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How Reliable are Test Numbers for Revealing 
the COVID‑19 Ground Truth and Applying 
Interventions?

1 � Introduction and Summary 
of Observations

Beginning March 11, fearing the quick spread of  
COVID-19, all schools were shut down in Bengal-
uru, India. Colleges, universities, and cinema halls 
were soon to follow and were shut down within 
a week. On Sunday March 22, the Prime Minis-
ter of India announced a country-wide “Janta 
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Abstract | The number of confirmed cases of COVID-19 is often used 
as a proxy for the actual number of ground truth COVID-19-infected 
cases in both public discourse and policy making. However, the number 
of confirmed cases depends on the testing policy, and it is important 
to understand how the number of positive cases obtained using differ‑
ent testing policies reveals the unknown ground truth. We develop an 
agent-based simulation framework in Python that can simulate various 
testing policies as well as interventions such as lockdown based on 
them. The interaction between the agents can take into account various 
communities and mobility patterns. A distinguishing feature of our frame‑
work is the presence of another ‘flu’-like illness with symptoms similar 
to COVID-19, that allows us to model the noise in selecting the pool of 
patients to be tested. We instantiate our model for the city of Bengal‑
uru in India, using census data to distribute agents geographically, and 
traffic flow mobility data to model long-distance interactions and mixing. 
We use the simulation framework to compare the performance of three 
testing policies: Random Symptomatic Testing (RST), Contact Tracing 
(CT), and a new Location-Based Testing policy (LBT). We observe that 
if a sufficient fraction of symptomatic patients come out for testing, then 
RST can capture the ground truth quite closely even with very few daily 
tests. However, CT consistently captures more positive cases. Interest‑
ingly, our new LBT, which is operationally less intensive than CT, gives 
performance that is comparable with CT. In another direction, we com‑
pare the efficacy of these three testing policies in enabling lockdown, 
and observe that CT flattens the ground truth curve maximally, followed 
closely by LBT, and significantly better than RST.

R
EV

IE
W

 
A

R
T

IC
LE

curfew” for a day. Finally, on Tuesday, March 24, 
the Prime Minister announced a 21-day com-
plete lockdown for the country, which has been 
extended till May 3rd now. It is interesting to 
note that there were just 6 confirmed cases and 1 
death till March 15 across the state of Karnataka, 
to which Bengaluru belongs, when the mega-city 
of Bengaluru was shut down. In fact, till March 
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24, there were only 517 confirmed cases across 
India,1 a number which may appear small com-
pared to the large ( ≈ 1.3 billion) population of 
the country. Even the growth rate of the number 
of cases was not very high. Yet, the policy makers 
decided to engage a lockdown, perhaps even with 
popular public support.

Clearly, the perceived number of ground  
truth cases and its increase rate must have been 
higher than the actual confirmed cases to facili-
tate such a drastic measure. But how well does 
the daily positive test outcome trend reflect the 
unknown ground truth? Can policy makers use 
it reliably to implement non-pharmaceutical 
interventions, such as lockdown, even when  
the number of daily tests is very low? Such 
questions become even more important in  
view of several media articles and expert opin-
ions  questioning if India is testing its residents 
enough20, 21. That brings out a basic question: 
How much testing is enough?

In March–April 2020, we initiated a sys- 
tematic study of this question using a simula
tion-based framework for testing policies. The 
findings reported in this paper are based on our 
study. However, the progression of COVID and 
the testing policies adopted by the government 
have evolved rather rapidly over the past few 
months. We begin our discussion by setting up 
the larger context, before we return to the dis
cussion on the specific findings of this paper, 
which not only remain relevant but perhaps  
have been vindicated over this period.

1.1 � Why do We Test?
At a high level, a COVID testing policy refers to 
a sampling algorithm for choosing patients for 
applying COVID tests. For simplicity of exposi-
tion, we do not distinguish between different type 
of tests and restrict to a single test. Such a test can 
be characterized mathematically in terms of its 
sensitivity, the probability that COVID-positive 
person is correctly identified, and its specific-
ity, the probability that COVID-negative person 
is correctly identified. The sampling algorithm 
can depend on observable features such as the 
personal traits of the individual (for instance, 
individual’s age, gender, comorbidities, presence 
of symptoms, etc.) or the relation of individual 
with other individuals (such as whether the indi-
vidual has contacted another COVID-positive 
individual).

In our experience, before laying down a test-
ing policy, it is rather important to articulate the 

objective the testing policy is supposed to serve. 
We propose to categorize this objective into three 
classes: 

1.	 Containment. This is perhaps the foremost 
objective which the policy makers keep in 
mind when designing a testing policy. The 
goal here is to identify and isolate positive 
cases to contain the spread of infection. This 
in turn can lead to less burden on medical 
facilities and lower fatality rates.

2.	 Discovery. This seems to be the least talked-
about objective of testing, where the goal is 
to discover new, previously unknown, clus-
ters of infection. An early discovery of a new 
cluster can allow one to quickly intervene 
and halt the spread of disease. However, 
since these new clusters may not be directly 
connected to previously known cases, this 
may turn out to be a search problem of for-
midable complexity.

3.	 Estimation. The classic motivation for a 
testing policy is to estimate the number of 
COVID-positive cases. When forming such 
an estimate, we need to keep into account 
the sampling biases and the number of tests 
used. While theoretically an appealing prob-
lem (see, for instance25, for related studies), 
this is a very challenging problem in prac-
tice since policy-driven sampling biases are 
rather difficult to quantify mathematically.

The work reported in this paper mainly focuses 
on the objective of containment, although  
we do shed insights on the estimation prob-
lem as well. In fact, contact tracing, which has 
emerged as the backbone of any testing policy, 
focuses mainly on containment. If one seeks  
to use the number of positive cases detected 
using contact tracing to estimate the total num-
ber of ground truth cases, it requires a careful 
modeling of the probability with which con
tacts are found and selected for testing. This is 
often a very difficult task, especially in the early 
stages of an epidemic when the protocols are 
evolving rapidly and the ground staff is not very 
systematic. We will elaborate on this issue later  
in this article.

Also, we remark that to discover new clus-
ters in large populations will require many tests, 
especially in the initial stages of infection when 
the statistics are unclear. However, such an 
objective can be pursued in smaller populations 
such as those in “containment zones,” a smaller 

1  These numbers have been taken from2.



865

How Reliable are Test Numbers for Revealing the COVID-19 Ground Truth

1 3J. Indian Inst. Sci. | VOL 100:4 | 863–884 October 2020 | journal.iisc.ernet.in

geographical area cut-off from the remaining 
parts of the city to contain the spread.

1.2 � The Utility of Modeling and the 
Simulation Approach

In our study, we model the progression of disease 
using probabilistic modeling. This modeling is 
done at two levels: First, the progression of dis-
ease within each individual is modeled using a 
Markov process; and second, the interaction of 
different individuals is modeled using a dynamic 
random graph. In this random graph, we repre-
sent individuals by nodes and an edge represents 
the possibility of transmission of disease between 
the individuals it connects; see, for instance6, 8, 13.

