

cells exhibit uncontrolled growth and are usually more proliferative, and thus the targeting 

mitosis provides a specificity of paclitaxel for neoplastic compared to normal cells. Indeed, 

paclitaxel can cause significant off-target effects in normal, non-neoplastic cells that divide 

rapidly, such as hematopoietic cells [14] and cells of the hair follicle matrix [34], resulting 

in neutropenia and alopecia, respectively. Peripheral neuropathy is another dose limiting side 

effect of paclitaxel-induced microtubule stabilization [35].

Nevertheless, paclitaxel causes cancer cell death, rather than mere cytostatic [36–38], though 

how paclitaxel-induced cell growth arrest triggers death is not well understood [32,39,40]. 

However, binding and stabilization of microtubules is accepted as the key for the success 

of paclitaxel in cancer therapy [15,38]. Particularly, additional microtubule stabilizing 

molecules with chemical structures totally distinct from taxanes have been found to be 

effective anti-cancer agents [7,24,26,41]. Whether through mitotic or non-mitotic, apoptotic 

or non-apoptotic mechanisms, stabilization of microtubes has been found to be an amazingly 

optimal strategy in cancer therapy.

Anti-Mitotic Mechanism and Mitotic Catastrophe

Further careful studies of the effects of paclitaxel on cancer cells in culture revealed 

that the cells often escape mitotic arrest and undergo aberrant mitosis [40,42]. Thus, 

an unsuccessful mitosis in the presence of paclitaxel-induced microtubule malfunction, a 

phenomenon known as mitotic catastrophe, may be a major mechanism of cell killing 

[43]. Experiments using time-lapse video microscopy revealed that paclitaxel-treated cells 

become multi-nucleated, often a result of multi-polar division [40,44–46]. An aberrant 

mitosis that forms multiple micronuclei, or nuclear lobules, as a result of paclitaxel arresting 

microtubules, is believed to be the major mechanism of drug action [44,47] (Figure 1A). 

The formation of micronuclei following paclitaxel treatment was initially observed many 

years ago [48,49], though it was only followed more recently. Generally, the formation 

of micronuclei is thought to be the result of chromosome mis-segregation during mitosis 

[45–47] (Figure 1A), although new observation suggest that paclitaxel also prompts the 

formation of multiple micronuclei in non-mitotic cells [50] (Figure 1B), as discussed below.

Non-Mitotic Mechanisms and Prominent Formation of Multiple Micronuclei

One puzzle about the commonly accepted mechanism of paclitaxel action is the issue with 

mitosis as the target [51]. Unlike cells in tissue cultures, the neoplastic cells found in 

tumors in vivo are much less proliferative, with a doubling time significantly longer than 

cultured cells [42,52]. At any given time, only a small fraction of cancer cells are undergoing 

mitosis [37,38,42]. Thus, non-mitotic cells, in addition to cells undergoing mitosis, are likely 

targets of paclitaxel in cancer therapy [36]. Particularly in clinical settings, the susceptibility 

of cancer cells to killing by paclitaxel does not correlate with the proliferative index of 

the cancer [53]. This problem inspired the concept of “proliferative index paradox” [38], 

denoting that mitosis may not be a key target of paclitaxel or explain its efficacy as an 

anti-cancer agent [37,42,52,54].
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Efforts to develop additional specific anti-mitotic agents inspired by the success of Taxol 

have not been successful [42,54,55], leading to skepticism about the rationale for targeting 

mitosis [37,52]. A few studies investigated and proposed non-mitotic mechanisms for 

paclitaxel in causing cancer cell cytotoxicity, including that paclitaxel influences bcl-2 

phosphorylation [56]; paclitaxel targets microtubules involved in cellular transport [57]; 

and the drug impacts nuclear pores and transport [48]. Nevertheless, more investigations 

to identify a robust and general non-mitotic function of paclitaxel in targeting cancer cells 

seems warranted.