This model involves several parameters 
associated with both the within individual pro-
gression component and the random graph 
component. For the first component, the clini-
cal data about each patient can be used to esti-
mate time spent in each state by the patient. 
Foreseeable challenges here are frequent lapses 
in data recording and lack of consistent format
ting. We have indeed faced such challenges in 
our own efforts when working with govern-
ment authorities. Nonetheless, a large amount 
of clinical data are available, and we believe  
that tuning the parameters of model for this 
first part now is quite feasible in practice.

The tuning for second part is more challeng-
ing. In the initial stages of the COVID pandemic, 
our knowledge of interaction graph between peo-
ple in a geographical region was rather limited. 
At that stage, a promising strategy was to postu-
late a probabilistic model for interaction between 
people based on their features, and estimate the 
parameters involved using the available interac-
tion data. Such an approach is prescribed in17 as 
well. However, in our experience, such models 
often turn out to be massively parameterized and 
many of the parameters cannot be estimated in 
practice. We note that several Information and 
Communication Technology (ICT)-driven tools 
have emerged that provide a lot of information 
about local interactions in different geographi-
cal areas. We believe that the aforementioned 
random graph models are best suited to merge 
these data into a systematic interaction model for 
people.

Once such a model is selected and its param-
eters are set, a software simulator can be used to 
emulate the disease progression in an area. This 
is the approach we follow in the current article, 
and we will elaborate on this below. At this point, 
we want to address the concern that has emerged 

about simulations and predictions for COVID 
studies over the past few months. As outlined 
above, the underlying models often have too 
many parameters to tune, and a common prac-
tice is to freeze most of these parameters using 
reasonable guesses. Only a few of the parameters 
are tuned based on real data to obtain the desired 
fits, resulting in a rather ad hoc tuning procedure. 
As such, the numbers predicted by such modeling 
and simulation frameworks can deviate from 
the ground truth in a short span of time (say a 
month).

However, in the context of our work, we 
have a different utility for a simulation-based 
framework. We use our simulation framework 
to emulate dynamics that capture specific situ-
ations that can occur in practice and use it to 
compare the relative merits of different test- 
ing strategies and other interventions that 
are based on test outputs. We do not tune our 
parameters to depict the exact recorded num-
bers, and as such, our findings are not quantita
tive but qualitative. In this particular use-case, 
we believe that the role of simulator-based 
frameworks is unrivalled.

1.3 � Findings of this Work
We undertake a systematic mathematical mod-
eling and simulation-based study of a variety of 
testing policies, and compare their efficacy for 
enabling interventions such as lockdown. Based 
on our experiments, our main findings can be 
summarized as follows: 

1.	 If a sufficient fraction of symptomatic 
population shows up for testing, then test-
ing a small random sample of symptomatic 
patients can give a good idea of the ground 
truth trend.

2.	 Contact tracing (CT), where contacts of a 
COVID-19 patient are tested, returns a sig-
nificantly higher number of positive test 
outcomes than the random symptomatic 
testing (RST) as above. More importantly, 
a decision for locking down the popula-
tion based on CT can help reduce the peak 
ground truth number of cases (‘flatten the 
curve’) much better than RST.

3.	 Using a location- and mobility pattern-
aware sampling, it is possible to get perfor-
mance similar to that of CT using opera-
tionally less intensive testing procedures.
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We present the precise observations and describe 
the setup later below, but we quickly note here 
that we use the derivative of the ground truth 
curve as an indicator of the ground truth trend—
indeed, visually it appears to be a good indicator. 
It is this indicator of ground truth trend that RST 
reveals well.

Our conclusions are based on agent-based 
simulation for a population of 100,000 individu-
als or agents distributed across a realistic synthetic 
city, interacting based on a realistic mobility pat-
tern. Specifically, we use publicly available cen-
sus data to distribute the agents across the 198 
(urban) wards in the city of Bengaluru. The 
agents have health states related to COVID-19 and 
another, generic, ‘flu’-like disease condition with 
similar symptoms, which evolve independently. 
A susceptible agent (in COVID state S) can get 
infect when it meets a COVID-19 infected agent 
(in COVID state I). The agents can interact with 
other agents in their neighborhood or agents that 
visit similar locations daily. We instantiate the 
mobility of agents across the city using mobility 
data obtained from traffic flows.

This evolution model drives the unknown 
state, a part of which is observed by testing poli-
cies, stored in a separate module in our imple-
mentation. A testing policy determines which 
agents will be subjected to testing and applies a 
randomized test to the selected agent. The his-
tory of test results is stored and is made available 
to intervention policies, which are stored in yet 
another module. An intervention policy outputs 
a control action which modifies the state evolu-
tion dynamics. For instance, a lockdown inter-
vention will disable the interaction between the 
agents. We assume that the borders of the city are 
closed and there is no interaction with the out-
side world.

Our overall simulation framework, made 
available as a Python package at11, is flexible and 
can incorporate any new testing policy or inter-
vention policy. Furthermore, the state evolution 
model can be easily modified to incorporate more 
“mixing points” such as buses, malls, etc. In fact, 
our goal is to incorporate real-time mobility data 
obtained from digital platforms, as suggested in10, 
to have an updated representation of mixing in 
the city.

A disclaimer: Our model has not been cali-
brated to match the actual number of cases  
in Bengaluru. Neither do our conclusions enjoy 
rigorous theoretical backing. These results are 
preliminary and are based on experiments  
with our simulation framework. They provide, 
we hope, insight into questions raised above 

and exhibit the utility of our simulation frame-
work that can used for such studies. This is 
work in progress, released early to ensure timely 
dissemination.

1.4 � Related Work
There is large body of work using mathemati-
cal models and simulation to study spread of 
COVID-19 and facilitate decision-making. A 
very timely publication was the report9 from the 
COVID-19 response team of Imperial College, 
London, earlier versions of which raised an alarm 
about possible worst-case scenarios if COVID-
19 is allowed to grow unchecked. This in turn 
is based on a long-line of work from the same 
group on mathematical modeling and simulation 
of epidemic spread; see, for instance8. Our models 
of state evolution are similar to these works, but 
at this point are not as elaborate as these works. 
More refined models with comorbidity and age-
dependent evolution have been considered in23.

A very elaborate agent-based simulation 
model for Indian cities has been developed in1, 

19 . In fact, our simulator is closely related to an 
initial version of the simulator in1; the main dif-
ference is the presence of a confounding flu  
and incorporation of various testing policies, 
features which have not been considered in  
these works. In a different direction, the epi
demiological framework developed by the 
INDSCI-SIM group22 studies various lockdown 
scenarios in detail using a differential equation-
based simulation model.

While distance-based modeling of interac-
tion of agents is quite popular, with footing in 
random graph theory, using real mobility and 
traffic data to model interaction of agents is also 
gaining prominence in epidemiological stud-
ies. In this paper, we have only considered traffic 
data obtained using surveys, somewhat similar to 
how data are obtained14. A more effective method 
can be the prescription10 where location services 
and mobile phone usage data are used to obtain 
real-time daily mobility patterns. Looking ahead, 
we would like to integrate such data into our 
framework.

While most of prior work has treated the out-
come of tests as the actual ground truth number 
of COVID-19 cases, very recently, articles17,7 have 
appeared that explicitly study the role of the test-
ing policy. The former has a similar setup as ours, 
except that the simulation is event driven and uses 
a more detailed simulation of agent interaction. 
However, only contact tracing is considered and 
an ideal situation where there is no other flu with 
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similar symptoms is assumed. In a way, this frame-
work assumes that one can directly access the 
ground truth. The article7 presents a similar dis-
cussion as our results, but the approach appears to 
be more statistical and not based on explicit epi-
demic modeling/simulation. We remark that our 
proposed new testing algorithm uses ideas from 
multi-armed bandit problems; the paper5 pro-
poses an algorithm that uses similar ideas towards 
achieving a good test allocation strategy.

1.5 � Organization
The remainder of this paper is organized as fol-
lows. We present the details of our modeling and 
simulation framework in the next section. A com-
parison of the three testing policies we consider 
when there is no intervention is given in Sect. 3, 
and a comparison of their efficacy in enabling 
interventions in Sect.  4. We conclude with some 
discussion on policy implications and next steps 
in the final section.

2 � Simulator Description and Features
2.1 � Simulation Model
We consider an agent-based simulation frame-
work to model the propagation of an epidemic 
in a city. In our general framework, a city is 
populated using n agents distributed across fixed 
“localities” of a city in proportion to their popu-
lation densities. Each agent i represents a person 
with attributes such as location associated with it. 
The health of an agent is captured by its COVID 
state Ci(t) on day t. A distinguishing feature of 
our setup is an additional “flu” state Fi(t) which 
represents the presence of another flu with simi-
lar symptoms as COVID-19. This allows us to 
model the erroneous prescription of COVID-19 
test to a person who shows similar symptoms due 
to presence of another flu, which we believe is 
essential for a realistic modeling of testing.2

The evolution of Ci(t) is determined by two 
factors: a local evolution model for each agent’s 
state and evolution due to interaction between 
agents. For local evolution, we use the popular 
SEIR model for Ci(t) where the COVID state of an 
agent can take values in the set {S,E, I ,R} repre-
senting susceptible (S), exposed (E), infected (I), 
and recovered (R) conditions, respectively. Note 
that this model is a simplification of the dynam-
ics used9 and combines the several stages such as 
hospitalization and death into a single state R. 
The origin of such models in epidemiology can 
be traced back to the pioneering work of Kermack 
and McKendrick in 1920s, and they have been 
used for modeling COVID-19 dynamics10, 15, 17, 

23. The collective states C(t) = {Ci(t), 1 ≤ i ≤ n} , 
1 ≤ t ≤ T  , form a discrete-time Markov chain, 
where Ci(t) on day t changes to the state Ci(t + 1) 
on day t + 1 according to a pre-specified prob-
ability transition structure, which is depicted in 
Fig.  1. Specifically, each agent changes its state 
from E to I to R independently of all the other 
agents. The transition probabilities in Fig.  1 are 
set to parameters 1/Tss′ , where T is the average 
transition time between states s and s′ . Although 
the values chosen for our simulations are only 
approximations, such average times have been 
studied and reported extensively in literature, and 
the most up-to-date estimates can be used in the 
model by the interested practitioner.

Note that an agent makes a transition from S 
to E based on its interaction with other agents. 
When an agent in state I meets another agent 
in state S, the latter agent gets infected with a 
pre-specified probability p. To model the meet-
ing of agents, we include two components: The 
first is a “neighborhood” component where each 
agent meets a set of randomly chosen agents 
from the same neighborhood. In addition, each 
agent meets a fixed set of agents from its neigh-
borhood, generated randomly at start and then 
fixed throughout the simulation. Note that, for 
an agent, its neighborhood need not coincide 
with its locality and can include a set of close-by 
localities. In our simulation, we have defined a 
neighborhood as a set of localities touching (geo-
graphically) a given locality.

The second component represents interaction 
with agents from different localities, not neces-
sarily the neighboring ones. Here we propose to 
use data about mobility in the city. Here, too, an 
agent visiting a location on a day interacts with 
a set of randomly chosen agents generated afresh 
everyday as well as fixed set of agents set upfront.

One final component of our model is the evo-
lution of the “flu” state Fi(t) . We remark that the 

Figure 1:  COVID state evolution of each agent.

2  It is conceivable, however, that the enforcement of public 
health measures such as recurring lockdowns and face cov-
erings may have rendered other typical respiratory diseases 
insignificant. Nevertheless, the confounding effects of com-
mon symptoms from different respiratory diseases are explic-
itly factored here.
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inclusion of this state is only to model the noise 
in applying a testing policy. Thus, we use a simple, 
intrinsic, SIS model for Fi(t) where it is evolves as 
a Markov chain independently for each i and tak-
ing values in {S, I} with transition probabilities 
depicted in Fig. 2. Note that an important distinc-
tion between the COVID and Flu models is that 
in the former, the process “terminates” once the 
state R is reached since we assume that a person 
who has been infected with COVID-19 once can-
not be infected again. However, a person keeps on 
shifting from S to I Flu states indefinitely—this is 
because the “flu” state is an proxy for the individ-
ual contracting any illness with similar symptoms 
as COVID-19.3 As we shall elaborate later, any 
testing policy that makes a pool of symptomatic 
patients will treat an agent with Ci(t) = I and 
Fi(t) = I identically (if all their other features 
such as locality match).

This template for an interaction model is very 
generic and can incorporate various movements 
across the city in form of origin–destination flow 
data. Even bus routes can be included by consid-
ering them as locations. However, we have only 
implemented a restricted form of this interac-
tion in the first version of our simulator used for 
experiments in this paper. Specifically, the num-
ber of fixed and randomly selected agents met 
in the neighborhood and the locality visited are 
fixed to be the same for all the agents. Further-
more, only one visited location is set per agent, as 
a part of its feature matrix. However, we remark 
that it is easy to extend our model to include mul-
tiple locations (such as workplace, bus-used, etc.).

Before specifying the parameters used for the 
results of this paper in the next section, we remark 
that our framework requires mobility data to be 
fed in the form of an origin–destination (OD) 
matrix. Such a matrix has number of rows Nr as 
the number of localities and the number of col-
umns Nc representing the locality or community 
visited daily. The (i, j)-th entry of this matrix rep-
resents the probability with which a person from 
locality i goes to locality j, whereby the ith row 
constitutes a probability vector that sums to one. 
We use this vector to generate the locality visited 
by each agent in locality i, independent of other 
agents. Note that we can have multiple such OD 
matrices, one for each community, and each per-
son can be a member of one community each for 
every matrix available in the model. In its current 
form, our implementation allows the member-
ship to depend only on the location of the agents. 
Furthermore, agents have not been endowed with 
other potentially relevant features such as age 
and comorbidity which determine COVID state 

evolution in practice. We plan to include these 
enhancements in a subsequent version.

We close this section by noting that the state 
evolution of our model is defined in the file 
evolution.py of our implementation. Also, 
we point out that the state of the city is captured 
by a pandas data frame City Population, abbrevi-
ated as CP, with N rows and columns correspond-
ing to various features of each agent.

A caution: Our implementation is designed to 
use multiple CPU cores in parallel, but the spe-
cific dynamics change when number of cores are 
increased. In particular, increasing the number 
of cores used changes the number of state transi-
tions happening in parallel, reducing the overall 
growth rate. Throughout this paper, we have set 
the number of cores to 8.