Indeed, recent studies showed that paclitaxel and other microtubule-stabilizing agents induce 

rigid microtubules that cause the breakage/fragmentation of the malleable nucleus of cancer 

cells, but not the sturdier nucleus present in normal cells [50] (Figure 1B). The paclitaxel-

induced formation of multiple micronuclei is mitosis-independent, since paclitaxel-induced 

nuclear breakage still occurs when serum is removed to restrain growth, or in the presence 

of various mitotic inhibitors to suppress proliferation. Particularly, deletion of lmna gene 

(which encodes Lamin A/C proteins) sensitizes cells to nuclear breakage and death by 

paclitaxel [50]. Thus, a malleable nuclear envelope (caused by a reduction in Lamin A/C and 

perhaps other nuclear envelope structural proteins) underlies the specificity of microtubule 

stabilizing drugs such as paclitaxel in killing malignant cells.

The formation of multiple nuclear envelope fragments upon treatment of cancer cells with 

paclitaxel has been observed previously [48,49], though few studies have followed up 

the observation until recently. Generally, in the presence of paclitaxel to interfere with 

microtubule function, the formation of multiple micronuclei is thought to be a result of 

aberrant, multipolar mitosis [44–46].

In the absence of drugs, nuclear budding occurring in non-mitotic cells may be an 

important mechanism in producing micronuclei [58–61], as microtubules associating with 

the nuclear envelope physically pull and distort the structure [62–64]. Similarly, the proposal 

of a physical force exerted by paclitaxel-induced rigid microtubule filaments in breaking 

malleable cancer nuclei provides a non-mitotic mechanism to generate multiple micronuclei 

[50] (Figure 2). The LINC (Linker of nucleoskeleton and cytoskeleton) bridges linking the 

microtubules to nuclear envelope lamina likely provide the physical links to transmit the 

force in pulling the nuclear envelope protrusion [62,63]. The proposed mechanism provides 

a possible alternative explanation for the well-established dogma that paclitaxel targets 

mitosis in cancer therapy; rather, paclitaxel likely aims at the weakened nuclear envelope of 

malignant cells. Thus, paclitaxel can be predicted to be effective to treat cancer that shows 

a deformed nuclear envelope, such as in the case of the cervical cancer cells that can be 

detected by a PAP test [65,66]. The study provides a new realization that paclitaxel can 

induce the generation of micronuclei in cells at S phase by a non-mitotic mechanism [50].

In addition, for paclitaxel to target proliferative, mitotic cells, the nuclear envelope 

malleability appears to be another characteristic of cancer versus benign cells targeted 

by paclitaxel. The loss or reduction of nuclear lamina proteins, especially Lamin A/C, in 

cancer cells has been previously noted [58–61]. Deletion of lmna gene encoding Lamin 

A/C is shown to lead to nuclear envelope malleability and paclitaxel-induced formation 
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of micronuclei [50,67]. Thus, malleability of cancer nuclear envelope provides another 

specificity for paclitaxel.

Cell Death Mechanisms Triggered by Paclitaxel and the Involvement of 

Micronucleation

The generally accepted concept is that in cancer chemotherapy, paclitaxel induces apoptosis 

[32,68]. This appears to be an intuitively reasonable idea, and there are many reports 

on induction of apoptosis in cancer cells by paclitaxel [39,69,70]. However, more careful 

studies indicate, at least in some circumstances, caspase activation and the typical or 

canonical apoptotic pathway are not involved [49,71–73]. Until now, how paclitaxel may 

trigger apoptosis is uncertain [15,68]. The lack of in-depth understanding of the cell killing 

mechanism of such a successful and common chemotherapy drug such as paclitaxel is 

surprising

Although the cancer killing mechanism of paclitaxel is not well understood, likely the 

formation of micronuclei induced by paclitaxel is important, referred as “micronucleation” 

[47,50] (Figure 3). How the formation of micronuclei leads to cell death is not established 

yet. In the absence of paclitaxel, micronuclei often undergo catastrophic rupture [58–60,74], 

which may lead to aneuploidy and cell death. Another notion is that the micronuclei formed 

may trigger innate cellular DNA sensing and subsequent induced immune pathways, which 

then contributes to cancer killing activity [47].

A suggested model is that paclitaxel eliminates cancer cells by first inducing 

“micronucleation”, the breaking of malleable cancer nuclei into multiple micronuclei 

(Figure 3). The membrane and lamina envelope of these micronuclei are defective, and 

are easily compromised structurally, resulting in the release of DNA content (Figure 3). 