2.2 � Parameters Used for Simulation
In this paper, we instantiate the general frame-
work described above for the city of Bengaluru 
in India. For simplicity, we only consider an 
SIR model for COVID state where the E state is 
skipped by setting TEI = 1 . We consider the 198 
urban wards of Bengaluru that come under the 
city municipal corporation (Bruhat Bengaluru 
Mahanagara Palike, BBMP) and use the census 
data (converted to a .geojson file using data 
from3, 4) to populate N = 100,000 agents across 
the city; see Fig.  3 for depiction of population 
densities.

For modeling mobility across the city, we 
use data on vehicle mobility across Bengaluru 
acquired from the Centre for Infrastructure, 
Sustainable Transportation and Urban Planning 
(CiSTUP), Indian Institute of Science, Bangalore. 
This is similar in spirit to the prescription10, but 
instead of dynamic digital data, we use static data 

S I

1/TEI

1/TIE

Figure 2:  Flu state evolution of each agent.

3  It is possible that the time scale of natural immunity to 
influenza-like illnesses is much longer than the model’s time 
horizon, in which case the SIS model for “flu” will not actually 
cycle through more than one infection during the horizon.
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obtained using surveys similar to14, 15. These data 
include OD matrices for vehicles of different cat-
egories across Bengaluru which was obtained by 
conducting household surveys across the city. We 
have only used the data for car traffic in our inter-
action model. Furthermore, it includes daily bus 
ticket sales obtained from BBMP; however, in this 
paper, we have not used the bus ticket sales data. 
To reduce computational load, we restrict the OD 
matrix to the 20 destination locations seeing the 
highest inflow, depicted in Fig.  4. Note that we 
also have a fictitious destination 21 representing 
an agent not visiting any of these 20 destination. 
With the interaction model set, we now list the 
values set for various parameters of our model 
described in the previous section: 

Parameter Value

COVID infection rate p 0.1

Average time from E to I for COVID state TEI 1

Average time from I to R for COVID state TIR 8

Average time from S to I for Flu state TSI 50

Average time from I to S for Flu state TIS 8

Number of randomly selected people each person 
meets in its neighborhood

1

Number of fixed people each person meets in its 
neighborhood

5

Number of randomly selected people each person 
meets at its workplace locality

2

Number of fixed people each person meets at its 
workplace locality

10

We remark that while our focus in this paper 
is not on careful calibration of the model, we 
have used reasonable parameter values based 
on results12, 16. We execute each simulation for 
1, 00, 000 people for a duration of T = 100 days. 
We mention in passing that we can easily incor-
porate bus data as well as movement data col-
lected from location traces as suggested10 in our 
framework; we will do this in subsequent versions 
of our implementation.

2.3 � The testing policy framework
A strength of our framework is its ability to 
incorporate testing policies. Our simulator takes 
as input a function testingPolicy described 
in the file tests.py. The history of testing of 
entire population is stored in an (N × T ) matrix 
TestingHistory, which stores 0 as the default value 
for each entry and updates the (i, t)-th entry to 1 
or −1 , respectively, if agent i is tested on day t and 
the outcome is positive or negative.

We can admit any testing policy that selects 
a pool of candidates to be tested and applies a 
common test function test() to each individual 
in the pool.The test function is defined to have 0 
probability of a false positive (this is in line with 
observed characteristics of the standard Reverse 
Transcriptase Polymerase Chain Reaction (RT-
PCR) test for COVID-1927), but a nonzero prob-
ability of false negative can be set. For simplicity, 
we have set the probability of false negative to 0 
in our simulations.4

In selecting the pool of candidates, a test-
ing policy can only use observable features such 
as locality of individual, the workplace visited, 
and whether an agent is symptomatic. Note that 
a symptomatic agent can have either Flu state I 
or COVID state I, but a testing policy (obviously 

Figure  3:  Ward-wise population density of Ben‑
galuru.

Figure 4:  The top 20 wards with highest car traf‑
fic inflow in Bengaluru. The red component in the 
color of each ward is proportional to the fraction 
of inflow traffic for the ward and the opaqueness 
of blue lines indicate the flow between the wards 
it joins.
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so) cannot use the actual COVID or Flu state of a 
person.

We have implemented and simulated three 
testing policies. Each policy selects a fixed num-
ber Ntest of symptomatic agents at each time 
step (day) to apply tests. The following policies 
are simulated: 

1.	 Random Symptomatic Testing (RST): The 
daily pool of agents to be tested is selected 
randomly (amongst people who are sympto-
matic).

2.	 Contact Tracing (CT): The daily pool is 
selected randomly from the set of all symp-
tomatic among the neighborhood con-
tacts and the workplace contacts of all the 
patients. If this set is of smaller cardinal-
ity than Ntest , which happens often, we 
enhance it with symptomatic from across 
locations.

3.	 Location-Based Testing (LBT): This policy is 
a bit involved and will be described in detail 
in Sect.  3. At a high level, this policy gives 
priority for testing to symptomatic agents 
belonging to localities and workplaces with 
higher infection.

A few remarks are in order. First, these policies are 
enabled by maintaining a list of fixed contacts in 
the neighborhood and the workplace, which can 
be identified for CT. We assume that the randomly 
selected daily contacts that an agent interacts with 
cannot be traced, as is the situation in practice.

Second, we mention that CT is an “infra-
heavy” testing policy requiring operational 
support to trace contacts and test them. In con-
trast, RST and LBT are algorithms that do not 
require operational support but require a care-
ful design of policy mechanisms to ensure pre-
scribed sampling.

Finally, we briefly outline the connection 
between testing policies in practice and the ones 
we have implemented in our simulation frame-
work. All the testing policies described above start 
with a list of symptomatic agents. In practice, such 
a list emerges when symptomatic patients reach 
out to their medical provider. An effective infor-
mation campaign by the government can ensure 
that patients with symptoms matching those seen 
in COVID-19 come out for testing. Nonethe-
less, the exact percentage of symptomatic patients 
that come out can vary with localities, since each 
locality differs in income levels and availability of 
medical facilities. To model this, we incorporate 
“under-reporting” in our framework which can be 

represented by a locality wise reporting probabil-
ity vector. Further, our tests sample randomly from 
the pool of symptomatic patients. In practice, this 
sampling is implemented by medical professionals 
who recommend a subset of symptomatic patients 
for testing. We believe that all the policies we have 
simulated can be (and, for some, have been) con-
verted to an implementable form on the ground 
at least in the Indian context, e.g., the containment 
plan of the Ministry of Health and Family Welfare, 
Govt. of India, already lays down “hotspot detec-
tion’ as part of a testing/intervention strategy18.

2.4 � The Interventions Framework
Our framework can simulate evolution under 
interventions. A policy intervention such as a 
city-wide lockdown is implemented as modify-
ing the interactions between different agents in 
the simulation. The intervention policy is speci-
fied as an input in the form of Python function 
interventionPolicy which is accessed 
everyday (for every iteration) to produce a list of 
interventions. When updating the state of each 
agent (using the function updateState speci-
fied in evolution.py), the list of interven-
tions enabled on each day is used to decide which 
interactions will be allowed for the agent. This 
is done by accessing the function Interven-
tionRule, which interprets the impact of inter-
vention for state evolution. In particular, we have 
implemented and simulated the following inter-
ventions in the module interventions.py: 

1.	 Quarantine (Python function Inter-
ventionQuarantine): Each agent 
that is tested positive for COVID-19 on 
day t, along with all the agents on its list 
of neighborhood and workplace contacts, 
are placed on quarantine for a period of 10 
days starting from day t + 1 . Namely, the 
agent is not allowed to interact with any 
other agent during this quarantine period.

2.	 Indefinite lockdown (Python function 
InterventionLockdown): All agents 
are not allowed to interact with any other 
agent once a particular trend is detected in 
the positive test count.

3.	 Fixed duration lockdown (Python function 
InterventionLockdownFixed): All 
agents are not allowed to interact with any 
other agent for a fixed period of time once a 
particular trend is detected in the positive test 
count.

4  The noise in tests appear because of the presence of another 
flu with similar symptoms as COVID-19.
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In the last two lockdowns, the rule to start a 
lockdown has not explicitly been mentioned. 
We will elaborate on this later, but roughly, a 
lockdown is triggered once the slope of posi-
tive COVID-19 tests crosses a threshold. Thus, 
the efficacy of an intervention policy is tied 
intrinsically to the testing policy used. As such 
the intervention policy function is given access 
to the overall population state CP, the history 
of interventions imposed, and the testing his-
tory matrix. If an additional state is required 
for implementing a policy—such as quarantine 
requires us to store the quarantine state of each 
agent—it is included as a part of CP.

In summary, our simulation framework 
separates state evolution functions (in evolu-
tion.py), testing policy (in tests.py), and 
intervention policy (in interventions.py). 
A new test or a new intervention can easily be 
incorporated by maintaining the input–output 
structure.

3 � Testing Strategies and Performance 
Comparison

This section details the testing strategies that we 
have explored using the simulation framework 
of Sect. 2, and compares their performance. For 
this section, no intervention is performed based 
on the test outcomes. The impact of tying inter-
ventions to test outcomes is discussed in Sect. 4.

3.1 � Testing Strategies
At a high level, a test strategy is expressed as a 
test selection rule, applied in each time step 
(day) of the simulation, that maps the current 
population, together with the past testing his-
tory, to a subset of individuals that are subse-
quently tested for COVID-19 infection. This 
map cannot depend on the actual health states 
of the individuals (e.g., their COVID state), 
but can rely on only their observable attributes, 
such as whether they display symptoms of ill-
ness or whether they reside in a specific ward 
or wards. The map can also be randomized to 
reflect random sampling from certain loca-
tions without necessarily relying on the onset 
of symptoms. The general pseudocode of a test 
selection rule appears in Algorithm 1.

All individuals selected by a test selection 
rule are assumed to undergo medical testing 
(e.g., RT-PCR testing) represented by the indi-
vidual test subroutine Algorithm  2 (defined as 
the function test in tests.py), which mod-
els false negatives arising in the testing process 
at an assumed rate r ∈ [0, 1].

In the sequel, the testing strategies we 
describe are specifications of test selection rules, 
assuming access to a standard individual testing 
subroutine. 

Algorithm 1: Test selection algorithm (general)
input : Current day t, Past testing history Ht−1 , i.e., a record of all individuals

tested on days 1, . . . , t− 1 and their test results, Observable attributes of all
individuals on day t

output: Set of individuals to be tested on day t

S = ∅ ; // holds set of individuals to be tested
for individual in population do

if condition is satisfied then
add individual to S ;

end
end
return S

Algorithm 2: TestIndividual (Individual test subroutine)
input : Individual i, False negative rate r
output: Result ∈ {+1,−1}
Result ← −1;
if i’s CovidState is “I” then

Result ← +1 with probability (1− r)
end
return Result
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3.1.1  �Random Symptomatic Testing
The first, and simplest, testing strategy we con-
sider is Random Symptomatic Testing (RST). 
This strategy (pseudocode in Algorithm 3) looks 
at the pool of people who display symptoms 
typical of the disease, and randomly samples as 
many of them as possible to fill up a predefined 
budget. This is considered a baseline testing strat-
egy under budget constraints in the experiments 
reported here. 

Algorithm 3: Random Symptomatic Testing (RST) test selection algorithm
input : Test budget b, Current day t, Past testing history Ht−1 , i.e., a record of all

individuals tested on days 1, . . . , t− 1 and their test results, Observable
attributes of all individuals on day t

output: Set of individuals to be tested on day t

A ← Individuals displaying symptoms on day t ;
S ← Random subset of min(b, |A|) individuals, sampled from A without replacement ;
return S

3.1.2  �Contact Tracing
Contact Tracing (CT) is a testing strategy in 
which symptomatic contacts of individuals that 
have tested positive in the recent past5 are tested 
at the highest priority. If any more tests are avail-
able, then as many (randomly chosen) individuals 
as possible that are presently exhibiting symp-
toms are chosen for testing. Pseudocode for the 
CT test selection strategy appears in Algorithm 4. 
Note that in practice even the nonsymptomatic 
contacts are often tested, which is what should be 
done in a simulation with the SEIR model. But 
since we have disabled the ‘E’ (exposed) state for 
simplicity, we only test symptomatic contacts. 

Algorithm 4: Contact Tracing (CT) test selection algorithm
input : Test budget b, Current day t, Past testing history Ht−1 , i.e., a record of all

individuals tested on days 1, . . . , t− 1 and their test results, Observable
attributes of all individuals on day t

output: Set of individuals to be tested on day t

A ← Individuals displaying symptoms on day t ;
C ← All (fixed) symptomatic contacts of individuals tested +ve in the past 2 days
(day-1 & day-2)

if |C| < b then ; // more tests available than # traced contacts

S ← C ∪ {min{b− |C|, |A|} individuals sampled from A without replacement}
else ; // fewer tests than # traced contacts

S ← {b individuals sampled from C without replacement}
end
return S

3.1.3  �Location‑Based Testing
Location-Based Testing (LBT) is a testing rule 
that is designed to favor individuals who are 
‘close’ to the currently known footprint of the 
COVID-19 infection. Closeness here is assumed 
to be high if (a) the individual’s locality contains 
many individuals known to have tested +ve in 
the past, or (b) many individuals who have tested 
+ve in the past are associated with the individu-
al’s visit place.

5  In our implementation of CT, the recent past is taken to be 
the past 2 days.

The LBT selection rule (Algorithm  5) essen-
tially computes a closeness or risk score of each 
person who reports symptoms, and prioritizes 
individuals for testing depending on their risk 
scores. The risk score of a person can be thought 
of as a crude proxy for the posterior probability 
of that person being infected with COVID-19 on 
a given day, given all the observed history of tests.

For our implementation, we define the score 
of an individual i on day t as a weighted sum of 
the scores of its residence locality and its visit 
place. The score of a locality is an exponentially 
weighted average of the number of +ve tested 
individuals associated to it in the past, e.g., an 
individual who tested positive from the locality 
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� days ago contributes αloc(1+ ǫ)�−1 to that 
locality’s score where αloc > 0 is an adjustable 
parameter. The score of a visiting place is defined 
analogously. Pseudocode for the LBT selection 
algorithm appears in Algorithms 5 and 6. 