Similar ideas have been suggested, that paclitaxel induced a slow, passive cell death without 

triggering apoptosis [71].

Cellular Retention of Paclitaxel and Persistent Activity Within Cells

Paclitaxel has high binding affinity to beta-tubulin located in microtubule filaments [27], 

and the binding can approach 1-to-1 ratio [75,76]. In a cell culture study, a short-term 

exposure of cancer cells to paclitaxel produces a long-term, persistent inhibition of cell 

proliferation and induction of cell death [77]. In vivo, although paclitaxel is rapidly cleared 

from the circulation following infusion, the drug is retained in cells and activity persists 

for several days [77–79] (Figure 4). Presumably, the high concentration of paclitaxel 

within cells interferes with microtubule-dependent cellular functions several days after drug 

administration. The retention of paclitaxel within cancer cells likely is important for killing 

of cancer cells, but the persistent presence of paclitaxel in peripheral neurons and hair 

follicles also causes the well-known side effects of paclitaxel, such as peripheral neuropathy 

[35] and alopecia [80].

Microtubules are polymers of alpha- and beta-tubulin heterodimers [76,81], and play 

multiple roles in cellular functions [81,82]. Cellular microtubule networks are highly 
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dynamic: the filaments are constantly extending and shortening, with a balance between the 

cellular pool of alpha- and beta-tubulin dimers and microtubule polymers, which are about 

half and half under normal conditions [75,82,83]. Paclitaxel promotes 90–100% of tubulin 

monomers to locate into polymerized forms [76,82–84]. Because of the importance of 

microtubules in multiple cellular functions, the homeostasis and the level of free tubulins is 

tightly regulated [85–87]. Tubulins control their own synthesis by autoregulation at the level 

of mRNA stability [86,87]. Thus, addition of paclitaxel to eliminate alpha- and beta-tubulin 

dimers (into polymers) stimulates production of new tubulins. Production of new tubulins 

will further sequester paclitaxel, until all available paclitaxel molecules are eliminated.

Tubulins are relatively stable, and the tubulin protein is removed by proteasome- (but not 

lysosome-) mediated degradation [88] and via degradation by cathepsin D [89]. Cells take 

up, sequester, and concentrate paclitaxel at several hundreds of times over the concentration 

found in the extracellular space [75]. Indeed, intracellular paclitaxel can be retained over 

several days after exposure, during which time the paclitaxel bound rigid microtubules 

persist [75,77,79]. The ability of cells to uptake and concentrate paclitaxel results in part 

from paclitaxel sequestration by binding to abundant microtubules and tubulins (estimated to 

be in the range of 10–20 μM inside cells) [75,82,83].

Thus, a special feature of the pharmacokinetics of paclitaxel is the long retention of the drug 

inside cells from sequestration by binding to the ample cellular microtubules, despite rapid 

clearance of the molecules in circulation [75,77,79]. We speculate that the prolong retention 

is likely a factor contributing to the success of paclitaxel efficacy over non-microtubular 

targeting mitotic inhibitors and other anti-neoplastic cytotoxic agents (Figure 4).

Prospects of the Microtubule Stabilizing Drugs with a Non-Mitotic 

Mechanism

Investigated in the 1970–1980s and entered into clinical use in the early 1990s [6,13,18], 

taxane/paclitaxel is still the most commonly used cancer drug today after treating millions of 

patients over the last 40+ years [13,23]. The development of taxanes for cancer therapy has 

been a celebrated success story [23,26], and new drugs with similar mechanism of actions as 

microtubule stabilization agents have a promising future in cancer treatment [24,41].

Paclitaxel is also used in combination with other agent(s), such as with doxorubicin 

(anthracycline) in metastatic breast cancer [2,3], and with Bevacizumab in lung cancer. 

The rationale combination of paclitaxel with other agents is an issue that oncologists must 

consider to increase the treatment response and efficacy [90,91]. Additional formulations 

such as Abraxane and liposomal taxane provide improvement on the delivery of paclitaxel 

and reduction of the hypersensitivity side effects [92,93]. Although the mechanism of 

paclitaxel drug action is still under study to gain a better understanding, microtubule 

stabilizing activity seems to be a key mechanism driving cancer killing activity [15,25]. 