Figure  5:  Comparative test performance with clustered seeding and without intervention, for a time 
period of 100 days and with a testing budget of 50 tests/day. Results are averaged across 10 runs and 
error bars represent 1 standard deviation.

Algorithm 5: Location-Based Testing (LBT) test selection algorithm
input : Test budget b, Current day t, Past testing history Ht−1 , i.e., individuals

tested on day s ≤ t− 1 and their test results, Observable attributes of all
individuals on day t

output: Set of individuals to be tested on day t

A ← Individuals displaying symptoms on day t ;
for Person in A do

Score[i] ← getScore(i, t)
end
S ← Random subset of min(b, |A|) individuals from |A|, successively sampled without
replacement according to their Score
return S

Algorithm 6: getScore subroutine
input : Individual i, Day t
output : (Risk) Score of i
parameters: αloc (weight for locality per +ve case), αvis (weight for visit place per

+ve case), β (relative weight of locality w.r.t. visit place), ε
(amplification factor)

v ← Visiting place which i visits ;
� ← Locality where i resides ;
Score v ← 0 ;
Score � ← 0 ;
for τ in 1 : (t− 1) do

Score v ← (1 + ε)Score v + αloc |{j : j tested +ve on day τ & j visits v}| ;
Score � ← (1 + ε)Score � + αvis |{j : j tested +ve on day τ & j resides in �}|

end
return Score v + β Score �

�Remark

We have not modeled the fact that both the conduct 
of tests and their reporting can suffer delays. For the 
interested experimenter, this can be incorporated 
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easily by having the result of the TestIndividual 
subroutine (Algorithm  2) available to the parent 
test selection routine after a suitable delay.

3.2 � Numerical Results and Discussion
We present and contrast here the numerical per-
formance of the 3 testing strategies described pre-
viously—Random Symptomatic Testing (RST), 
Contact Tracing (CT) and Location-Based Test-
ing (LBT). We run our experiments using the 
parameter settings of Sect. 2.2, without any non-
trivial interventions enabled for individuals who 
test positive for COVID-19.

3.2.1  �Test Performance with Clustered Seeding
Clustered seeding simulates the initial condition 
where all the initial COVID-19 cases are spatially 
localized. In our experiments, we initialize 50 
COVID-19-infected individuals (out of a popula-
tion of 100 K) in a single locality (ward number 

120, the ‘Cottonpete ward’) of the city of Bengal-
uru and let the outbreak evolve from there.

Figure  5 depicts the mean daily test score 
(number of tests with positive results) evolution 
with time for 10 independent simulation runs, 
along with the corresponding 1-standard devia-
tion ranges shaded in lighter color, for a daily 
budget of 50 tests/day. The ground truth num-
ber of cases per day is also plotted in the back-
ground. It is interesting to note that (a) RST 
shows high variance in reporting compared to 
the more biased CT and LBT, (b) while all 3 tests 
are equally accurate in capturing the trend of 
the ground truth in the phase leading up to the 
peak of actual case count, their performance after 
the peak is reached is quite different—CT and 

Figure  6:  Comparative test performance with clustered seeding and without intervention, for a time 
period of 100 days and with a testing budget of 200 tests/day. Results are averaged across 10 runs and 
error bars represent 1 standard deviation.

Figure 7:  Comparative test performance with uniform seeding and without intervention, for a time period 
of 100 days and with a testing budget of 50 tests/day. Results are averaged across 10 runs and error bars 
represent 1 standard deviation.

6  We have not formally defined the notion of “trend,” but a 
good proxy to keep in mind is the derivative of the ground 
truth curve, which seems to be well approximated by the 
derivative of the positive tests curve. This notion of approxi-
mation is well studied in nonparametric statistics, and can be 
used for a theoretical treatment of COVID-19 ground truth 
estimation.
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LBT tend to fall earlier than RST.6 Also interest-
ing is the short-lived peak in the curve for LBT 
early on—this is due to the test aggressively pri-
oritizing testing from the affected seed locality. 
A smoothed version of the test results, plotted 
alongside, shows that smoothing can make the 
outputs of CT and LBT capture the rise–fall trend 
of the ground truth in a better fashion. Note that 
we have chosen a smoothing window of 8 days 
since the average time from COVID state ‘I’ to 
COVID state ‘R’ in our model is 8 days. Presum-
ably, the gains due to smoothing can be attributed 
to this fact—a patient tested positive 8 days ago is 
likely to remain positive till the current day.

We also compare the tests with an enhanced 
( 4× ) budget of 200 tests/day (Fig.  6). The extra 
budget appears to put to good use by the ‘smart’ 
tests CT and LBT, whose test numbers outstrip 
those of RST by a significant margin in the lead 
up to the peak. The faithfulness to the actual 
ground truth signal also appears to be much bet-
ter for CT and RST here.

3.2.2  �Test Performance with Uniform Seeding
Figure 7 shows the results of applying the 3 tests 
with an initial seeding that is uniform across 
localities (city wards). Specifically, each of the 
(approx.) 200 localities in the simulation model 
hosts an independent Binomial (5, 0.1) number 
of COVID-19-infected seeds at start, resulting 
in about 100 seeds in the overall population 
(100 K). Figure 8 plots the same metrics but for 
tests with an enhanced testing budget (200 per 
day).

The results show a clear advantage of the 
more advanced tests (CT, LBT) over the RST 
baseline, in the period leading up to the peak of 
ground truth COVID-19 cases. This potentially 
brings out the value of relying on predictive 
biased sampling (over and above the sympto-
matic sampling by RST) to detect a higher num-
ber of cases in the initial stages of the outbreak. 
We will see later (Sect.  4) that this confers a 
significant advantage in terms of timing when 

Figure 8:  Comparative test performance with uniform seeding and without intervention, for a time period 
of 100 days and with a testing budget of 200 tests/day. Results are averaged across 10 runs and error 
bars represent 1 standard deviation.

Figure 9:  Comparative test performance with uniform seeding and without intervention, for a time period 
of 100 days, a testing budget of 50 tests/day, and 10% reporting of symptoms. Results are averaged 
across 10 runs and error bars represent 1 standard deviation.
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the results of the former tests are used to imple-
ment public (large-scale) lockdowns.

3.2.3  �Test Performance with  Under‑Reporting 
of Symptoms

We also examine what happens when individu-
als under-report symptoms when ill. This has the 
effect, in our simulation, of reducing the initial 
pool of symptomatic individuals which are input 
to the test selection strategy.

Uniform under-reporting. Figure  9 shows 
the test performance curves when each individ-
ual who is infected (either with COVID-19 or 
“flu”) is assumed to report as symptomatic with 
probability 0.1 independently (in the previous 
sections, this was assumed to occur with prob-
ability 1). Though the 10× under-reporting does 

not significantly affect the way in which all 3 tests 
capture the rise and fall in ground truth cases, 
contact tracing emerges as the most informative 
detector of cases in the lead up to the peak.