A class of additional non-taxane microtubule-stabilizing agents, such as epothilones 

(ixabepilone), laulimalide, and discodermolide, isolated from microbiomes, sponges, and 

corals, respectively, is undergoing clinical development and testing in patient trials 

[22,24,41,94]. These new paclitaxel-like microtubule stabilizing agents may be useful 

Smith and Xu Page 6

J Cancer Biol. Author manuscript; available in PMC 2022 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for cancer that develops resistance to taxanes, and also for potential ability to be orally 

administrated, and have higher water solubility. Thus, continuing research and understanding 

of the microtubule stabilizing agents for their mechanism in efficient cancer cell killing 

will have a significant clinical implication in the years to come [13,23,26,91]. The 

newly uncovered non-mitotic mechanism of Taxol/paclitaxel in inducing breakage of 

cancer nuclear envelope [50]. (Figures 1–3) likely will prompt additional exploration and 

consideration in improving cancer chemotherapy using Taxol/paclitaxel and additional 

microtubule stabilizing agents.
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Figure 1: Mechanisms of paclitaxel in instigating cancer cell death by mitotic and non-mitotic 
mechanisms.
Mitotic or non-mitotic cancer cells generally have weakened nuclear lamina, depicted by the 

broken brown-colored outlines of nuclear envelope. (A) The generally accepted mechanism 

is that paclitaxel binds microtubules and interferes with their function in chromosome 

segregation during the mitotic phase of the cell cycle. The cells escape mitotic arrest 

and undergo mitotic catastrophe and aberrant chromosome segregation and the resulting 

multi-nucleated and lobulated cells subsequently undergo cell death. (B) In addition to 

mitotic cell death, a new proposal is that in non-mitotic cells, the rigid microtubule filaments 

induced by paclitaxel can promote massive formation of micronuclei and nuclear multiple 

micronucleation by nuclear budding in cells during interphase. The multi-nucleated and 

lobulated cells die, through as yet not-well-defined mechanisms.
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Figure 2: Proposed mechanism for the paclitaxel-induced formation of multiple micronuclei in 
non-mitotic cells.
Cancer cells generally have weakened nuclear lamina, depicted by the broken brown 

outlines of nuclear envelope. A new proposal is that in nonmitotic cells, the rigid 

microtubule filaments induced by paclitaxel can promote massive formation of micronuclei 

through nuclear budding of cells during interphase. The paclitaxel-bound rigid microtubule 

bundles may physically pull and distort the nuclear envelope structure through the LINC 

(linking nucleus and cytoplasm) bridges, which connect microtubules and nuclear lamina. 

As a result, the malleable cancer nuclear envelope breaks into multiple micronuclei. The 

proposal of physical force exerted by paclitaxel-induced rigid microtubule filaments in 

breaking malleable cancer nuclei provides a non-mitotic mechanism to generate multiple 

micronuclei [50].
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Figure 3: Mechanisms of paclitaxel-induced breaking of nuclear envelope and multiple 
micronucleation in cancer killing efficacy.
Paclitaxel induces the breaking of nuclei of neoplastic cells and the formation of multiple 

micronuclei. The weaken nuclear envelope is depicted by the broken brown-colored outlines. 

The micronuclei are defective in membrane structure and have high propensity for rupture 

and release of chromatin material, resulting in compromised cellular structure and slow cell 

death.
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Figure 4: Retention of paclitaxel enables efficient killing of tumor cells.
During chemotherapy, paclitaxel (Taxol) is administrated to patients over 3–6 hours, and 

taxane concentration reaches a peak level in plasma by the end of drug infusion. Over the 

next 6 hours, paclitaxel level declines rapidly, and the drug is concentrated in cells (partly 

by binding to microtubules) several hundred times over the blood level (illustrated by red 

dots). Paclitaxel is present in high level inside cells for next 2–3 days by binding to the 

microtubules, and the drug triggers nuclear envelope breakage and the death of cancer cells 

over the next 2–3 days, but also causes damage of hair follicles and toxicity in peripheral 

neurons.
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