Non-uniform under-reporting. Figure  10 
depicts the tests operating in a scenario where 
individuals report in a non-uniform manner 
whether they are symptomatic and hence to be 
considered for testing. Specifically, individuals 
from about 1/3rd of the localities (wards) in the 
city (selected at random) report symptoms at rate 
5% while the rest report at rate 100%. The initial 
seeding for COVID-19 cases is uniform across 
the localities as before. Contact tracing is seen 
to be robust to the rather skewed under-report-
ing enforced here, presumably due to its more 
accurate predictions of infection targets due to a 
richer local signal.

Figure 10:  Comparative test performance with uniform seeding and without intervention, for a time period 
of 100 days, a testing budget of 50 tests/day, and non-uniform reporting of symptoms. Results are aver‑
aged across 10 runs and error bars represent 1 standard deviation.

Figure 11:  Estimated no. of COVID-19 cases computed using numbers of symptomatic (at 100% report‑
ing) and positive case counts. The simulation was carried out with uniform seeding and no intervention 
and a testing budget of 50 tests/day.
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3.2.4  �Estimating the Ground Truth Number 
of Infections

We explore the question of how well the test 
results, along with a record of the number of 
symptomatic individuals considered for testing, 
can be used to estimate the ground truth number 
of COVID-19 infections at any point in time. To 
this end, Fig.  11 plots, for each day, an estimate 
of the ground truth computed as: the number of 
symptomatic patients × the error rate of the test, 
where the error rate of the test (on a day) is the 
ratio of the number of positive tests to the num-
ber of total tests performed. It is observed from 
the plot that the (almost) unbiased RST algo-
rithm gives the best fit to the ground truth evo-
lution. The more aggressive (biased) CT and LBT 
strategies tend to overestimate the ground truth 
during the initial stages of the epidemic. We do 
not consider the problem of forming a more 
precise estimate using these strategies—it will 
require a precise knowledge of sampling prob-
abilities and it is unclear if that will be available 
in practice.

3.3 � Visualization Through Geo Plots
We depict an example spatio-temporal evolu-
tion of ground truth COVID-19 cases across 
the city, along with the corresponding positive 
cases detected in the recent past, in Fig. 12. This 
illustrates the spatio-temporal nature of our 
simulation model and can be useful for making 
qualitative inferences about certain testing and/or 
intervention strategies. It can be noted that while 
all tests return a good signature of the source of 
infection initially, LBT yields vey high number of 
positive tests during the initial period, making it 
a suitable testing strategy for early detection and 
containment of the spread.

4 � Effect on Interventions
In this section, we compare the efficacy of our 
three testing policies in enabling interventions. 
As outlined earlier, an intervention policy takes 
into account the number of positive tests pro-
duced by the testing policy. An intervention such 
as lockdown is enabled once a particular trend is 
detected. Note that the purpose of such a lock-
down is to “flatten the curve” by reducing the 
maximum number of daily COVID-19 cases in 

Figure 12:  Geo plots illustrating the evolution of the ground truth and positive cases across the city and 
over time, with uniform seeding of COVID-19 cases. The X-axis represents time, with each successive 
column denoting an increment of 10 days from the previous column (or day 0 for the first column). The 
first row represents the heat map for simulated ground truth COVID-19 cases by locality in Bengaluru. The 
second, third and fourth rows represent the heat maps for COVID-19-positive cases detected per locality 
by the Randomized Symptomatic Testing (RST), Contact Tracing (CT) and Location-based Testing (LBT) 
test selection algorithms, respectively, for the past 8 days.
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the ground truth. Such a reduction will reduce 
the stress on hospitals and other medical facilities.

We simulated COVID-19 evolution using the 
same rule for engaging an intervention policy 
using our testing polcies of RST, CT, and LBT. 
All the results we present in this section repre-
sent average over 10 runs of simulation; the mean 
behavior is depicted prominently and the spread 
up to standard deviation is shown in a lighter 

color. Briefly, we find that CT outperforms RST 
significantly in reducing the maximum num-
ber daily of COVID-19 cases (in the ground 
truth). Interestingly, LBT performs comparably 
with CT—recall that the former is less opera-
tion intensive than the latter. We present the three 
interventions we have considered in separate sec-
tions below.

Figure 13:  Evolution of COVID-19 cases under quarantine intervention using RST.

Figure 14:  Evolution of COVID-19 cases under quarantine intervention using CT.

Figure 15:  Evolution of COVID-19 cases under quarantine intervention using LBT.
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4.1 � Quarantine
We consider quarantine intervention where any 
person tested positive and all its contacts are 
placed under quarantine for 10 days. Note that 
this period of 10 days is shorted than the usual 
14–21 days quarantine imposed in India; the 
reduction is to compensate for the absence of the 
E state in our simplified SIR model (average E to I  
period observed is 5 days). We have considered 50  
tests (1 test per 2000 agents) per day starting with 
a clustered seeding where all the initial infections  
of COVID-19 are placed in one locality. Specifi
cally, we place 50 agents in COVID state I in ward  
number 120 (the ‘Cottonpete ward’), as in the 
previous section. We present our results using  
RST, CT, and LBT in Figs. 13, 14, and 15, respectiv
ely.

We observe that since the number of tests is 
very few, quarantine alone does not significantly 

reduce the maximum daily number COVID-19 
cases (in the ground truth). Also, the number of 
positive tests that result using CT exceeds both 
RST and LBT, while RST captures the derivative 
of the ground truth COVID-19 cases well. These 
observations are similar to those for the case 
when no intervention was done and can be attrib-
uted to the unbiasedness of RST estimates when 
all symptomatic patients come out for testing.

�Remark 1

Note that LBT gets high number of positive tests in 
the beginning. This phenomenon was seen for clus-
tered seed in the previous section as well and can 
be attributed to the fact that LBT tests many symp-
tomatic agents from the location where infection 
was initially seeded. Later, as the infection spreads 

Figure 16:  Evolution of COVID-19 cases under the indefinite lockdown intervention using the thresholded 
smoothened slope policy for Randomized Symptomatic Testing.

Figure 17:  Evolution of COVID-19 cases under the indefinite lockdown intervention using the thresholded 
smoothened slope policy for Contact Tracing.
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across the city and LBT has captured a large frac-
tion of the initial 50 cases in ward number 120, 
LBT starts performing comparably with CT. In fact, 
this observation will hold in all the other interven-
tions as well. This feature of LBT can be exploited 
to enforce a local lockdown of ward number 120 
early on, preventing the further spread of COVID-
19. However, we do not consider this intervention 
in this paper and will visit it in follow-up work.

4.2 � Indefinite Lockdown
We have implemented a threshold-based lock-
down policy which disables the interaction of 
the agents with each other once the slope of the 
number of positive tests graph crosses a thresh-
old. Specifically, denoting by P(t) the number of 
positive test outcomes, our policy computes the 
slope of the “10 day chord” of a smoothened ver-
sion P(t) := 1

8

∑7
i=0 P(t − i) of P(t) given by

and starts a lockdown once θ(t) crosses a fixed 
threshold τ = 0.5 . The selection of slope of the 
smoothened graph of P(t) as a feature to use is 
based on our empirical observation that this slope 
captures the slope of the ground truth COVID-19 
cases graph well. We term this policy the thresh-
olded smoothened slope policy for lockdown. We 
use the same clustered seed as in the previous sec-
tion and present our results using RST, CT, and 
LBT in Figs.16, 17, and 18, respectively.

Looking at the ground truth number of cases 
under three testing policies, we observe that CT 
reduces the maximum daily COVID-19 cases the 
most by about 90% of the peak value in absence 
of any intervention. Even RST offers a signifi-
cant reduction, by about 80%, but is much worse 
than CT. Remarkably, LBT, too offers very similar 
reduction as CT while requiring much less opera-
tional effort.

θ(t) =
P(t)− P(t − 10)

10
;

Figure 18:  Evolution of COVID-19 cases under the indefinite lockdown intervention using the thresholded 
smoothened slope policy for Location Based Testing.

Figure 19:  Evolution of COVID-19 cases under the fixed-duration lockdown intervention using the thresh‑
olded smoothened slope policy for Randomized Symptomatic Testing.
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4.3 � Fixed‑Duration Lockdown
The last intervention we consider is a fixed-dura-
tion lockdown which, too, uses the thresholded 
smoothened slope policy to engage a lockdown. 
But after a lockdown is initiated, it is lifted after 
14 days. We use the same clustered seed as in the 
previous sections and present our results using  
RST, CT, and LBT in Figs. 19, 20, and 21, respectiv- 
ely.

We observe that each testing policy results  
in three such lockdowns over a hundred-day 
period in our simulation. Interestingly, even  
with significantly fewer days of lockdown, 
the reduction in the number of ground truth 
COVID-19 cases is only marginally less than 
indefinite lockdown of the previous section. 
Further, here, too, CT outperforms RST signifi-
cantly and LBT yields similar performance as CT.

5 � Discussion
The design and analysis of strategies for testing 
a population, given limited testing resources, is 
a rich space of challenging problems relevant to 
public health policy. We have only scratched the 
surface by exploring how certain strategies like 
random sampling and contact tracing and vari-
ants inform us about the ground truth state, and 
what their qualitative characteristics are. We pre-
sent our concluding thoughts and perspective 
below.

The ground truth trend signal can reveal 
itself even at low testing rates. Using our simula-
tion framework with 1 test per 2000 people, we 
have observed that the simplest testing strategy 
RST captures the trend well. Note that, at the 
time of writing, the actual number of daily tests 
being conducted in India—about 1 test per 1000 
people2—is almost twice this testing rate. Other 
strategies such as CT and our proposed LBT 
yield higher number of positive tests than RST, 
and are seen to be more effective in enabling 

Figure 20:  Evolution of COVID-19 cases under the fixed-duration lockdown intervention using the thresh‑
olded smoothened slope policy for Contact Tracing.

Figure 21:  Evolution of COVID-19 cases under the fixed-duration lockdown intervention using the thresh‑
olded smoothened slope policy for Location-Based Testing.
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interventions. Even at this low number of tests, 
positive tests reflect the ground truth trend in our 
experiments. We in fact even conducted experi-
ments with uniform seeding with 5 tests per day 
(for a 100  K population; this amounts to 1 test 
per 20,000 people) and a shorter experiment 
with RST alone with 50 tests per day for a 1M 
population, whose results are displayed in Figs. 22 
and 23.

Ramping up in testing capacity and differ-
ent testing modalities. We have not explicitly 
accounted, in our modeling, for the fact that the 
number of tests deployed by a state or administra-
tive unit itself changes with time. As an example, 
the daily number of tests conducted in Karnataka 
state have roughly seen a hundredfold increase, 
from about 600 in early April to about 60K in late 

August2. Along the way, we have also witnessed 
the rise of cheaper, faster but less accurate test-
ing methodologies (compared to the standard 
RT-PCR test) such as the Rapid Antigen Test 
(RAT)24. In addition there are antibody assays 
or serological tests that have been developed for 
post hoc identification of individuals who have 
been infected with the novel coronavirus, albeit 
with a delay28. How to most effectively deploy a 
battery of such testing modalities in a population, 
considering their accuracy (false positive/nega-
tive rates) and delayed response characteristics, 
remains an important unsolved problem.

Test positivity rates and what they can signify. 
Much of the modeling and simulation work for 
this article was carried out during the early stages 
of the pandemic in India, before rising test posi-
tivity rates (TPR) became a cause for concern 
and prompted the World Health Organization to 
issue guidelines to countries to keep TPRs low7 
by expanding testing capacity26. The rationale 

Figure 22:  Comparative test performance with uniform seeding and without intervention, for a time period 
of 100 days and with a testing budget of 5 tests/day. Results are averaged across 10 runs and error bars 
represent 1 standard deviation.

Figure 23:  Performance of RST with uniform seeding and without intervention for a population of 1 Mil‑
lion, for a time period of 50 days, and with a testing budget of 50 tests/day. Results are averaged across 5 
runs and error bars represent 1 standard deviation.

7  The general consensus among epidemiologists seems to be 
that the TPR must be kept in the range 5–10% (‘not too high, 
not too low’).
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behind this prescription seems to be rooted in 
the principle that to successfully contain an epi-
demic, every infected individual must ideally be 
tested and isolated; thus, a high TPR may signal 
that only a small number of tests are being used 
to find infected individuals where they are most 
likely to be found, i.e., via contact tracing or in 
the ‘neighborhood’ of already-identified posi-
tive cases, and that testing capacity ought to be 
ramped up. Higher TPRs indeed show up in 
our experiments with a very scarce test budget 
(approximately 60–70% TPR at peak no. of active 
cases), and if one could hypothetically test the 
entire population at peak, then the TPR would be 
much lower at about 17%.

It is our understanding that this paper’s main 
goal is somewhat complementary to the ques-
tion of how to control TPRs, in the sense that the 
former is an ‘inner loop’ problem of how to best 
use (limited) testing resources among a popula-
tion, via sampling strategies, to achieve objectives 
(such as estimation, containment or discov-
ery). The latter issue, however, is an ‘outer loop’ 
concern about how to change or modulate the 
amount of testing resources given a reasonable 
testing strategy (such as contact tracing) in the 
inner loop, based on the TPR signal, to achieve 
an end-to-end containment goal, and is, thus, 
a slower time-scale and larger scale problem of 
when and how to ramp up test capacity.

Other remarks. There are a few other caution-
ary remarks we must make: First, the sampling 
probabilities that emerge during test prescrip-
tion by doctors in practice are difficult to evalu-
ate and may deviate significantly from our ideal 
assumptions. Second, our policies rely on symp-
tomatic patients coming out for testing (CT does 
not assume that). While this can be ensured by an 
active information campaign and ready access to 
doctors and digital medical advice, it is important 
to understand what can happen when a subsec-
tion of population is unable to report symptoms. 
Third, having more positive tests can perhaps 
offer robustness to deviations from our model 
in practice. Finally, we remark that we have not 
studied more localized interventions (though our 
simulations suggest that LBT will be more effec-
tive to enable a local lockdown). The effect of 
under reporting needs to be studied more thor-
oughly, too. It is of interest also to study extensive 
testing in an emerging hot-spot as well as pool-
ing for more efficient testing. We plan to consider 
these issues in later versions of this ongoing work.
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